
Build-Ship-Run Approach for a CORD-in-a-Box Deployment

Ferran Canellas, Nestor Bonjorn, Angelos Mimidis and Jose Soler
Denmarks Technical University, Building 343, Ørsteds Pl., Lyngby, Denmark

Keywords: CORD, CiaB, Cloudification.

Abstract: 5G is expected to provide high bandwidth and low latency communications, thus allowing Telco operators
to provide new services to their end customers. This increase in performance is achieved through the
migration of network functions from the core to the edge of the network and facilitated by the flexibility and
automation provided by Software Defined Networking (SDN) and Network Function Virtualization (NFV).
To pave the way to 5G, and simplify the management of 5G deployments a number of SDN/VNF platforms
has been developed in the recent years. However deploying and configuring the platforms themselves, is a
complex and time consuming task which can act as a barrier to their adoption by Telco operators. This is
because Telco Operators strife for fast provisioning times and zero-touch provisioning. Based on this
observation, this paper proposes a Build-Ship-Run platform deployment using Central Office Re-architected
as a Datacenter (CORD) as an exemplar platform. The proposed approach is based on the use of compressed
Virtual Machine snapshots, which allow preconfigured CORD-flavors to be fetched, uncompressed and
deployed on demand. Using the proposed workflow, a deployment time seven times better than the raw
installation is demonstrated.

1 INTRODUCTION

One of the most prominent Telco-oriented, 5G-edge
platforms is the Central Office Re-architected as a
Datacenter (CORD) (Peterson et al., 2016). CORD’s
mission is to provide a virtualized Central Office
(CO) for Telco Operators, by utilizing the Network
Function Virtualization (NFV) and Software
Defined Networking (SDN) paradigms. This
platform can be deployed in two ways, using either a
physical or a virtual deployment. A physical
deployment is often referred as a POD and consists
of a set of physical servers and switches. The virtual
deployment, which is usually referred as CORD-in-
a-Box (CiaB) is the equivalent of a POD, where the
servers and switches run in a single physical host as
Vagrant virtual machines (VMs) and Open vSwitch
(OvS) switches. The focus throughout the work
presented in this paper has been given in the CiaB
deployment of the CORD 4.1 version.

CiaB is, by default, deployed by means of
executing a set of scripts and makefiles that take care
of priming the target server and downloading,
installing and configuring the virtual machines that
comprise CORD. However, this process is very time
consuming, since it can take up to two hours to

complete, depending on the target server. Moreover,
bug-fixes or changes are often pushed to “stable”
CORD versions, meaning that the CORD code-base
might change from deployment to deployment
causing loss of control over the installation base.

To address this issue, this paper proposes a new
way to deploy CORD based on VM images and
configuration files instead of external repositories.
This new approach is named Build-Ship-Run (BSR)
and is based on InstaCORD (InstaCORD, 2017),
which proposed a way to export CORD VMs of a
CiaB 3.0 deployment. The core idea is to use images
of the VMs of a running and verified CORD
deployment and store them on an online or local
repository. These VM images, together with any
related configuration files and execution scripts will
later be used to bring up a CiaB onto a bare-metal
(Linux-based) server. This approach (1) provides
faster deployment times and (2) ensures that the
deployed CORD components are compliant with a
reference installation.

The rest of this paper is organized as follows.
Section 2 describes the “Build” process, i.e., how to
create a CORD backup, including all the necessary
configuration files. Section 3 describes the “Ship”
process, i.e., the different ways to move the CORD

Canellas, F., Bonjorn, N., Mimidis, A. and Soler, J.
Build-Ship-Run Approach for a CORD-in-a-Box Deployment.
DOI: 10.5220/0007685402870291
In Proceedings of the 9th International Conference on Cloud Computing and Services Science (CLOSER 2019), pages 287-291
ISBN: 978-989-758-365-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

287

backup into the target server. Section 4 describes the
“Run” process, i.e., how to fire up CORD based on
the output of the “Build” process. Section V presents
results comparing the raw installation of CORD with
different versions of the proposed Build-Ship-Run
approach. Finally, Section 5 provides the
conclusions of this work.

2 BUILD

The purpose of the build process is to create a
backup of the raw state of a CiaB deployment,
consisting of a copy of the CORD source tree, the
VM images as well as several configuration files.
Since the overall size of these files is around 60 GB,
they are compressed in order to facilitate shipping.
Thus, the build process is organized in the following
steps:
1) Get network configuration files: a CiaB

deployment defines four virtual networks, which
interconnect the virtual machines with the virtual
switches, namely cord0, cordmgmt, default and
vagrant-libvirt. In this step, an XML file that
contains the necessary information is generated
for each of these networks.

2) Get VM configuration files: a CiaB deployment
contains several VMs, namely head1, corddev
and a set of compute nodes. In this step, an XML
file that contains the necessary information is
generated for each of these VMs.

3) Bring down the VMs and stop the virtualization
service: all the running Vagrant VMs are stopped
as well as the virtualization service that manages
them.

4) Compression: both the CORD source tree and
the VMs are compressed.

The outcome of this script is a folder that contains
all the aforementioned files. This folder can be saved
either in an external hard drive or in the cloud to be
used for a fast deployment of CORD.

3 SHIP

As mentioned previously, there may be two different
scenarios of shipping CORD: using a local
repository or a remote repository. In this section, the
fastest way of shipping CORD is analyzed
considering both scenarios.

3.1 Local Repository

Depending on the available bandwidth the optimal
solution will be either to first transfer the files and
then decompress them, or to transfer and
decompress them at the same time. Equation (1)
shows the optimal ship time (ݐ௦௛௜௣) depending on the
available bandwidth (ܹܤ) assuming that the CORD
backup is compressed, where ܶܵ is the total size of
the backup, ܵܥ is the compressed size of the backup,
ܵܦ is the decompression speed and ܴܥ is the
compression ratio, which is defined as the ratio
between the uncompressed and compressed size.

tୱ୦୧୮ ൌ

ە
ۖ
۔

ۖ
ۓ
CS
BW

൅
TS
DS

, BW ൏ ൬1 െ
1
CR
൰ ∗ DS

TS
BW

, ൬1 െ
1
CR
൰ ∗ DS ൑ BW ൑ DS	

TS
DS

, BW ൐ DS

 (1)

In the first interval, the bandwidth is so small that
the optimal ship time is given by transferring first
the compressed backup to the target server and then
decompressing it. In the other intervals the optimal
time is given by decompressing and transferring the
backup altogether. In the second interval, the
bottleneck is in the bandwidth and, thus, ݐ௦௛௜௣
depends on ܹܤ, whereas in the third interval, the
bottleneck is in the decompression speed, and, thus,
 In case the CORD backup was .ܵܦ ௦௛௜௣ depends onݐ
not compressed, the time in the third interval would
be smaller, specifically ܶܵ divided by ܹܤ .
However, this scenario is discarded because of
storage limitations since the total size of the backup
would be much larger (around 57 GB) than by
compressing it (around 27 GB).

3.2 Remote Repository

If the backup is downloaded from an online
repository, the backup cannot be downloaded and
decompressed at the same time. Therefore, if we
assume compression, there is only the possibility to
first download the compressed backup and then
decompress it in the target server. However, if we
consider the possibility to not compress the backup,
then the following equation shows the optimal ship
time depending on the available bandwidth.

௦௛௜௣ݐ ൌ ൞

ܵܥ
ܹܤ

൅
ܶܵ
ܵܦ

, ܹܤ ൑ ൬1 െ
1
ܴܥ

൰ ∗ ܵܦ

ܶܵ
ܹܤ

ܹܤ, ൐ ൬1 െ
1
ܴܥ

൰ ∗ ܵܦ
 (2)

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

288

In the first interval, the bandwidth is small enough
so that it is worthier to first transfer the compressed
files and then decompress them. On the other hand,
in the second interval the bandwidth is large enough
so that it is better not to compress the files and avoid
the decompression time. Considering the results
discussed in Section V of this paper, only for the
scenarios with a very fast access to the Internet
(more than 1.5 Gbps of bandwidth) it is more
interesting not to use compression. However, the use
of compression is always more efficient in terms of
storage.

4 RUN

The purpose of the run process is to take the
generated files in the build process and obtain a
running CiaB instance. In order to do so, the
following steps are performed in sequence:
1) Bootstrap: it installs all the software needed to

run CORD, e.g., Vagrant, Ansible, Docker, etc.
This step is reused from the raw installation
process of CORD.

2) Decompress CORD source tree: it decompresses
the CORD source tree and saves the output in the
user’s home directory.

3) Prerequisites check: it runs an Ansible playbook
retrieved in step 2 that checks that the machine
where CORD is to be installed meets the
hardware requirements (available RAM, CPU
cores, etc.).

4) Decompress VM images: it decompresses the
VMs and saves them in the corresponding path.

5) Start virtualization service: it makes sure that the
virtualization service that manages the vagrant
VMs is up and running.

6) Define VMs and networks: it defines the VMs
and the virtual networks using the corresponding
configuration files. Note that a default network
already exists in the server before this step;
therefore, it has to be removed before defining
the default network configuration file generated
during the “Build” process.

7) CORD configuration: it defines the configuration
of the CiaB using the main makefile used in the
raw deployment.

8) Build OvS: it installs and configures the required
OvS switches.

9) Fire up VMs: it starts the Vagrant VMs.

These steps should be enough to get a fully-
functionall CORD instance. However, there are

some minor issues that still have to be fixed. These
issues result in the following steps:
10) SSH configuration: a file that is copied from the

CORD source tree is responsible for configuring
the secure shell (SSH) connectivity to the VMs,
which is specific to the user. Thus, if CORD is
being installed in a different machine than the
one the build process was performed on, the ssh
connectivity will not work. In this step, this file
is modified to make sure that it refers to the user
in the deployment machine.

11) Restart Apache: sometimes a component in the
head node called Keystone boots in a unstable
state. The way to fix it is to restart its Apache
server.

12) Fix iptables: sometimes, the connectivity
between the head and the compute nodes is lost.
This step fix this issue through an iptables
command.

5 RESULTS

5.1 Compression Algorithms

Performance results of the proposed BSR approach
for deploying CORD compared to the raw approach
are analyzed in this section. The BSR approach has
been tested using different compression algorithms.
Traditional compression algorithms such as XZ
(Colin, 2018), BZIP2 (Seward, 1997) or GZIP
(Deutsch, 1996) try to achieve higher compression
rates at the cost of a lower decompression speed.
However, this work required a compression
algorithm with high decompression speeds that
could keep a similar compression rate as the
traditional algorithms since this would allow for fast
deployment. Compression times are not a strict
limitation as they are expected to influence only the
initial “packing” of the CiaB deployment. An
algorithm called LZ4 (Collet, 2013) meets these
requirements. Table 1 shows a comparison in terms
of compression rate and decompression speed
among the aforementioned algorithms based on the
compression of the CORD source tree.

Table 1: Compression algorithms comparison.

Compression
algorithm

Compression
ratio

Decompression speed
(MBps)

BZIP2 2,46 21,1

XZ 2,76 35,6

GZIP 2,33 79,1

LZ4-HC 2,01 371,8

Build-Ship-Run Approach for a CORD-in-a-Box Deployment

289

It can be observed that the LZ4 algorithms,
configured in its high-compression mode (LZ4-HC)
offers a decompression speed up to 5 times faster
than GZIP, the runner-up in decompression speed,
with a compression ratio a 27% worse than XZ,
which has the best compression ratio.

5.2 Compression Algorithms

Choosing LZ4 as the best compression algorithm
candidate, we performed different experiments with
it. The total deployment time of CiaB is depicted in
Fig. 1 for the different performed tests, as well as for
a raw deployment. The “Ship” time is “omitted” for
the BSR tests because it is assumed that the CORD
backup is placed in a local repository and the
transfer speed between this repository and the target
server is larger than the decompression speed of the
VMs (371.8 MBps), which reduces the shipping
time to the decompression time. This is a reasonable
assumption since, for example, SATA II (up to 3
Gbps (Serial ATA International Organization,
2007)) and USB 3.0 (up to 5 Gbps (Hewlett Packard,
2008)) support higher transfer speeds. If the backup
was to be obtained from an online repository, the
time to download it should be added into the
presented results.

As a first approach, both the CORD source tree
and the CORD VM images are first packed into a
file with tar (Gilmore, 2008), and then these files are
compressed with LZ4. The use of tar is necessary
since LZ4 only supports the compression of files,
and not folders or groups of files. However, since
CORD consists in only five VM images, we also
tested how our approach worked when
compressing/decompressing the CORD images
individually. These two approaches (called “LZ4 +
tar” and “LZ4”, respectively) are compared in Fig. 1,
where it can be seen that the decompression time
when not using tar for the VM images is clearly
lower. A third approach was also tested based on the
“LZ4” approach, i.e., without using tar for the
images. In this third approach, some images
(specifically, the “qcow2” format ones), are shrunk
with a “qemu-img” (Bellard, 2014) command before
being compressed. This reduces the disk space of the
image, deleting actual information/data. As depicted
in Fig. 1, this approach (called “LZ4 + shrink”) also
reduced the decompression time compared to the
previous ones, whereas the VMs’ firing up time kept
constant. Moreover, it can be seen that the total
deployment time of CiaB using the “LZ4 + shrink”
BSR approach is around 7 times faster than using a
raw installation, at about 12 minutes. The achieved

deployment time, is well below the threshold of 90
minutes imposed by 5G-PPP (Kennedy, 2017).

Figure 1: Results comparing a raw CiaB deployment time
with the time obtained using different BSR approaches.

6 CONCLUSIONS

This paper investigated the use of compressed, pre-
configured VM snapshots for the deployment of the
CORD platform. The proposed deployment
workflow follows a Build-Ship-Run approach and
allows for much faster deployment times (7x) while
also allowing for zero-touch configuration.
Moreover, the BSR approach increases the reliability
when deploying CiaB, meaning that the CORD
code-base will not change from deployment to
deployment, as it might happen among different raw
deployments. Finally, the presented approach is also
useful to save the state of a running CiaB
deployment, i.e., to create a backup of the entire
system. Then this backup can be restored at any time
in the same machine or a remote one. In addition to
the proposed workflow, this paper also investigated
the effects of different compression algorithms, with
respect to the final size of the archives and their
decompression times. The presented results show
that “trimming” the VM images and then using the
LZ4 compression provides with the best results. As
future work, the presented approach will be
extended to support newer CORD versions, as the
focus has been given to CORD 4.1 so far.

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

290

ACKNOWLEDGEMENTS

This work has been performed in the framework of
the NGPaaS project, funded by the European
Commission under the Horizon 2020 and 5G-PPP
Phase2 programmes, under Grant Agreement No.
761 557 (http://ngpaas.eu).

REFERENCES

Peterson, L. et al. 2016. "Central office re-architected as a
data center". IEEE Communications Magazine 54.10
96-101.

InstaCORD, 2017. Available at: https://wiki.opencord.org/
display/CORD/InstaCORD+on+CloudLab .

Collin, L., 2018. "XZ utils". Available at:
http://tukaani.org/xz/

Seward, J., 1997. "The bzip2 home page". Available at:
http://www.bzip.org

Deutsch, P., 1996. "GZIP file format specification version
4.3. No. RFC 1952".

Collet, Y., 2013. "LZ4-Extremely fast compression".
Serial ATA International Organization, 2007. Serial, A. T.

A. "revision 2.6".
Hewlett-Packard Company, Intel Corporation, Microsoft

Corporation, NEC Corporation, ST-NXP Wireless,
Texas Intruments, 2008, Bus, Universal Serial. "3.0
Specification", rev 1.

Gilmore, J., 2008. "Tar-GNU Project—Free Software
Foundation (FSF)." Available at: http://www.gnu.org/
software/tar

Bellard F., 2014. Ubuntu, “trusty (1) qemu-img.1.gz”.
Available at: http://manpages.ubuntu.com/manpages/
trusty/en/man1/qemu-img.1.html

Kennedy, D., 2017. “Euro-5g –Supporting the European
5G Initiative, D2.6 Finalreport on programme progress
and KPIs”.

Build-Ship-Run Approach for a CORD-in-a-Box Deployment

291

