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Abstract: This paper presents a system that can efficiently detect objects and estimate their 6D postures with RGB-D 
and motion sensor data on a mobile device. We apply a template-based method to detect the pose of an object, 
in which the matching process is accelerated through dimension reduction of the vectorized template matrix. 
After getting the initial pose, the proposed system then tracks the detected objects by a modified bidirectional 
iterative closest point algorithm. Furthermore, our system checks information from the inertial measurement 
unit on a mobile device to alleviate intensive computation for ease of interactive applications. 

1 INTRODUCTION 

Recently, Augmented Reality (AR) has achieved 
significant growth and been applied in various 
applications, and a large proportion of these 
applications perform on mobile devices. For AR 
applications, interacting with real-world objects is an 
essential factor, which relies on techniques of object 
recognition and tracking. Recognizing and tracking 
postures of real objects is one of the main research 
topics in computer graphics and vision fields, and 
quite a number of emerging methods can perform on 
a high-end computer in real time. However, due to the 
limited memory and the requirement of low-power 
consumption for mobile devices, it is still a challenge 
to efficiently perform object recognition and tracking 
methods on such a platform. 

Popularly used detection and tracking systems for 
AR usually have to attach particular markers to the 
target surface or rely on specific texture features. 
Under this circumstance, a user has to keep markers 
visible or the system cannot find the target 
successfully. To overcome these limitations, we 
developed a novel system that can recognize the 
object and analyze its 6D (3D rotations and 3D 
translations) postures precisely by using a template-
based method. Then our system tracks the detected 
object and updates its pose according to the RGB-D 
and motion sensing data acquired by a mobile device. 

We adopt Lenovo phab 2 pro as our experiment 
platform, as shown in Figure 1. This device is a 
Google Tango phone, equipped with a color and a 
depth camera. To efficiently and robustly match a 
foreground object to templates, we adapt a vectorized 
normalized cross-correlation (VNCC) algorithm that 
vectorizes templates into a dimension-reduced 
template matrix. The estimated coarse pose becomes 
the initial guess of our bidirectional iterative closest 
point (Bidrectional-ICP) algorithm. For further 
alleviating the computation burden, we refer to the 
sensing data from the inertial measurement unit 
(IMU) sensor and predict the short-term movement of 
the camera. The experiment demonstrates that the 
proposed system can efficiently detect and track 
markerless objects with a mobile device for 
interactive applications. 

 

Figure 1: The prototype of our system. The object and the 
result on the mobile device. 
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Figure 2: Overview of the whole system. 

2 RELATED WORK 

3D object detection and pose estimation have been 
studied for a long time, and these methods can be 
divided into two types, feature-detecting-based 
methods, and template-matching-based methods. 
Lowe (2004) proposed Scale Invariant Feature 
Transform (SIFT) algorithm, which is used to extract 
the rotation- and scale-invariant features. Collet et al., 
(2009) used SIFT feature in both 2D image and 3D 
model for matching. Aldoma et al., (2013) used SIFT 
as the 2D local descriptor and SHOT as the 3D local 
descriptor. Both of them showed high accuracy 
results on textured objects, however, they are unable 
to deal with textureless objects. 

Template-matching method is also a practical 
solution for detection. Hinterstoisser et al., (2011) 
(2012) proposed a real-time template matching 
method called LINEMOD, which is able to detect 
textureless object quickly. They used multiple 
modalities as the features composed of color 
gradients and normal orientations. Cao et al., (2016) 
restructured template matching as a large-scale 
matrix-matrix multiplication to supply a vectorized 
normalized cross-correlation algorithm (VNCC). Lin 
et al., (2018) decomposed foreground depth images 
into multiple branch regions for object matching. 

The solution of object pose estimation is derived 
from correspondence estimation between two point 
clouds, in which one is the set of an object in the scene 
and the other is a template or model of the object with 
known orientation. Besl and McKay (1992) proposed 
the Iterative closest point (ICP) algorithm, which 
estimates the rotation and translation between two 
point sets iteratively. ICP becomes a widely used 
algorithm in aligning 3D models. Korn, Holzkothen 
and Pauli (2014) added Lab color space information 
into the Generalized Iterative Closest Point (GICP) 
algorithm (Segal et al., 2009), a state-of-the-art Plane-
To-Plane ICP variant, to improve the accuracy. 

Prisacariu and Reid (2012) proposed a region-
based method, based on statistical level-set 
segmentation approaches called PWP3D (Cremers et 
al., 2007). It minimizes the differences between 3D 
model projective silhouette and the object silhouette 
in the image. An extended version of PWP3D on a 
mobile phone was then presented (Prisacariu et al., 
2015). However, these silhouette-based methods may 
suffer from pose ambiguities with symmetry objects. 

Several researches aim at detection and tracking 
for mobile devices. Hagbi et al., (2009) used contour 
concavities to extract features for real-time pose 
estimation and tracking. Seo et al., (2011) proposed a 
model-based tracking method that used a 3D model 
of the target object and estimated the camera moves 
through edge detection and matching. Mohammed 
and Morris (2014) tracked the Emergency Exit sign 
by using Continuously Adaptive Mean Shift 
(CAMShift). Our work adapts the template matching 
method proposed by Cao et al., (2016) for object 
detection of textureless objects, and then tracks the 
postures with an extended ICP method and 
adjustment according to the IMU sensing data. 

 

 

Figure 3: Two types of models and reference images. (a) A 
general model. The x-axis is red, y-axis is green and z-axis 
is blue. (b) A symmetric model. The viewpoints are 
sampled on a semi-circle. (c) Examples of the reference 
images generated with (a), in which 24 images are projected 
for the in-plane rotation. 
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Figure 4: The process of foreground segmentation. (a) The color image from RGB camera. (b) The points extracted from the 
segmented plane. (c) The initial foreground projects from points in (b). (d) The foreground spreading result, with noise. (e) 
The noise reduction result of (d). (f) The real-time extraction on mobile device. 

3 METHOD 

The proposed system can be divided into two parts as 
shown in Figure 2. The first part is the offline 
template generation. The templates are generated by 
rendering the 3D models from different viewpoints. 
The second part is online processing, including 
foreground extraction, object recognition and pose 
tracking. The extracted foreground image is matched 
with templates to estimate the coarse pose of the 
object. Finally, our system renders the 3D model at 
estimated pose on user interface to show the tracking 
result. Our system aims at a desktop environment. We 
assume that the object is placed on a flat plane. 

3.1 Reference Images Generation 

We generated the reference images (templates) by 
rendering the reconstructed 3D model (reconstructed 
by Autodesk ReCap) of a target in different 
viewpoints. The models can be classified into two 
types: general and symmetric. The general model 
includes all common models except models that are 
rotational symmetric around one of three coordinate 
axes. For a general model, we set 5 sample points 
around the x-axis and 5 sample points around the y-
axis on a hemisphere as viewpoints (25 in total). For 
a symmetric model, we set 13 sample points on a 
semi-circle as viewpoints. For each viewpoint, we 
rendered 24 samples, 15 degrees apart, around the 
direction from the viewpoint to the center of 
hemisphere/semi-circle. Examples of reference 
images are shown in Figure 3. 

3.2 Foreground Extraction 

Our system first finds the most likely plane through 
the RANSAC algorithm and extract points above the 
plane. Since the depth images acquired by the mobile 

device are of a low resolution and disturbed by noise, 
the RANSAC algorithm can only extract a part of the 
plane. Therefore, we need to further extend the 
foreground region based on the color information. 
Our system projects those points above the plane back 
to the relative 2D position in the color image, and 
spreads the foreground region according to both depth 
data and the color histogram (ab channels of Lab colr 
space). It also applies the flood fill algorithm to gather 
connected components and removes those of 
insufficient point amount. Figure 4 shows the process 
of foreground extraction.  

3.3 Object Pose Recognition by 
Template Matching 

We adapted the vectorized normalized cross-
correlation method (Cao et al., 2016) for initial object 
and pose recognition. With the vectorized template, 
the comparison between template and input image 
patch becomes a dot product. 

3.3.1 Measurement of Similarity 

We convert the foreground image into an intensity 
image ܫ ∈ Թௐൈு and each template into an intensity 
image ௜ܶ ∈ Թௐᇲൈுᇲ. ܪ is the width of the image, and 
ܹ is the height of the image, ܹᇱ and ܪᇱ are the width 
and height of the template ௜ܶ, ݅ ∈ ሼ1, 2,⋯ , ݊ሽ, where 
݊ is the number of templates. To compute the cross-
correlation, we resize the foreground image to be the 
same as the template size ܹᇱ ൈ  ᇱ. For balance ofܪ
accuracy and efficiency, in our case, we set ܹᇱ and 
 ᇱ to 72 pixels. We apply a Laplacian of Gaussianܪ
(LoG) filter on both image patches and templates for 
illumination invariance and then perform mean-
variance normalization on the results of LoG. The 
image patch ܫ  and each template ௜ܶ  are now 
converted to ܫᇱ  and ௜ܶ

ᇱ . Each template ௜ܶ
ᇱ  is  
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Figure 5: Image template matrix ܂ᇱ. Right ௜ܶ is the original 
template, Left shows LoG results, and ݐ௜

ᇱ is the result after 
mean-variance normalization. Templates are vectorized 
into rows in the template matrix ܂ᇱ. 

vectorized by concatenating all pixels in the row-wise 
order into a column vector ݐ௜ᇱ ∈ Թே, where ܰ is the 
number of pixels in the template. We also vectorized 
the image patch ܫᇱ  into a vector ݌ᇱ ∈ Թே . The 
similarity between ݌ᇱand ݐ௜

ᇱ is defined below, where 
 is the mean-normalized cross-correlation result of ݏ
each ݐ௜ᇱ with ݌ᇱ. 

ݏ	 ൌ ௜ݐ
ᇱ்݌ᇱ  (1)

Through vectorizing the templates and image patch, 
the matching of a set of templates can be turned into 
a matrix-vector multiplication. We transpose 
vectorized templates ݐ௜

ᇱ into rows and use these row 
vectors to compose a template matrix ܶᇱ ൌ
ሾݐଵᇱ ଶݐ	

ᇱ ௡ᇱݐ	⋯	 ሿ், as shown in Figure 5. The score vector 
ܵ ∈ ࣬௡ is defined as: 

ܵ ൌ ܶᇱ݌ᇱ, (2)

where ܵሺ݅ሻ  represents the normalized cross-
correlation score between ݐ௜

ᇱ  and ݌ᇱ . The highest 
score in ܵ can be regarded as the best match of	݌ᇱ. 
Hence, for matching temples of an object, the best-
match template is the highest-score template in the 
score vector ܵ and its score has to be higher than the 
threshold ௠ܶ. 
 

 

Figure 6: An example of object pose estimation with 
reverse checking. (a) The scene object from foreground 
segmentation. (b) The best result of previous frame. (c) The 
top 5 templates from left to right, in which the result after 
reverse checking is marked in red. 

3.3.2 Dimension Reduction of Templates 

To speed up the computation of ܵ, we apply singular 
value decomposition (SVD) on the template matrix 
ܶᇱ and reduce the dimension of template matrix ܶᇱ. 
After SVD, ܶᇱ can be rewritten as: 

ܶᇱ ൌ (3) ,்ܸߑܷ

where ܷ ∈ Թ௡ൈ௡ , and ܸ ∈ Թேൈே  are orthogonal 
matrices. ߑ ∈ Թ௡ൈே  is a diagonal matrix of same 
dimension of ܶᇱ . We reduce the dimension by 
discarding the small singular values in ߑ, and keep a 
percentage of singular energy ߙ as defined below 

∑ ఀ೔೔
ೖ
೔సభ

∑ ఀ೔೔
೙
೔సభ

൒ (4)   ߙ	

 can be 90% or more. By selecting the top ݇ singular ߙ
values in ߑ, we can reduce the dimension of ߑ and 
transform 	ߑ  into ߑᇱ ∈ Թ௞ൈ௞ . ܷ  and ்ܸ are also 
transformed into 	ܷᇱ ∈ Թ௡ൈ௞  and  ்ܸᇱ ∈ Թ௞ൈே . 
Finally, we redefined ܶᇱ as 

ܶᇱ ൌ ܷᇱߑᇱ்ܸᇱ (5)

3.3.3 Matching with Depth Image 

However, we found that if we only consider the color 
data, the illumination changes and noise easily 
influenced the matching result. Therefore, we also 
take the depth information into consideration in 
template matching. We repeat the steps in 3.3.1 on 
foreground depth image  ܦ ∈ Թௐൈு  and template 
depth images ஽ܶ௜ ∈ Թௐᇲൈுᇲ. The score vector 	ܵ can 
be rewritten as 

ܵ ൌ ௖ܹ ∗ ܵ௖ ൅ ௗܹ ∗ ܵௗ , (6)

where ܵ௖  is the color matching score and ܵௗ  is the 
depth match score, ௖ܹ and ௗܹ are used to control the 
proportion of ܵ௖ and ܵௗ. Since the influences of color 
and depth vary for different objects, we cannot always 
get the best result with fixed weights. Therefore, we 
use an entropy method to determine ௖ܹ and ௗܹ. We 
assume that the greater template variation between 
different viewpoints, the more information is 
provided. We sample templates and calculate the 
color similarity score ܺ௖  and depth similarity score 
ܺௗ  of any two selected templates, ܺ௖ ൌ
ሼݔ௖ଵ, ,௖ଶݔ … , ௖ଵ଴ሽ and ܺௗݔ ൌ ሼݔௗଵ, ,ௗଶݔ … ,  ௗଵ଴ሽ. Weݔ
normalize ݔ௖௜  and ݔௗ௜  into ݔ௖௜ᇱ  and ݔௗ௜ᇱ , where 

௖௜ᇱݔ ൌ
௫೎೔ି୫୧୬	ሺ௫೎೔ሻ

୫ୟ୶ሺ௫೎೔ሻି୫୧୬	ሺ௫೎೔ሻ
 and so as ݔௗ௜ᇱ. The entropy ܧ 

is defined below 

ܧ ൌ െ
1

݈݊ሺ10ሻ
෍ቆ

௜ᇱݔ

∑ ௝ᇱݔ
ଵ଴
௝ୀଵ

ቇ ݈݊ ቆ
௜ᇱݔ

∑ ௝ᇱݔ
ଵ଴
௝ୀଵ

ቇ

ଵ଴

௜ୀଵ

 (7)
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Figure 7: The flow chart shows about switching between two stages and two tracking methods. 

Finally, we calculate color entropy ܧ௖ and depth 
entropy ܧௗ  then determine entropy weights ௖ܹ  and 
ௗܹ. 

௖ܹ ൌ
௖ܧ

2 െ ሺܧ௖ ൅ ௗሻܧ
 (8)

ௗܹ ൌ
ௗܧ

2 െ ሺܧ௖ ൅ ௗሻܧ
 (9)

Moreover, sometimes we got the result template of an 
opposite rotation angle when the template of these 
two viewpoints are too similar. To avoid this 
problem, we check if there is a large-angle rotation 
between each of the top five result templates of the 
current frame and the best result of the previous 
frame, using quaternion. Figure 6 shows the result of 
template matching with depth image and reverse 
checking. 

3.4 Object Tracking 

After getting the coarse pose by template matching, 
we set this pose as the initial pose for tracking. In the 
tracking stage, our system switches between two 
tracking methods to balance the accuracy and 
efficiency of the tracking process. These two tracking 
methods are the Bidirectional-ICP tracking and 
tracking with IMU sensing data. Figure 7 is the flow 
chart shows the switch between detection stage and 
tracking stage, and the switch between the 
Bidirectional-ICP tracking and tracking with IMU 
sensing data. 

3.4.1 Bidirectional-ICP Tracking 

After setting the initial pose, we use a Bidirectional-
ICP to refine the pose and make it much closer to the 
pose of the object in the scene. The Bidirectional-ICP, 
an extended version of original ICP algorithm, 
searches the corresponding points in two opposite 
directions. Assume that the source point set ࣪ ൌ ሼ݌௜ሽ, 

݅ ൌ 1, 2,⋯ , ௣ܰ, where ௣ܰ is the number of points of 
࣪, and the target point set ࣫ ൌ ൛ݍ௝ൟ, ݆ ൌ 1, 2,⋯ , ௤ܰ, 
where ௤ܰ  is the number of points of ࣫, ݌௜, ௝ݍ ∈ Թଷ. 
The Bidirectional-ICP not only finds the 
corresponding point ݍ௝ ∈ ࣫ for ݌௜, but also matches 
the corresponding point ݌௜ ∈ ࣪ for	ݍ௝. We define that  
 ௝ݍ ௝ are corresponding if the closest point ofݍ ௜ and݌
is ݌௜ and the closest point of ݌௜ is ݍ௝. A new set ࣝ is 
generated that ࣝ ൌ ሼܿ௞ሽ, ݇ ൌ 1, 2,⋯ , ௖ܰ , where ௖ܰ 
is the number of the corresponding point pairs. ܿ௞ ൌ
ሺ݅, ݆ሻ  stores the point index from ࣪  and ࣫ 
respectively. After getting ࣝ, our Bidirectional-ICP 
try to minimize the energy function below and find 
the optimal rotation ܴ and translation ݐ. 

,ሺܴܧ ሻݐ ൌ ෍ ቛܴ ∗ ௖ೖ೔݌ ൅ ݐ െ ௖ೖೕቛݍ
ே೎

௞ୀଵ
 (10)

In our scenario, the source ࣪ of the Bidirectional-ICP 
is the point cloud of 3D model, and the target ࣫ is the 
point cloud of the object in the scene. Although we 
can obtain the point cloud of the scene captured by 
the mobile depth sensor, due to its low-resolution, 
foreground points extracted above the working plane 
are only part of the target object and contain noise. 
Matching clustered point cloud is a solution to this 
problem; however, clustering is still a time-
consuming approach on the mobile device. Therefore, 
we utilize a concept called hidden-surface-removal 
template to restrict our ICP model according to 
viewpoints (Wu et al. 2016). 

In most of the approaches, the source set ࣪ is the 
whole point cloud of the model. Because the target set 
࣫ is the partial surface of the target object from the 
camera viewpoint, if we use the whole model points 
in ICP algorithm, there could be more ambiguity on 
surface for pose matching. It will increase the chances 
to move the point set ࣫ to unwanted local minimum.  

Because the initial poses of the model have been 
estimated, we can generate the point cloud from only 
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the visible surface of the model. Using the partial 
surface point cloud of model not only decreases the 
poor estimated pose results, but also reduces the pose 
jitter between frames. Even though we use only visible 
surfaces as matching templates, there are still unavoid-
ably ambiguous moving directions and it results in 
flipping of estimated orientations. To tackle this 
problem, we consider the masks and the depth maps of 
both object in the scene and the model in estimated 
pose to compute the tracking error. If the proportion of 
the intersection area and the union area of two masks 
decreases or the depth difference in the intersection 
area increases, the tracking error will increase. If the 
tracking error is too large, our system will leave the 
tracking stage and return to detection stage.  

3.4.2 Tracking with Assistance of IMU 
Sensing Data 

Even applying several light-weight processing 
strategies, the above-mentioned recognition and 
improved ICP algorithms still requires intensive and 
iterative computations. From our observation, we 
found that a large portion of movement between a 
target object and the phone camera results from 
camera movement. Therefore, we also adopt the 
motion sensing data measured from the IMU sensor 
to improve the tracking efficiency. If the movement 
of device is slight, we can update the estimated pose 
according to the transform matrix from the IMU 
sensor. Because tracking with assistance of IMU 
sensing data is much faster than tracking with the 
Bidirectional-ICP algorithm, our system mainly relies 
on tracking with IMU sensing data. However, the 
pose drift accumulates after tracking for a period of 
time. To solve the accumulated pose drift, we 
measure the tracking error every T frames (T=100 in 
our case) when tracking with IMU sensing data. If the 
tracking error is large, our system will come back to 
ICP tracking stage. If the tracking error is still large 
after ICP tracking, our system then goes back to 
detection state. Figure 7 shows the switch between the 
tracking stage.  

 

Figure 8: The models used in our experiment, from left to 
right, are ToyCar, Box, Bus, Screw, DS4. 

4 EXPERIMENT 

Our  system  is  built on Lenovo Phab 2 Pro, which is 

equipped with a Qualcomm Snapdragon 652 CPU 
and 4GB RAM. The models used in our experiment 
are shown in figure 8, ToyCar, Box and Bus are toys, 
Screw is a component of ToyCar, DS4 is a controller. 
We conducted three experiments to verify the 
efficiency and effectiveness of our system. The first 
experiment was to evaluate how many template data 
should be kept to balance the computation speed and 
matching accuracy. We recorded three video clips and 
each clip contains more than 500 frames. Then we 
performed the detection algorithm with three sizes of 
template data. One is the full data without dimension 
reduction, another is the data with SVD reduction that 
kept 90% singular value energy, and the other is the 
data with SVD reduction that kept 80% singular value 
energy. Table 1 show the VNCC computation time for 
three videos respectively. We can see that the VNCC-
PCA with 80% energy kept is faster than the other two, 
and the matching results are as well as the result with 
full template data. (Figure 9) 
 

 

Figure 9: The matching result of the first experiment. Four 
images for each frame, from left to right are the input 
images, VNCC, VNCC- 90% energy, VNCC- 80% energy. 

For evaluating the effectiveness of our method, 
we recorded multiple color and depth data of three 
different objects with the mobile device. Then we 
compared the results with different template match 
ing methods. One is matching with color data only, 
another is matching with both color and depth data, 
and the other is matching with color, depth data and 
the additional reverse checking. Finally, we counted 
the number of frames with obvious pose error and 
computed the error rate. Table 2 shows the results of 
error rates. We can see that our template matching 
method with color and depth data improves the 
matching results. 

We also recorded the frames per second (FPS) 
when running our system on the mobile device. Table 
3 shows the FPS of our system in different stages: (a) 
the foreground segmentation, (b) pose recognition, 
(c) ICP tracking and (d) tracking with assistance of 
device motion sensing data, respectively. Obviously, 
the tracking with assistance of IMU sensing data can 
substantially increase the computational efficiency. 
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Figure 10: The tracking results of ToyCar and DS4. (3D model points are placed in the estimated 6D posture and are 
superposed on the captured image in red.). 

Table 1: The test videos and the computation time for 
keeping different amounts of template data. 

Name#frames 
VNCC 

(ms/frame) 

VNCC- 
90% energy 
(ms/frame) 

VNCC- 
80% energy 
(ms/frame) 

ToyCar#631 4.51 1.52 1.16 

Box#865 4.51 1.45 1.12 

Screw#504 1.56 0.73 0.50 

Table 2: The percentage of frames of which errors are larger 
than 20 degrees. 

Object 
Name 

Color 
Only 

Color and 
Depth 

Color and Depth 
and Rev. 
Checking

ToyCar 5.28% 0% 0%
Box 15.04% 3.60% 0%
Bus 39.28% 13.69% 0%

Table 3: The efficiency (frames per second) of our system 
with different combinations of stages.  

Object 
Name 

(a) (a)+(b) (a)+(b)+(c) (a)+(b) +(c)+(d)

ToyCar 17.74 12.17 9.32 53.34
Box 18.94 12.98 9.91 56.68

Screw 18.70 15.63 11.96 50.17
Ds4 14.7 9.94 8.59 53.68
 

The FPS of Screw is higher than other objects in 
ICP tracking but lower in tracking with motion 
sensing data. That is because the screw is small in the 
camera views, and it is more easily influenced by 
noise. When our system finds that the projection 
regions from predictions with motion sensing data 
and the foreground points are diverse, it leaves the 
IMU tracking stage and goes back to the ICP tracking 
or detection state, which requires more computations. 

Figure 10 shows more tracking results on 
different objects. We also provide a video to display 
the real situation when running our system on mobile 
device. 

5 CONCLUSIONS 

We proposed a novel system that can detect and track 
a textured or textureless object with RGB-D and IMU 
sensing data from a mobile device. By vectorizing the 
template image into the template matrix and reducing 
its dimensions, we can not only reduce the template 
set but also more efficiently match the templates. 
After detecting the initial pose, our system tracks the 
object by our Bidirectional-ICP algorithm. Moreover, 
when the relative movement between the object and 
the camera are small, our system can check and apply 
the sensing data from inertial measurement unit 
instead of the full Bidirectional-ICP computation. 
Combining the above techniques, the proposed 
system can detect and track 6D postures of markerless 
objects with a mobile device in an interactive rate. It 
can become an efficient platform for mobile AR 
applications. One interesting future work is to apply 
emerging deep neural network methods on mobile 
devices for simultaneously detecting and tracking 
multi-objects. 
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