
Modular Construction of Context-Specific Test Case Migration Methods

Ivan Jovanovikj1, Enes Yigitbas1, Marvin Grieger2, Stefan Sauer1 and Gregor Engels1

1Software Innovation Lab, Paderborn University, Paderborn, Germany
2VHV Gruppe, Hannover, Germany

Keywords: Test Case Migration, Software Co-evolution, Software Reengineering, Method Engineering.

Abstract: Migration of test cases has a twofold benefit in software migration projects: reuse of valuable knowledge as
well as time and cost savings. The diversity of software migration project contexts require a flexible and mod-
ular construction method to address several aspects like different system and test environments or the impact
of the system changes on the test cases. When an inappropriate migration method is used, it may increase
the effort and the costs and also decrease the overall software quality. Therefore, a critical task in test case
migration is to provide a transformation method which fits the context. To address this problem, in this paper,
we present a framework that enables a modular construction of context-specific migration methods for test
cases by assembling predefined building blocks. Our approach builds upon an existing framework for modular
construction of software transformation methods and consists of a method base and a method engineering
process. Method fragments are the atomic building blocks of a migration method, whereas method patterns
encode specific migration strategies. The guidance on development and enactment of migration methods is
provided by the method engineering process. We evaluate our approach in an industrial case study where a
part of the Eclipse Modeling Framework was migrated from Java to C#.

1 INTRODUCTION

Software testing plays an important role in software
migration as it verifies whether the migrated system
still provides the same functionality as the original
system which is the main requirement in a software
migration (Bisbal et al., 1999). Since software migra-
tion is established to reuse existing systems, we want
to reuse test cases as well. The reuse of test cases can
be beneficial, not just from economical perspective,
but also from practical perspective: the existing test
cases contain valuable information about the func-
tionality of the source system and therefore, about the
functionality of the migrated system, too. A migra-
tion, in general, is performed by development and en-
actment of a migration method. A migration method,
or a transformation method in a broader sense, defines
which activities should be performed, which tools to
be applied, and what artifacts should be generated in
order to transfer a system from one environment to
another. The same applies for the test case migration
methods.

Having the right migration method and enacting
it, is very important because a non-suitable migration
method may lead to more complex and more expen-
sive migration. Another aspect is the dependency be-

tween the system and the test cases. Since the test
cases are coupled with the system they are testing,
the system changes need to be detected, understood
and then reflected on the test cases to facilitate reuse.
In other words, the test cases need to be co-evolved.
However, co-evolving test cases is far from being triv-
ial since several challenges need to be addressed (Jo-
vanovikj et al., 2016a), like quality assessment, refac-
toring or reflection of system changes. For this rea-
son, we need a method which is capable of capturing
such information, and accordingly enabling the devel-
opment of a suitable test case migration method.

We address the aforementioned issues by pro-
viding a framework for modular construction of
context-specific test case migration methods. Our ap-
proach is highly influenced by the MEFiSTO Frame-
work (Grieger et al., 2016), as this approach pro-
vides high degree of controlled flexibility. We ex-
tend this framework by considering the test cases as
well, thus enabling development of test case migra-
tion methods which enable automated co-evolution
of test cases for a specific migration context. As
shown in Figure 1, the solution approach consists of a
Method Base and a Method Engineering Process. The
Method Base contains the building blocks needed for
assembling of the migration method, namely Method

534
Jovanovikj, I., Yigitbas, E., Grieger, M., Sauer, S. and Engels, G.
Modular Construction of Context-Specific Test Case Migration Methods.
DOI: 10.5220/0007690205340541
In Proceedings of the 7th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2019), pages 534-541
ISBN: 978-989-758-358-2
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Method Development

Method Enactment

Context Characterization

Transformation Method Construction

Tool Implementation Transformation

Method Base

Method Fragments

Method Patterns

Model of
Abstract

Tests

Test
Code

Restucturing

Test Case
Understanding

Original
Test

Code
Original
Source
Code Sy

st
em

M

ig
ra

tio
n

Parser

M2M

Code
Generator

Original
Test

Code

Migrated
Test

Code

Test Code
Model

Test
Model

Migrated
Test Model

Mig. Test
Code Model

M2M

Parser

Code
Generator

Context
Model

Context-Specific
Migration Method

Specification

Original
Test Code

Context-
Specific

Tool Chain

M2M

Parser

Migrated
Test Code

uses

Figure 1: Approach Overview.

Fragments and Method Patterns. A Method Fragment
is an atomic building block of a migration method,
whereas a Method Pattern represents a strategy and
indicates which fragments are necessary and how to
assemble them together. Having the Method Frag-
ments and Method Patterns, a guidance is needed on
how to create a migration method for a specific con-
text. This is done by the Method Engineering Process,
which guides the development and the enactment of
the context-specific migration method.

The structure of the rest of the paper is as fol-
lows: In section 2, we introduce the content of the
Method Base. Then, in section 3, we present the
Method Engineering Process, which is instantiated in
section 4 based on a case study from an industrial con-
text. In section 5, we discuss the related work and at
the end, in section 6 we conclude our paper and give
an outlook on future work.

2 METHOD BASE

The Method Base contains the knowledge of the avail-
able migration strategies. It is actually a repository
containing reusable building blocks of methods and
includes method fragments and method patterns. In
the following, we present an excerpt of the method
fragments and patterns.

2.1 Method Fragments

A method fragment is an atomic building block of a
migration method, i.e., an activity, artifact or tool. As
we follow the idea of model-driven software migra-
tion (Fuhr et al., 2012), our method fragments belong
to one of the following reengineering processes: Re-
verse Engineering, Restructuring, and Forward Engi-
neering (Chikofsky and Cross, 1990). The activities
as well as the artifacts are represented in Figure 2 as
an instance of the well-known horseshoe model (Kaz-
man et al., 1998).

Artifacts are constituting parts of each migration
method and are distinguished by the level of abstrac-
tion they are belonging to. On the System Layer, tex-
tual artifacts representing test code and models of the
test code are placed. Regarding the textual artifacts,
this is either the Original Test Code or the Migrated
Test Code. The test code can be either the test cases,
implemented in a specific testing framework, e.g. jU-
nit 1 or MSUnit 2, test configuration scripts or a man-
ually implemented additional test framework.

Similarly, regarding the models of the code it is ei-
ther the Model of Original Test Code or the Model of
the Migrated Test Code. The Model of the Test Code

1http://junit.org/junit4/
2https://msdn.microsoft.com/en-

us/library/ms243147.aspx

Modular Construction of Context-Specific Test Case Migration Methods

535

Sy
st

em
 L

ay
er

Pl
at

fo
rm

-In
de

pe
nd

en
t

La
ye

r
Exogenous Model

Transformation

Text-to-Text
Transformation

Activity Specification

Migrated
Test

Code

Language
Transformation

Text-to-Model /
Model-to-Text

Transformation

Original
Test

Code

Model of the
Original

Test Code

Model of the
Original

Executable Tests

Model of
Abstract Tests

Pl
at

fo
rm

-S
ep

ci
fic

La
ye

r

System
Behavior

Model

Model of the
Migrated

Test Code

Model of the
Migrated

Executable Tests

Reimplementation

Framework
Transformation

Test Case
Understanding

Test
Concretiztaion

Test Code
Generation

Model
Discovery

Test
Abstraction

Test
Concretiztaion

System Behavior
Recovery

Abstract Test
Derivation

X

X
Removal

No Transformation

Endogenous Model
Transformation

Enrichment

Enrichment

Enrichment Restucturing

Restucturing Te
st

 D
es

ig
n

Te
st

 Im
pl

em
en

ta
tio

n

Model

Code

Artifact Specification

Tool Specification
Tool

Model
Transformation

Engine

Code
GeneratorParser

Direct
Test Code
Generation

Direct
Test Code

Understanding

Figure 2: Excerpt of Method Fragments stored in the Method Base.

represents the test code in a form of an Abstract Syn-
tax Tree (OMG, 2011) of the appropriate language of
the original or the target environment.

The Platform-Specific Layer is a higher level of
abstraction compared to the system layer. Here,
technology-specific concepts are used to represent the
test cases for both the source and the target environ-
ment. Model of Original/Target Executable Tests is
considered as platform-specific as it represents the ex-
ecutable test cases by using testing concepts which
are specific for a particular testing framework, i.e., by
using meta-models of jUnit or MSUnit to model the
test code.

On the Platform-Independent Layer the models
representing the test cases are independent of any par-
ticular testing framework or testing technology. On
this level of abstraction, we distinguish between two
types of models, the Model of the Abstract Tests and
the System Behavior Model. The Model of the Ab-
stract Tests is considered to be platform-independent
as it is independent of any concrete testing frame-
work. Standardized languages like UML Testing Pro-
file (UTP) (OMG, 2013) and Test Description Lan-
guage (TDL) (ETSI, 2016) are used for modeling the
abstract tests. On the highest level of abstraction, we
foresee the System Behavior Model that represents a
compact representation of the expected behavior of
the system. Behavioral diagrams like the UML ac-
tivity or sequence diagram, or state machines can be
used to represent the expected behavior of the system.

Activities in the test case reengineering horseshoe
model produce or consume appropriate artifacts. As
can be seen in Figure 2, these activities can be distin-

guished by the reengineering process they belong to,
namely Reverse Engineering, Restructuring, or For-
ward Engineering.

Reverse Engineering, as defined in (Chikofsky
and Cross, 1990), is the process of analyzing a sub-
ject system to create representations of the system in
another form or on a higher level of abstraction. Ap-
plied in the software testing domain, it is a process of
analyzing a test case and creating another represen-
tation of them on a higher level of abstraction, e.g.,
by using test models. In general, reverse engineer-
ing can be seen as combination of Model Discovery
and Model Understanding (Bruneliere et al., 2010).
The Model Discovery step relies on syntactical anal-
ysis and by using a parser it allows automatic text-
to-model transformation to create a model of the test
case source code represented as an Abstract Syntax
Tree (AST) (OMG, 2011). Model Understanding, in
general, is a model-to-model transformation activity,
or a chain of such activities, which takes the initial
models, applies semantic mappings and generates de-
rived models on a higher level of abstraction. Here,
we distinguish three sub-activities: Firstly, the ini-
tial models are explored by navigating through their
structure in an activity called Test Case Understand-
ing. Model elements which represent test relevant
concepts like test suite, test case or assertion are iden-
tified and then, by applying a model-to-model trans-
formation, a test model of executable test cases is
obtained which is platform specific and it is an in-
stance of a metamodel of a particular testing frame-
work (e.g., jUnit, MSUnit or TTCN-3). By apply-
ing the Test Abstraction activity, which is a model-

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

536

to-model transformation as well, one can obtain a
model of the abstract test cases which is platform-
independent. The System Behavior Recovery activity
is applied in order to obtain the highest possible level
of abstraction defined by our reengineering model.

According to (Chikofsky and Cross, 1990), Re-
structuring is ”the transformation from one represen-
tation form to another at the same relative abstraction
level, while preserving the subject system’s external
behavior (functionality and semantics)”. In the test-
ing domain, we define test restructuring as the trans-
formation from one test representation to another at
the same relative abstraction level, while preserving
the ”semantics” of the tests. Here, with ”semantics”
we mean the functionality that is being checked by a
particular test. This activity has been foreseen on both
the System Behavior Model and the Model of Abstract
Test. The Restructuring activity is of course influ-
enced by the target testing environment, testing tool,
or by requirements on improving the quality of the
test cases (e.g., maintainability). However, it could
also be influenced by the changes that happen in the
system migration. Since these changes may be rele-
vant for the test models, they have to be reflected on
the tests as well.

As defined by (Chikofsky and Cross, 1990),
Forward Engineering is ”the traditional process of
moving from high-level abstractions and logical,
implementation-independent designs to the physical
implementation of a system”. In the field of soft-
ware testing, this can be paraphrased as a process
of moving of high-level test abstractions and logi-
cal implementation-independent design to the phys-
ical implementation of the test cases. The test models
are used as input for a chain of model-to-model trans-
formations, ending with a model-to-text transforma-
tion, which provides the test code as output. Abstract
Test Derivation takes as input the System Behavior
Model and produces Model of Abstract Test Cases, a
platform-independent model of the test cases. Then,
by applying Test Concretization a Model of Migrated
Executable Test Cases is obtained. This model is al-
ready specific for a particular testing framework and
can be used for the generation of the Test Code by
executing the Test Code Generation activity, which is
a model-to-text transformation. Since test cases are
generated from the test model, this can be seen as e
typical model-based testing activity (Jovanovikj et al.,
2016b). The tools which support forward engineering
are known as generators and for each specific target
platform, an appropriate generator is needed. Custom
code generators can be built by using Xtend 3 which
is a statically typed programming language which of-

3http://www.eclipse.org/xtend/

fers features like template expressions and intelligent
space management. The Reimplementation is a text-
to-text transformation which is performed manually
The Language Transformation also known as AST-
based transformation (Kazman et al., 1998), defines
a direct mapping between the Original Model of the
Test Code and the Migrated Model of the Test Code.
The Framework Transformation, on the other hand,
defines a mapping directly between two testing frame-
works. The Enrichment activity is applicable to vari-
ous models, e.g., Original Model of Executable Tests,
Model of Abstract Tests, or System Behavior Model.
The Removal activity is used to specify which part of
the test case code should not be transformed.

In order to support the previously introduced ac-
tivities, thus enabling a (semi-)automatic transforma-
tion, we foresee in total three types of tools that are
needed. Firstly, a Parser is needed to obtain the ini-
tial models out of the textual artifacts, i.e, to perform
the Model Discovery activity. Then, in a series of
model-to-model transformations, which are specified
by transformation rules, initial models are obtained.
The specified rules are then executed by an Model
Transformation Engine. Finally, a Code Generator
is needed to perform the model-to-text transforma-
tion by executing the test code generation rules pre-
viously specified, thus generating the test code for the
migrated test cases.

2.2 Method Patterns

Having only method fragments like artifacts, activi-
ties or tools is not sufficient as no guidance is pro-
vided how to assemble them and thus create a test case
migration method. For this purpose, we additionally
provide method patterns.

A method pattern, intuitively, represents construc-
tion guidelines for migration methods and follows
a certain strategy. It contains the methodological
knowledge with the purpose to address the problem
associated to it. Technically seen, a method pat-
tern defines which method fragments should be cus-
tomized and how to put them together. Functionality
preservation is a main requirement in any migration
project, and therefore, in test case migration too (Bis-
bal et al., 1999). To preserve this functionality, a
consistent path in the horseshoe model has to be re-
alized from the Original Test Code to the Migrated
Test Code. In the following, as shown in Figure 3,
we present an excerpt of the method patterns that pre-
serve functionality. Furthermore, we have also ob-
served architectural restructuring pattern, which pro-
vide a methodological solution to make a architectural
changes in the test cases during their migration. Due
to space constraints, we only discuss the former cate-

Modular Construction of Context-Specific Test Case Migration Methods

537

gory of migration method patterns.
The Language-based Test Transformation pattern

defines the migration of the functionality of the test
cases by defining a mapping between the language
constructs in both original and target environment.
The mapping is applied by a direct transformation be-
tween the Model of the Original Test Code and the
Model of the Migrated Test Code. Theoretically seen,
this pattern could be applied actually in any migra-
tion scenario, but its suitability mainly depends on
the complexity of the model transformations between
both models. Firstly, the extracted Model of the Orig-
inal Test Code needs to be interpreted to identify the
test concepts to be transformed. Then, it could be
necessary to restructure the explicit test concepts, like
test behavior or test assertions. Once prepared, the
test concepts on the original environment have to be
mapped to the test concepts of the target environment.
Thus, this pattern could be considered suitable if the
effort of test interpretation and restructuring is rela-
tively low. However, from test perspective, it basi-
cally means, the transformation of the test concepts
have to be done implicitly.

The Framework-based Test Transformation pat-
tern defines to migrate the functionality of the test
cases by using an intermediate test representation
on platform-specific layer. The testing concepts to-
gether with the test data are explicitly represented by a
Model of Original Executable Tests. By applying the
separation of concerns principle, this pattern makes
the transformation step less complex compared to the
Language-based Test Transformation. Namely, the
first concern of interpretation, is explicitly addressed
by the Test Case Understanding activity. Then, the
Restructuring could be applied on the Model of Orig-
inal Executable Tests, which enables direct manipu-
lation of the test concepts, e.g. test assertions. After
Restructuring, the mapping to the target test frame-
work, i.e., mapping to the Model of Migrated Exe-
cutable Tests is performed. Finally, Direct Test Code
Generation is applied either directly or via Test Con-
cretization and Model of the Migrated Test Code, the
Migrated Test Code is generated. This pattern could
be considered suitable when the difference of the test
case implementation is significantly different in the
original and the target testing frameworks. Compared
to the Language-based Test Transformation pattern,
this pattern enables direct, i.e., explicit representation
and manipulation of test constructs.

The Conceptual Test Transformation pattern de-
fines to migrate the test functionality by using an in-
termediate representation in terms of a Model of Ab-
stract Tests on a platform-independent layer. This
improves the dependent framework transformation on

Framework-based
Test Transformation

Language-based
Test Transformation

Reimplementation

Test Code Removal
X

Conceptual
Test Transformation

XNo ActivityTest
Code Model Manual

Activity
Automated

Activity

Figure 3: Excerpt of basic method patterns.

the platform-specific layer by explicitly representing
some test concepts on a higher level of abstraction
as part of the Model of Abstract Tests. For example,
from the test design perspective, the test architecture
or test behavior could be explicitly represented with
this model. This pattern could be considered suitable
when some test concepts are realized completely dif-
ferent in both environments or when a restructuring of
the test architecture or test data is necessary.

The Reimplementation pattern defines to migrate
the test functionality by having it manually trans-
formed by software developers. The main task is to
implement the same test cases, testing the same func-
tionality in the target environment. This pattern could
be suitable in cases when an automatic migration is
difficult to be implemented. The Test Code Removal
pattern defines not to migrate certain part of the test
code, i.e., no transformation should be performed on
it. For example, it could be that some parts of the
original system are now implicitly supported in the
new environment, e.g., by a library or a framework,
so there is no longer need to be tested.

3 METHOD ENGINEERING
PROCESS

The method engineering process describes the main
activities to be followed in order to create a context-
specific test case migration method as well as their
relation to the method base. As already shown in
Figure 1, the activities are split in two main disci-
plines: Method Development and Method Enactment.
The essential process input is the Original Test Code,
which gets transformed to Migrated Test Code once
the process is being enacted. The Migrated Test Code
represents the test cases which can be run in the tar-
get environment and validate the system migration.
The activities of both disciplines are associated with
a flow that is attached with a Context-Specific Migra-
tion Method Specification which describes the actual
migration method.

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

538

3.1 Method Development

By performing activities of the Method Development
discipline a context specific method gets developed.
The main activities are Context Characterization and
Transformation Method Construction.

The first activity is the Context Characterization,
in which the migration context is analyzed and char-
acterized, from both system migration and testing per-
spective. Furthermore, impact analysis is also per-
formed to identify the impact that the system changes
have on the test cases. The gathered knowledge about
the migration context is required in order to develop a
suitable test case migration method. In order to struc-
ture the context information, we developed a migra-
tion context model, whose excerpt is shown in Fig-
ure 4. It mainly contains the technical background
of the migration context, i.e., the characteristics of
the source environment of the system and the test
cases, the target system environment, and the desired
test target environment. Last but not least, the sys-
tem transformation characteristics are also analyzed
as they are of great importance to understand their im-
pact on the test cases. For example, the kind of sys-
tem transformation or the target testing environment
are important context characteristics which should be
considered. Another purpose of the this activity is to
perform an initial assessment of the method patterns
against a set of influence factors. On the basis of in-
formation in the obtained context model a set of in-
fluence factors are set. Then, each pattern is analyzed
against each identified influence factor, which in turn
could have either positive or negative influence on the
selection of a particular pattern.

Having the context information collected, the
Transformation Method Construction activity can be
initiated. In this activity, on the basis of the previously
identified context information, a context-specific mi-
gration method gets constructed. First of all, a suit-
able pattern is selected, which in turn means a de-
cision how to transform the test cases. Once a pat-
tern is selected, then it has to be configured, i.e., a
set of method fragments has to be instantiated. Then,
the instantiated fragments are customized regarding
the functionality they are transforming. Customiza-
tion of fragments means specifying them at a level of
details so that it provides guidance during the enact-

Source
Environment

Characteristics

System Migration
Context Factor

Migration
Context
Factor

Testing Migration
Context Factor

Target
Environment

Characteristics
Transformation
Characteristics

Source
Environment

Characteristics

Target
Environment

Characteristics

Figure 4: An Excerpt of the Context Model.

ment. The outcome, the Context-Specific Migration
Method Specification, defines how to do the migra-
tion by defining the activities to be performed and the
artifacts that should be generated.

3.2 Method Enactment

During Method Enactment the context-specific tools
are developed that are required for the automation of
the migration method or part of it. Thereafter, the mi-
gration method is performed as defined in the migra-
tion method specification.

Having the migration method specified, every
specified activity that shall either be performed auto-
matically or semi-automatically, an appropriate tool
is implemented. In general, there are two different
types of tools: tools which are used in any migration
method and specifically developed tools for a certain
method. For example, if a given migration method
defines a transformation which should be automated,
then a model transformation engine that can execute
model transformation rules is required. If, on the
other hand, a migration method, i.e., a given method
fragment requires a specific tool, e.g., a semantic an-
alyzer, then it should be specifically developed. In
general, the Tool Implementation activity requires a
knowledge for model-driven engineering and devel-
opment of reengineering tools. As a result of this ac-
tivity, an integrated tool chain is delivered. During
the last activity of the process, named as Transfor-
mation, the actual transformation of the original test
cases occurs. This activity encompasses the enact-
ment of the previously developed migration method
and the corresponding tool chain. By enacting the mi-
gration method, the source test cases are being trans-
formed, i.e., migrated to the new environment and can
be used to validate the system migration.

4 CASE STUDY
Our method was applied in an industrial project where
the main goal was to migrate parts of the well known
Eclipse Modeling Framework (EMF) along with the
Object Constraint Language (OCL) from Java to C#
(Figure 5). As EMF and OCL are stable and well-
tested and all test cases are available on public code
repositories, our goal was to reuse the OCL test cases
in order to validate the OCL functionality in the tar-
get environment. The main change implemented by
the system migration, besides switching from Java to
C#, was to change from a Just-In-Time (JIT) compi-
lation in the old system to an Ahead-Of-Time (AOT)
compilation of OCL constraints in the migrated sys-
tem. The test cases which have similar structure

Modular Construction of Context-Specific Test Case Migration Methods

539

are selected for automated migration. For those test
cases where it is difficult to identify some repeating
structure, reimplementation is a more suitable solu-
tion. Additionally, an interlayer testing framework
TestOCL exists in order to simplify the test cases.
It provides domain-specific assert functions for the
OCL domain, e.g., assertQueryTrue. Regarding
the language, the source system is implemented in
Java under Java Platform. Regarding the architec-
ture, OCL is implemented in that a native OCL ex-
pressions are specified and using the JAVA API they
are evaluated. The language in the target environment
is C# under the .net platform. The OCL functional-
ities are implemented directly in the corresponding
classes that are specified in the migrated system. Re-
garding the system transformation characteristics, the
activities are ranging from manual to completely au-
tomatic. Those transformations that were performed
automatically, have been formalized using transfor-
mation rules specified in Java. The process of trans-
formation was supported by implementing transfor-
mation rules based on Xtend. At highest importance
for the reflection of the changes to the test cases are
the transformation rules specified for the transforma-
tion of OCL expression to C#. The source test envi-
ronment is JUnit, with an additional interlayer exten-
sion, the TestOCL. The test cases are unit level test
cases, separated in different test suites according the
functionality they are addressing. The anatomy of the
test cases in the target environment is that a single
test case may contain multiple assertions, normally
specified using the assert functions provided by the
TestOCL extension. The target environment language,
in this particular case C#, implies usage of MSUnit.

To automate the test case migration, two Eclipse
plug-ins were developed to automate the reengineer-
ing activites. The overall result was an automated mi-

Test
Code
(C#)

Test
Code
(Java)

Model of the
Test Code
(Java AST)

Model of the
Executable

Tests
(xUnit)

Model of the
Executable

Tests
(MSUnit)

Reimplementation

Framework
Transformation

Test Case
Understanding

Test Code
Generation

Model
Discovery

Java
Parser

Java
AST

Java2
Xunit

Xunit2
C#

Xunit2
MSUnit

xUnit
MM

MSUnit
MM

Model

Textual Artefact

Artifact
Specification

Exogenous
Model

Transformation
Text-to-Text

Transformation

Activity
Specification

Text-to-Model /
Model-to-Text

Transformation

Tool
Specification

T2M/M2M/M2T

Meta-Model

Figure 5: Excerpt of the Test Case Migration Method Spec-
ification.

gration of over 92% of 4000 existing jUnit test cases.
8% of the test cases (mainly regression test) were not
migrated automatically, due to the irregular structure
which complicates an automation.

5 RELATED WORK

There are already several approaches that implement
the forward engineering process of test case reengi-
neering activities. The benefit from the separation of
PIMs and PSMs in the generation and execution of
tests is presented in (Heckel and Lohmann, 2003). A
model-driven testing methodology which transforms
UML system models to test-specific UML Testing
Profile models is proposed in (Dai and Dai, 2004).
There are also appraoches that present reverse engi-
neering activities for test cases. In (Hungar et al.,
2003), test models are extracted out of test cases by
means of automata learning. The benefit of reusing
test cases has been detected in a lot of software migra-
tion projects. In the SOAMIG (Zillmann et al., 2011)
migration project, existing test cases are used for the
analysis of the legacy system. MoDisco (Bruneliere
et al., 2010), on the other hand, is a generic and ex-
tensible framework which follows the principles of
Model-Driven Reverse Engineering. However, mi-
gration of test cases is still not addressed by this
framework. The ARTIST (Menychtas and Al., 2014)
project is the most interesting project as they also ad-
vocate migration of the test cases in a model-driven
way, i.e., in a similar way the system has been mi-
grated, thus reusing, above all, the developed tools.
Our work differs in that way, that we propose a mod-
ular construction of migration methods, by consider-
ing the migration context and also by addressing the
co-evolution issue.

Regarding method engineering, depending on the
degree of controlled flexibility, there are different cat-
egories of method engineering approaches, namely
those that provides fixed methods, a selection out
of set of fixed methods, configuration of a method,
tailoring a method or a modular construction of the
method. The method tailoring approaches enable tai-
loring of a provided method which can be changed
arbitrarily. The problem is however, that the pro-
cess of changing of the provided method is not guided
by a method engineering process. The following ap-
proaches follow this strategy: REMICS(Mohagheghi,
2010), SOAMIG (Zillmann et al., 2011), Reference
Migration Process (ReMiP) (Sneed et al., 2010), and
ARTIST (Menychtas and Al., 2014). The approaches
that provide modular construction of a method rely on
a set of predefined building blocks for methods and a

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

540

method engineering process that guides the method
construction. (Khadka et al., 2011) is a method engi-
neering approach that enables modular construction,
but is specialized for migration to service-oriented
environments. The MEFiSTO Framework (Grieger
et al., 2016) overcomes this issue by providing a gen-
eral solution for modular construction of situation-
specific migration methods. However, it lacks the
support for migration of test cases, namely the con-
sideration of the test context, as well as the analysis
of the impact that the system changes have on the test
cases.

6 CONCLUSION AND FUTURE
WORK

We presented a framework that enables a modular
construction of context-specific, model-driven migra-
tion methods for test cases. The framework con-
sists of a method base and a method engineering pro-
cess. The method base contains method fragments,
as atomic building blocks of a migration method,
and method patterns which encode specific migration
strategies. The method engineering process provides
a guidance on development and enactment of migra-
tion methods. We applied our framework in an in-
dustrial project in which a migration of part of EMF
from Java to C# was performed. Using this approach,
a model-driven test case migration method was de-
veloped and enacted and as a result, 4000 unit test
cases were migrated from one environment to another,
most of them completely automatic. As future work
we plan to extend our framework by adding a post-
migration phase, in which the validity of the test case
migration is being assessed. This validation phase
should check whether the functionality of the tests is
preserved, i.e., whether the tests after migration are
still testing the same part of the system functionality.

REFERENCES

Bisbal, J., Lawless, D., Bing Wu, B., and Grimson, J.
(1999). Legacy information systems: issues and di-
rections. IEEE Software.

Bruneliere, H., Cabot, J., Jouault, F., and Madiot, F. (2010).
MoDisco. In Proceedings of the IEEE/ACM interna-
tional conference on Automated software engineering
- ASE ’10. ACM Press.

Chikofsky, E. J. and Cross, J. H. (1990). Reverse Engi-
neering and Design Recovery: A Taxonomy. IEEE
Software.

Dai, Z. R. and Dai, Z. R. (2004). Model-Driven Testing

with UML 2.0. Computing Laboratory, University of
Kent.

ETSI, E. T. S. I. (2016). ETSI ES 203 119–1: Methods for
Testing and Specification (MTS); The Test Descrip-
tion Language (TDL); Part 1: Abstract Syntax and
Associated Semantics, v1.3.1.

Fuhr, A., Winter, A., Erdmenger, U., Horn, T., Kaiser,
U., Riediger, V., and Teppe, W. (2012). Model-
Driven Software Migration - Process Model, Tool
Support and Application. In Migrating Legacy Appli-
cations: Challenges in Service Oriented Architecture
and Cloud Computing Environments. IGI Global.

Grieger, M., Fazal-Baqaie, M., Engels, G., and Klenke,
M. (2016). Concept-based engineering of situation-
specific migration methods. In Proceedings of the
15th International Conference on Software Reuse:
Bridging with Social-Awareness.

Heckel, R. and Lohmann, M. (2003). Towards model-driven
testing. In Electronic Notes in Theoretical Computer
Science. Elsevier.

Hungar, H., Hungar, H., Margaria, T., and Steffen, B.
(2003). Test-Based Model Generation for Legacy Sys-
tems. IEEE International Test Conference.

Jovanovikj, I., Grieger, M., and Yigitbas, E. (2016a). To-
wards a model-driven method for reusing test cases in
software migration projects. Softwaretechnik-Trends.

Jovanovikj, I., Güldali, B., and Grieger, M. (2016b). To-
wards applying model-based testing in test case mi-
gration. Softwaretechnik-Trends, Proceedings of the
39th Workshop Test, Analyse und Verifikation (TAV).

Kazman, R., Woods, S., and Carriere, S. (1998). Require-
ments for integrating software architecture and reengi-
neering models: CORUM II. In Proceedings Fifth
Working Conference on Reverse Engineering. IEEE
Comput. Soc.

Khadka, R., Reijnders, G., Saeidi, A., Jansen, S., and Hage,
J. (2011). A method engineering based legacy to soa
migration method. In 27th IEEE International Con-
ference on Software Maintenance (ICSM).

Menychtas, A. and Al., E. (2014). Software moderniza-
tion and cloudification using the ARTIST migration
methodology and framework. Scalable Computing:
Practice and Experience.

Mohagheghi, P. (2010). Reuse and Migration of
Legacy Systems to Interoperable Cloud Services- The
REMICS project. In Mda4ServiceCloud. Springer,
Berlin, Heidelberg.

OMG (2011). Architecture-driven Modernization: Abstract
Syntax Tree Metamodel (ASTM)- Version 1.0. Object
Management Group.

OMG (2013). UML Testing Profile (UTP), Version 1.2.
Sneed, H. M., Wolf, E., and Heilmann, H. (2010). Software-

Migration in der Praxis: Übertragung alter Soft-
waresysteme in eine moderne Umgebung. dpunkt Ver-
lag.

Zillmann, C., Winter, A., Herget, A., Teppe, W., Theurer,
M., Fuhr, A., Horn, T., Riediger, V., Erdmenger, U.,
Kaiser, U., Uhlig, D., and Zimmermann, Y. (2011).
The SOAMIG Process Model in Industrial Applica-
tions. In 15th European Conference on Software
Maintenance and Reengineering. IEEE.

Modular Construction of Context-Specific Test Case Migration Methods

541

