
Anonylitics: From a Small Data to a Big Data Anonymization System for
Analytical Projects

Alexandra Pomares-Quimbaya1,3, Alejandro Sierra-Múnera1,3, Jaime Mendoza-Mendoza1,3,
Julián Malaver-Moreno1,3, Hernán Carvajal2,3 and Victor Moncayo2,3

1Pontificia Universidad Javeriana, Bogotá, Colombia
2Pontificia Universidad Javeriana, Cali, Colombia

3Center of Excellence and Appropriation in Big Data and Data Analytics (CAOBA), Bogotá, Colombia

{hernan.carvajal, vhmoncayo}@javerianacali.edu.co

Keywords: Anonymization, Analytics, Data Mining, Data Science, Big Data, K-anonymity, Data Privacy, Information
Disclosure.

Abstract: When a company requires analytical capabilities using data that might include sensitive information, it is im-
portant to use a solution that protects those sensitive portions, while maintaining its usefulness. An analysis of
existing anonymization approaches found out that some of them only permit to disclose aggregated informa-
tion about large groups or require to know in advance the type of analysis to be performed, which is not viable
in Big Data projects; others have low scalability which is not feasible with large data sets. Another group of
works are only presented theoretically, without any evidence on evaluations or tests in real environments. To
fill this gap this paper presents Anonylitics, an implementation of the k-anonymity principle for small and Big
Data settings that is intended for contexts where it is necessary to disclose small or large data sets for applying
supervised or non-supervised techniques. Anonylitics improves available implementations of k-anonymity us-
ing a hybrid approach during the creation of the anonymized blocks, maintaining the data types of the original
attributes, and guaranteeing scalability when used with large data sets. Considering the diverse infrastruc-
ture and data volumes managed by current companies, Anonylitics was implemented in two versions, the first
one uses a centralized approach, for companies that have small data sets, or large data sets, but good vertical
infrastructure capabilities, and a Big Data version, for companies with large data sets and horizontal infrastruc-
ture capabilities. Evaluation on different data sets with diverse protection requirements demonstrates that our
solution maintains the utility of the data, guarantees its privacy and has a good time-complexity performance.

1 INTRODUCTION

Confidentiality comprises a set of rules and mecha-
nisms that ensure that information is not made avail-
able or disclosed to unauthorized individuals, entities,
or processes. Although released information for ana-
lytical purposes should be as detailed as possible to
produce accurate models, data utility is in conflict
with the confidentiality guarantee (Lee, 2015). As for
utility, it typically refers to two features of the pro-
cessed data: the ease of use of such data for data min-
ing and other analysis purposes; and the correctness
of conclusions drawn from the processed data by such
analysis (Clifton and Tassa, 2013). To protect the con-
fidentiality and the privacy of the entities (e.g. clients,
patients, citizens) to which information refers, data
holders often remove or encrypt explicit identifiers

such as ids, names, and phone numbers. However,
this de-identification process, although necessary, is
not enough for guaranteeing entities anonymity; the
main risk is to disclose pseudo-identifiers (e.g. gen-
der, age, number of children), which individually are
not risky, but when they are combined and linked with
available data sources can be easily used by an aggres-
sor to re-identify an entity (Ciriani et al., 2007).

Many principles and algorithms have been pro-
posed for protecting data released from improper
disclosure of confidential data. Principles like k-
anonymity (Samarati and Sweeney, 1998), (Sweeney,
2002) and ε-differential privacy (Dwork et al., 2006)
have been widely used to produce anonymized data
from original data sets. According to the k-anonymity
principle, a data set can be published if every record is
indistinguishable from at least other k-1 records (k≥

Pomares-Quimbaya, A., Sierra-Múnera, A., Mendoza-Mendoza, J., Malaver-Moreno, J., Carvajal, H. and Moncayo, V.
Anonylitics: From a Small Data to a Big Data Anonymization System for Analytical Projects.
DOI: 10.5220/0007685200610071
In Proceedings of the 21st International Conference on Enterprise Information Systems (ICEIS 2019), pages 61-71
ISBN: 978-989-758-372-8
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

61

2), within the data set with respect to the combination
of pseudo-identifiers (or Quasi-Identifiers). It means
that for every combination of pseudo-identifiers there
must be at least k records in the disclosed data
sets. This guarantees that the entities cannot be re-
identified by linking an external data source with one
specific record. Alternatively, the ε differential pri-
vacy principle states that privacy can be preserved by
calibrating the standard deviation of the noise accord-
ing to the sensitivity of a function f, where the func-
tion f describes the query in which the user is inter-
ested on, for instance, given a database D a user may
be interested in the total number of 1’s in the database
(Dwork et al., 2006),(Dwork and Roth, 2014) . The
goal of this principle is to enable the user to learn
properties of the population as a whole while protect-
ing their privacy (Dwork and Naor, 2010).

In the context of Big Data projects, an analysis
of existing implementations on both privacy princi-
ples was made, finding out some drawbacks on both
principles. On the one hand, the differential privacy
is intended to disclose aggregated information, which
is not always the case on Big Data projects, where
the complete data set must be available. In addi-
tion, its core requires noise addition, which seems
to run into considerable resistance among specialists
(Clifton and Tassa, 2013). Furthermore, in practice it
requires an interactive implementation that demands
prior knowledge of the analysis to be performed by
the user in order to calibrate the level of noise to the
global sensitivity of the query and to the targeted dif-
ferential privacy parameter (Clifton and Tassa, 2013).
On the other hand, we found two main drawbacks on
the k-anonymity (and its variants) implementations;
the first one is their low scalability for a Big Data set,
and the second one is the quantity of information loss,
when some of the classical generalization approaches
are applied on the data set. Although both have prob-
lems when they are applied on Big Data problems,
we decided to choose the k-anonymity as the princi-
ple to guarantee data privacy because it works well in
non-interactive environments and its implementations
can be enhanced to achieve scalability and to reduce
information loss using non-perturbative methods.

This paper presents Anonylitics, an implementa-
tion of the k-anonymity principle for Big Data set-
tings. Anonylitics is intended for contexts where it is
necessary to publish small or large data sets for ap-
plying supervised or non-supervised analytical tech-
niques that require preserving the utility of the data.
Anonylitics improved classical implementations of k-
anonymity as Mondrian and Datafly using a hybrid
approach during the creation of the blocks required
to be of size at least k, and the replacement using a

class representant. Throughout the design and imple-
mentation of Anonylitics to achieve k-anonymity in
Big Data settings we have different aspects to deal
with for transforming the version of Anonylitics that
anonymizes small data sets (i.e. small enough to be
processed in a single machine) into one version that
can anonymize Big Data sets. These lessons learned
are an important contribution of this paper.

The paper is structured as follows. Section 2
presents a summary of the main findings on the cur-
rent anonymization approaches in Big Data. Then,
Section 3 explains the strategy of Anonylitics to pro-
duce data sets compliant to the k-anonymity principle
including its transformation from a centralized to a
Big Data version. Section 4 includes the evaluation of
our proposal demonstrating its good results on utility
and privacy preservation. This sections also analyzes
the performance results derived from different test se-
tups. The final part of the paper presents in Section 5
the lessons learned, and in Section 4.4 a discussion of
conclusions and future work.

2 RELATED WORK

When the confidential information is related to in-
dividuals, the right of privacy emerges. Privacy is
the right that every individual must control or influ-
ence what information related to them can be col-
lected and stored, by whom, and what information
can be disclosed (Luisa Pfeiffer, 2008). This infor-
mation is represented by attributes that can be classi-
fied into: (i) Identifiers: fields that uniquely identify
a person (name, ids). (ii) Pseudo-identifiers: fields
that do not directly identify, but combined with other
pseudo-identifiers can identify an individual (age, sex,
race). (iii) Sensitive data: fields with a certain value,
on which conclusions are drawn in a subsequent anal-
ysis (medical condition, salary) (Lambert, 1993).

Preserving privacy in Big Data projects is one of
the major concerns because it requires data to go out-
side the boundaries of the companies and involves
pseudo-identifiers and sensitive data that need to be
analyzed. With the aim of identifying the solutions to
ensure privacy in Big Data contexts we analyzed re-
lated works on data anonymization in these environ-
ments.

The systematic review of the literature by B. Pur-
cell (Purcell, 2013) presents four anonymization ap-
proaches for large volumes of data: conceptual, ar-
chitectures, tools and algorithms. In the conceptual
approach, anonymization is analyzed from a theoret-
ical perspective where the objective is to evaluate the
balance between information loss and data utility af-

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

62

ter anonymization. The architecture refers to the log-
ical orchestration that allows generating anonymiza-
tion systems, identifying two types of architectures:
general purpose and specific applications. The tools
refer to the practical application of principles, op-
erations, algorithms and anonymization methodolo-
gies available to the general public, whether in open
source or proprietary. It includes a commercial tool
for anonymization purposes developed by a Japanese
research group (Morisawa and Matsune, 2016). Fi-
nally, the algorithms are related to methodologies
based on heuristics, which seek to find a balance be-
tween computational complexity and information pri-
vacy.

Regarding the classical algorithms developed for
anonymization as Datafly (Sweeney, 1998), Incog-
nito (LeFevre et al., 2005) and Mondrian (LeFevre
et al., 2006), whose objective is to fulfill the princi-
ple of k-anonymity, we found that Mondrian is the
most viable to be enhanced for Big Data problems.
The Mondrian algorithm allows anonymizing tabular
information through recursive partitioning of the data
set applying the principle of k-anonymity. From the
columns or dimensions that make up the data set, the
user must define those that are considered as pseudo-
identifiers. Recursively, the algorithm calculates its
normalized range for each of the selected dimensions,
which means that partitioning can only be done on
numerical type dimensions. Once the ranges are cal-
culated, the algorithm selects the dimension with the
highest rank to partition. Partitioning is done by cal-
culating the distribution median of the selected di-
mension, computed using the frequencies, and then
creating two partitions, the first with values greater
than or equal to the median and the second with val-
ues smaller than this same value. On these two new
partitions, the algorithm is executed again until the
partition is less than twice the size of k. When this
occurs, it means that the algorithm will not be able
to further partition the data, since the principle of k-
anonymity would not be met. Once the partitions are
created, the generalization process is carried out, in
which for every partition, a representant of the class
or data to be replaced in each pseudo-identifier is se-
lected.

Concerning the scalable implementation of these
classical algorithms, we have found different propos-
als. However, they are more focused on large data
sets that can be processed in a single machine (e.g.
thousands of records). In the centralized approach,
LeFevre, DeWitt and Ramakrishnan propose two (2)
algorithms Top-Down Specialization (TDS) Greedy
Algorithms based on LeFreve’s Mondrian algorithm
(LeFevre and DeWitt, 2007): Rothko-T or Rothko-

Tree and Rothko-S or Rothko-Sampling. Rothko-T
is a variation of the Mondrian algorithm that gives
special consideration when a data set is larger than
the size of the memory. Rothko-S is a variation
in the sampling of the Rothko-T algorithm applied
to data sets aimed at obtaining greater performance.
In the distributed approach, Zhang, Yang, Liu and
Chen present two works (Zhang et al., 2014b), (Zhang
et al., 2014a): Map Reduce Top-Down Specializa-
tion (MRTDS), and Map Reduce Bottom- Up Gen-
eralization (MRBUG). MRTDS anonymizes data par-
titions to generate a level of intermediate anonymiza-
tion, where it first initializes the data utility metrics,
and then, with an iterative algorithm, selects the best
specialization according to the level of anonymiza-
tion and does so, updating the anonymization level.
MRBUG initializes a data utility metric and makes
multiple generalizations in an iteration round, to im-
prove the degree of parallelization and efficiency, un-
til the anonymized data set complies with the prin-
ciple of k-anonymity. In addition, Zhang et al.
presents the Single-Objective Proximity-Aware Clus-
tering algorithm (SPAC) (Zhang et al., 2015). It is
a technique adapted to a distributed system based
on files such as HDFS; and, therefore, can be ap-
plied to a large volume of data. On the other hand,
Sowmya and Nagaratna introduce the Parallelizing
k-anonymity Algorithm (Pk-a) (Sowmya and Na-
garatna, 2016), where the implementation of the prin-
ciple of k-anonymity is redefined using distributed
programming, MapReduce and the Hadoop ecosys-
tem. Then, Zhang et al. propose Locality Sensitive
Hashing based on local-recoding (LSH) (Zhang et al.,
2016), which is a scalable local recoding approach
using distance metrics for categorical data (Jaccard
distance) and numerical data (Euclidean distance) for
measuring the similarity between the registers. Zhang
et al. propose MRMondrian (Map-Reduce jobs on
Mondrian) (Zhang et al., 2016), where the objective
is to partition the data iteratively, into smaller sub-
sets, until they all fit into the memory at each process-
ing node. The work presented in (El Ouazzani and
El Bakkali, 2018) proposes a k-anonymity approach
without prior value of the threshold k. However, its
complexity is not calculated. Eyupoglu et al. propose
an algorithm based on chaos and perturbation tech-
niques (Eyupoglu et al., 2018) to preserve the privacy
and utility in large data independent of the type of data
set, and can be applied to both numerical and cate-
gorical attributes, but so far has not been used in real
applications. Finally, Sopaoglu and Abul developed
an ascending and scalable anonymization algorithm
for Apache Spark (Sopaoglu and Abul, 2017). Ba-
sically they reimplemented the TDS (top-down spe-

Anonylitics: From a Small Data to a Big Data Anonymization System for Analytical Projects

63

cialization) algorithm for the Apache Spark platform,
being an experimental evaluation that suggests that it
would be highly scalable for TDS.

From the review it was evidenced that some of the
developments in Big Data do not delve into the details
on the algorithm and/or code, this is understandable
when dealing with proprietary software, however, it
does not allow to measure the confidence in the re-
sults(Morisawa and Matsune, 2016). Besides, most
of the described algorithms were tested with a data set
that does not correspond to large volumes of informa-
tion, which does not comply with the Volume char-
acteristic of Big Data projects (Zhang et al., 2015)
(Sowmya and Nagaratna, 2016). Finally, some of the
algorithms mentioned above are presented theoreti-
cally, and there is no evidence on evaluations or tests
that they can be used in real environments (Sopaoglu
and Abul, 2017).

3 ANONYLITICS

Taking into account the need of anonymizing infor-
mation while preserving its utility for analytical pur-
poses, an algorithm capable of anonymizing numer-
ical and categorical data maintaining the principle
of k-anonymity in Small and Big Data environments
was developed. This algorithm, called Anonylitics,
is based on the Mondrian algorithm (see Section 2),
but incorporates a series of improvements aimed to
preserve the usefulness of the anonymized informa-
tion and to guarantee its scalability. Two approaches
were carried out, the first one for processing low vol-
ume data sets, and the second one providing scalabil-
ity qualities for Big Data problems.

3.1 Small Data Version: Centralized
Implementation

The centralized version of Anonylitics guarantees the
anonymization using the k-anonymity principle, at the
same time that it keeps the usefulness of data for ana-
lytical purposes. An important aspect of our proposal
is that it does not change the data type of the original
pseudo-identifier, as most of the existing approaches
do, and aims to preserve the distribution of numerical
values. The main phases of Anonylitics are presented
in Figure 1. As it can be seen, our proposal includes
a series of improvements that allow to guarantee the
privacy and utility of the input data. The main im-
provements are:
1. Partitioning. The partition is made calculating the

median of the cut dimension whenever it is pos-
sible to partition it (step A). In addition, when it

Figure 1: Anonylitics Centralized Implementation.

has checked all the dimensions and can not find
a partition that can be divided by the median, it
starts over to review from the first dimension with
greater entropy, in order to create the partition
using the k-first elements that comply with the
anonymity k (step D). This hybrid partitioning ap-
proach led us to reduce the information loss, be-
cause it reduces the size of the blocks, at the same
time that it guarantees the K-anonymity principle.

2. Selection of the cutting dimension. Our algorithm
uses the entropy (step B) to find the dimension on
which the data set is recursively partitioned. It
means that, by each recursion, entropy is calcu-
lated for each pseudo identifier and the partition
is made by the one with highest entropy value.
When the partition can not be made in the se-
lected dimension, the algorithm selects the sec-
ond pseudo-identifier with highest entropy and try
to partition the data using that dimension. This is
done until all dimensions are evaluated, but, if par-
titioning can not be achieved, it means that the k-
first principle is fulfilled. Using entropy allows us
to partition not only using numerical dimensions,
but also those of categorical type.

3. Categorical data hierarchy. Our proposal allows
to partition taking into account numerical and cat-
egorical data. Unlike related works, which con-
catenate the different values in the partition and
establish them as class representants, a hierarchy
is associated with each categorical attribute. This

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

64

hierarchy allows having a tree structure, where the
leaves are the original categorical values and the
nodes values group together different levels of the
categorical data as shown in Figure 2. When car-
rying out the generalization process (Step F), a
class representant is not calculated, but the cat-
egorical value is replaced by the one that pre-
cedes it in the hierarchy until the principle of k-
anonymity is fulfilled. This aspect ensures the
utility of the anonymized categorical values.

Figure 2: Cities Hierarchies Implementation Example.

3.2 From a Centralized to a Distributed
Implementation: Challenges

As stated by Katsogridakis et al., Spark, and in gen-
eral Map Reduce based systems, are not suited for re-
cursive algorithms, mainly due to the distributed na-
ture of the code and the data (Katsogridakis et al.,
2017). Data resides in RDDs (Resilient Distributed
Data set) (Zaharia et al., 2012) or dataframes (RDDs
with named columns) distributed across the cluster
while the code and the metadata reside on the drive
node. Therefore, recursive algorithms need to either
be rewritten as iterative algorithms or the job sched-
uler needs to be changed as proposed in (Katsogri-
dakis et al., 2017). In our case we aim to write an al-
gorithm that can be executed on a standard Big Data
environment and thus we opt for switching to an iter-
ative algorithm.

This decision brought additional challenges be-
cause iterative algorithms could lead to space com-
plexities. In our case, after each iteration, the par-

titions defined by the previous step are not repre-
sented in the original data set because dataframes and
RDDs in Spark are immutable. The consequence is
having twice the data after each iteration and forc-
ing the algorithm to constantly create checkpoints or
caching intermediate resources. In the case of Spark
jobs, transformations are not executed until an ac-
tion is called and therefore this lazy execution, if
not managed correctly, could result in big RDDs or
Dataframes created when an action is executed.

As we convert the algorithm to an iterative algo-
rithm, after each iteration data has to be split in dif-
ferent logical partitions. We could either create one
new dataframe containing all the data and using an at-
tribute value to store the logical partition, or splitting
the dataframe into multiple dataframes, each one con-
taining a partition. The second approach has the in-
convenience of building the new dataframes with the
help of filters over the original dataframe, but having
to iterate over the data multiple times, one for each
new partition.

Another challenge related to the algorithm in-
volves sorting inside a partition or calculating row
numbers within a partition. For instance, finding
the first k elements of a partition requires ordering
within the partition all the rows given an ordering at-
tribute. In Spark, with window functions, such ac-
tion requires that the whole partition is loaded in one
worker’s memory and locally sorting the rows, but in
the case of a large data set partitions could also be
very large, particularly in the first iterations, where
partitions could potentially be half the entire data set
and therefore the whole partition could not fit in one
worker’s memory. One example of such action is
computing the median of a partition. This requires
sorting the partition rows and finding the middle point
of the data set. In the last phase of the algorithm a
class representant is chosen. One of the original ap-
proaches in the centralized algorithm is choosing the
representant given a truncated distribution, sampling
from the partition given the global distribution. Such
process, which is easily implemented in a centralized
python process, has issues in a distributed Spark envi-
ronment. This could be achieved by computing global
distributions, collecting all the data from a partition
and then choosing inside the driver node the represen-
tant for each class. This has the drawback of process-
ing the complete data set in one node and scalability
is compromised.

Anonylitics: From a Small Data to a Big Data Anonymization System for Analytical Projects

65

3.3 Big Data Version: Distributed
Implementation

All the challenges presented in Section 3.2 were
solved adapting the centralized anonymization ver-
sion to distributed environments managing large data
sets stored in a Big Data environment. In particular,
the environment on which this solution was developed
was a Hadoop cluster with a distributed HDFS storage
and an Apache Spark processing component in which
the algorithm was written. This technology restricts
us in the use of recursion in the process of anonymiza-
tion, therefore, we develop a series of changes with
respect to the centralized version that are illustrated
in Figure 3.

Figure 3: Anonylitics Distributed Implementation.

1. Anonymization strategy. Since the use of recur-
sion over Spark is not recommended or efficient,
it was necessary to implement a proposal that per-
forms the anonymization process iteratively (F).
The algorithm uses the Spark’s data structures
RDDs and dataframes on which all operations are
performed.

2. Identification of partitions. In each iteration of the
process a new dataframe is created with a new col-
umn, which indicates the partition to which each

record belongs (A). It is always necessary to cre-
ate new dataframes since the data stored in the
RDDs is immutable.

3. Entropy calculation. The entropy is calculated by
each pseudo-identifier in each partition creating
auxiliary data frames, which allow grouping and
aggregation operations on the data (B).

4. Partitioning. The partition process is done by
selecting the highest entropy (B, C) pseudo-
identifier and dividing it in 2 partitions using the
mid-point (D).

5. Calculating the value of the median is a com-
putationally expensive task that Spark must per-
form. In contrast to the centralized version of the
algorithm, the data set is not divided into parti-
tions, but in each iteration the records are marked
with an identifier corresponding to the partition to
which it belongs (E).

The architecture of Anonylitics is based on a client
server model as shown in Figure 4. It consists of three
main components that allow Anonylitics to be used
both, in its centralized version and in its distributed
version.

Figure 4: Anonylitics Architecture.

The web client contains the front end of Anonyli-
tics and where the users parameterize and execute
the anonymization processes. The Anonylitics server
is where the anonymization processes are orches-
trated. In the centralized version, the anonymization
is executed in this same server. It also stores the
anonymized data in the centralized version, and the
metadata of the anonymization projects. Finally, the
Hadoop Cluster allows us to execute the distributed
anonymization component and provides a distributed
file system and the Spark processing component.

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

66

4 ANONYLITICS EVALUATION

In order to compare the big data and the small data im-
plementations, we ran two sets of tests. One set eval-
uates the quality of the anonymization process and a
second set was intended to evaluate the performance
by measuring the running time under different config-
urations.

This section is divided into three parts: the ex-
perimental setup description, the evaluation of the
anonymization process, and the performance evalu-
ation.

4.1 Experimental Setup

The centralized version presented in section 3.1
was implemented in Python 3.5 with a MySQL 5.7
database. For performing Big Data experiments, a
Hadoop Distributed File System (HDFS) was used.
The code was implemented in Python 3.5, using
Apache Spark 2.2.

All the experiments were conducted on a virtual-
ized cluster that consists of 9 machines. Each ma-
chine had four 2.30GHz Intel Xeon processors, 32GB
of memory, 1TB IDE disks, and a gigabit Ethernet
link.

Tests were run on multiple sized synthetic data
sets, all of them composed by one categorical and five
numerical columns. The categorical attribute con-
tains a random sample with cities. And the numerical
quasi-identifiers were generated following a normal
distribution.

4.1.1 Anonymization Evaluation Setup

Multiple tests were performed varying the k value and
using the same data set and cluster configuration. The
values of k ranged from 24 to 29 and the table with
data contained 1 million records.

4.1.2 Performance Evaluation Setup

In order to measure the performance of the Big Data
approach, three different setup variations were tested:
changing the k-anonymity constant, changing the
dataset size and changing the cluster configuration:

1. K-anonymity: the K-anonymity parameter was
changed in powers of 2 from 2 to 512 and
the dataset sized was fixed to a 1.000.000 rows
dataset.

2. Data Size: the K-anonymity was maintained con-
stant in the worst performance case K=2 (higher
number of iterations) and the data set size was in-
creased from 10.000 to 10.000.000 registers.

Table 1: Performance evaluation parameters setup.

Experiments Parameter
settings

Dataset size

1 K-
anonymity

K = 2, 4, 8,
16, 32, 64,
128, 256 and
512

106

2 Data Size K = 2 104, 504,
105, 505,
106, 506, 107

3 Cluster Con-
figuration

K = 2
Executors = 8

Cores per
Executor=1-4

106

3. Cluster Configuration: there are mainly three pa-
rameters related to the configuration of the clus-
ter, the number of YARN containers or executors
to allocate for this application, the number of pro-
cessor cores to allocate on each executor, and the
maximum heap or memory size to allocate to each
executor. In this experiment, we used one execu-
tor for each container node (8 in total), and the
number of cores were modified for each Spark ex-
ecutor increasing it from 1 to 4. The 1.000.000
observations data set and a value of K equal to 2
were maintained constant.

Table 1 shows the configuration of the cluster used
to measure the scalability of the algorithm.

4.2 Anonymization Evaluation

The goal of this section is to evaluate whether the Big
Data approach affects the quality of the anonymiza-
tion process. To do so, the Information Loss metric
(IL from now on), introduced at (Byun et al., 2007)
was used to evaluate the quality of the anonymized
table. This metric estimates the data utility by quanti-
fying the amount of data values that have been gener-
alized.

Let E be the set of clusters produced by an
anonymization algorithm, and for each record x in
each equivalent class (or cluster) e, let x1, ...,xD de-
note the values of the attributes of x. Then the amount
of IL introduced by e, is defined as:

IL(e) = |e|

(
D

∑
i=1

max{xi : x ∈ e}−min{xi : x ∈ e}
|{xi : x ∈ e}|

)
(1)

and the total information loss of the anonymized
table as:

Total− IL(E) = ∑
e∈E

IL(e) (2)

Anonylitics: From a Small Data to a Big Data Anonymization System for Analytical Projects

67

Figure 5 shows the information loss obtained us-
ing different k values. As expected, it can be observed
how the information loss score tends to increase, since
the attributes were generalized further, which reduced
the utility of the data set. This result confirms that the
Big Data approach does not affect the quality of the
anonymization process.

0 100 200 300 400 500
k

4.70

4.75

4.80

4.85

4.90

4.95

5.00

IL
 (x

 1
06

)

Figure 5: Information loss evaluation.

4.3 Performance Evaluation

Figures 6, 7 and 8 present the time performance of
Anonylitics based on k-anonymity, dataset size and
cluster configuration, respectively. As expected, a vis-
ible relationship between run time and K-anonymity
was found. Higher values of K influence directly over
the total number of iterations. We got an execution
time reduction of 46%, from 69 min (k=2, 20 itera-
tions) to 37 min (k=512, 12 iterations).

In the second experiment (Figure 7), we present
the time complexity performance in terms of dataset
size. As the number of rows in the data increases, so
does the time, but the results show that final behav-
ior is better than quadratic O(n2), exponential O(2n)
and linear O(n) functions. When data size grows 10
times from 10.000 to 100.000, the run time grows
2,01 times; but, when the number of observations in-
creases from 10.000 to 10.000.000 (1000 times big-
ger) the run time is only 14,7 times higher. This
shows that the Anonylitics algorithm has a good time-
complexity performance, providing an acceptable be-
havior with big datasets.

Finally, our third experiment shows the scalability
capabilities of distributed computation in Anonylitics
(Figure 8). While the core number in each executor is
increased to its maximum value (4 cores in each node
for our assembly), the final time is reduced in 59%,
from 86 to 35 min. We can improve the performance
results not only by increasing the number of cores by
executor, but, adding more nodes into the cluster and
optimizing the execution configuration.

Figure 6: K-Anonymity performance evaluation.

Figure 7: Dataset size performance evaluation.

Figure 8: Cluster configuration performance evaluation.

4.4 Comparison with Related Works

A qualitative comparison was made with the Top-
Down Specialization algorithm (TDS) (Fung et al.,
2005) and its Big Data implementations: Two Phase
TDS (Zhang et al., 2014b) for Hadoop (Map-Reduce),
and TDS for Apache Spark (Sopaoglu and Abul,
2017).

The main difference between the two algorithms is
the partitioning process, TDS approaches generalizes
the best attribute within each iteration and over the

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

68

entire column until satisfying k-anonymity. On the
other hand, our implementation first builds iteratively
a group of partitions composed by at least k elements,
and later, it implements what we defined as local and
global generalization process. Local means, that we
could generalize each partition individually and for
that reason, we could have observations at different
hierarchy levels.

TDS proposals and our algorithm support both
types of input data: numerical and categorical,
however, TDS transforms the continuous pseudo-
identifiers into discrete values by grouping them into
numerical ranges. Changing its output data type could
impact the later use of analytical and data mining
techniques, especially when we want to evaluate the
information loss and the utility of the anonymized
data. Further transformations will be necessary if we
want to compare initial and final data distributions,
or measuring the information change with techniques
like Kullback-Leibler divergence.

On the contrary, our algorithm is capable of main-
taining the data type, keeping all the variables to-
gether in the partitioning process, but carrying out
a different generalization approach depending on
the variable type. The categorical variables are
anonymized based on a hierarchical approach, thus a
domain hierarchy or tree is needed. Instead, numer-
ical values in each partition are changed by a class
representant, like the average, the median or a random
element within the group.

Both anonymization techniques use information
theory or entropy in order to select the best pseudo-
identifier, nevertheless TDS is much more computa-
tionally intensive because it calculates the informa-
tion loss or the entropy difference before and after the
variable is generalized. On the other hand, our ap-
proach only requires the initial entropy among all the
pseudo-identifiers.

5 LESSONS LEARNED: FROM
SMALL TO BIG DATA
ANONYMIZATION APPROACH

Converting an algorithm that was designed to run on
a single node into a scalable algorithm introduced
some challenges to our anonymization system. This
demonstrates that not all centralized approaches are
easily implemented in a distributed environment. Dis-
tributed implementations of originally centralized al-
gorithms may involve an overhead that has to be man-
aged when deciding which implementation to use.
Such decision depends on the data volume and the

vertical or horizontal scalability capabilities of the in-
frastructure. Companies must profile and understand
their data and determine whether a single machine
could process all the data, considering its growth over
time. If not, horizontal scalability is needed, and a
distributed algorithm is the right solution.

Additionally, regarding anonymization ap-
proaches, we proposed a way of taking into account
both, numerical and categorical variables when
deciding how to partition a data set. This is valuable
because real world data sets have many types of vari-
ables, which must be considered in an anonymization
process, to produce useful, but at the same time
confidential datasets. The nature of the data is
important in our system because the utility of the
anonymized data is essential, therefore we preserve
the data types and domains in all the process.

From the point of view of the infrastructure, Big
Data software like Hadoop and Spark are complex
platforms that could be parametrized in many differ-
ent ways depending on the characteristics of the data
to be processed and the physical infrastructure avail-
able. Building software with such technologies does
not only involve the process of writing and testing the
code but also understanding their architecture and ad-
justing it according to the algorithms and data.

Finally, it is important to remark that when an or-
ganization requires analytic capabilities that take ad-
vantage of vast amounts of data, and such data might
include sensitive information, it is vital to understand
all the variables contained in the data set and protect
the information before making it available to external
analysts.

Likewise, data analysis processes require useful
information, representing real patterns and real pop-
ulations in order to provide good insights to be used
by decision makers. Using an anonymization system
that protects while maintaining the data utility is es-
sential, especially when it comes to information about
clients, patients, citizens, etc. or information about
other companies, which need to be analyzed exter-
nally or even internally by people who do not have
the right to see the original data.

6 CONCLUSIONS AND FUTURE
WORK

We proposed an implementation of the k-anonymity
principle called Anonylitics with two versions, a cen-
tralized and a distributed version, designed for small
and Big Data scenarios. Our algorithm not only works
for numerical data but also is designed to consider
categorical data as pseudo-identifiers. Related works

Anonylitics: From a Small Data to a Big Data Anonymization System for Analytical Projects

69

described different anonymization approaches that fo-
cus on specific algorithms or specific platforms. Un-
fortunately, some of them have no implementation or
have not been tested with large datasets.

Converting the originally centralized algorithm to
a distributed algorithm using the Apache Spark plat-
form, brought to light some challenges related to the
recursive nature of the algorithm and the specific data
transformation capabilities of Spark. Although an al-
ternative is to make changes on the platform like Kat-
sogridakis et al. did in (Katsogridakis et al., 2017),
this is not possible in most of the companies. In-
stead, we proposed, implemented and tested solutions
to these challenges, analyzing the final performance
and data utility. Our implementation allows compa-
nies with huge data-sets to anonymize them in order
to perform analysis tasks with the anonymized data-
set protecting confidentiality.

As future work it is important to test our algorithm
in a more controlled environment with dedicated ma-
chines instead of virtual machines, to avoid sharing
resources between virtual machines that may impact
the overall execution performance. Those tests should
also vary the cluster size and the size of the files used,
in order to have better understanding of the scalabil-
ity and the overall performance of the approach pro-
posed. Additionally, it will provide more concrete re-
sults that will serve us to further compare in depth the
different approaches.

Further future work includes integrating the algo-
rithm in streaming data for velocity and also includ-
ing unstructured data anonymization, which are also
important aspects of Big Data strategies.

ACKNOWLEDGEMENTS

This research was carried out by the Center of Ex-
cellence and Appropriation in Big Data and Data
Analytics (CAOBA). It was funded partially by the
Ministry of Information Technologies and Telecom-
munications of the Republic of Colombia (MinTIC)
through the Colombian Administrative Department
of Science, Technology and Innovation (COLCIEN-
CIAS) contract No. FP44842- anex46-2015.

REFERENCES

Byun, J.-W., Kamra, A., Bertino, E., and Li, N. (2007). Ef-
ficient k-anonymization using clustering techniques.
In International Conference on Database Systems for
Advanced Applications, pages 188–200. Springer.

Ciriani, V., di Vimercati, S. D. C., Foresti, S., and Samarati,
P. (2007). Microdata protection. In Yu, T. and Jajodia,
S., editors, Secure Data Management in Decentralized
Systems, volume 33 of Advances in Information Secu-
rity, pages 291–321. Springer.

Clifton, C. and Tassa, T. (2013). On syntactic anonymity
and differential privacy. Trans. Data Privacy,
6(2):161–183.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. D.
(2006). Calibrating noise to sensitivity in private data
analysis. In Theory of Cryptography, Third Theory of
Cryptography Conference, TCC, pages 265–284.

Dwork, C. and Naor, M. (2010). On the difficulties of dis-
closure prevention in statistical databases or the case
for differential privacy. Journal of Privacy and Confi-
dentiality, 2:93–107.

Dwork, C. and Roth, A. (2014). The algorithmic foun-
dations of differential privacy. Found. Trends Theor.
Comput. Sci., 9(3–4):211–407.

El Ouazzani, Z. and El Bakkali, H. (2018). A new tech-
nique ensuring privacy in big data: K-anonymity with-
out prior value of the threshold k. Procedia Computer
Science, 127:52–59.

Eyupoglu, C., Aydin, M. A., Zaim, A. H., and Sertbas, A.
(2018). An efficient big data anonymization algorithm
based on chaos and perturbation techniques. Entropy,
20(5):373.

Fung, B. C., Wang, K., and Yu, P. S. (2005). Top-down spe-
cialization for information and privacy preservation.
In Data Engineering, 2005. ICDE 2005. Proceed-
ings. 21st International Conference on, pages 205–
216. IEEE.

Katsogridakis, P., Papagiannaki, S., and Pratikakis, P.
(2017). Execution of recursive queries in apache
spark. In European Conference on Parallel Process-
ing, pages 289–302. Springer.

Lambert, D. (1993). Measures of disclosure risk and
harm. JOURNAL OF OFFICIAL STATISTICS-
STOCKHOLM-, 9:313–313.

Lee, C. (2015). Security in telecommunications and in-
formationtechnology. Technical report, ITU-T –
Telecommunication Standardization Bureau (TSB).

LeFevre, K. and DeWitt, D. (2007). Scalable anonymiza-
tion algorithms for large data sets. Age, 40:40.

LeFevre, K., DeWitt, D. J., and Ramakrishnan, R. (2005).
Incognito: Efficient full-domain k-anonymity. In Pro-
ceedings of the 2005 ACM SIGMOD international
conference on Management of data, pages 49–60.
ACM.

LeFevre, K., DeWitt, D. J., and Ramakrishnan, R. (2006).
Mondrian multidimensional k-anonymity. In Data
Engineering, 2006. ICDE’06. Proceedings of the 22nd
International Conference on, pages 25–25. IEEE.

Luisa Pfeiffer, M. (2008). The right to privacy. protect-
ing the sensitive data. REVISTA COLOMBIANA DE
BIOETICA, 3(1):11–36.

Morisawa, Y. and Matsune, S. (2016). Nestgate—realizing
personal data protection with k-anonymization tech-
nology. FUJITSU Sci. Tech. J, 52(3):37–42.

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

70

Purcell, B. (2013). The emergence of” big data” technology
and analytics. Journal of technology research, 4:1.

Samarati, P. and Sweeney, L. (1998). Protecting privacy
when disclosing information: k-anonymity and its
enforcement through generalization and suppression.
Technical report.

Sopaoglu, U. and Abul, O. (2017). A top-down k-
anonymization implementation for apache spark. In
Big Data (Big Data), 2017 IEEE International Con-
ference on, pages 4513–4521. IEEE.

Sowmya, Y. and Nagaratna, M. (2016). Parallelizing k-
anonymity algorithm for privacy preserving knowl-
edge discovery from big data. International Journal
of Applied Engineering Research, 11(2):1314–1321.

Sweeney, L. (1998). Datafly: A system for providing
anonymity in medical data. In Database Security XI,
pages 356–381. Springer.

Sweeney, L. (2002). k-anonymity: A model for protecting
privacy. International Journal of Uncertainty, Fuzzi-
ness and Knowledge-Based Systems, 10(5):557–570.

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J.,
McCauley, M., Franklin, M. J., Shenker, S., and Sto-
ica, I. (2012). Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing.
In Proceedings of the 9th USENIX conference on Net-
worked Systems Design and Implementation, pages 2–
2. USENIX Association.

Zhang, X., Dou, W., Pei, J., Nepal, S., Yang, C., Liu, C.,
and Chen, J. (2015). Proximity-aware local-recoding
anonymization with mapreduce for scalable big data
privacy preservation in cloud. IEEE transactions on
computers, 64(8):2293–2307.

Zhang, X., Leckie, C., Dou, W., Chen, J., Kotagiri, R., and
Salcic, Z. (2016). Scalable local-recoding anonymiza-
tion using locality sensitive hashing for big data pri-
vacy preservation. In Proceedings of the 25th ACM In-
ternational on Conference on Information and Knowl-
edge Management, pages 1793–1802. ACM.

Zhang, X., Liu, C., Nepal, S., Yang, C., Dou, W., and
Chen, J. (2014a). A hybrid approach for scalable sub-
tree anonymization over big data using mapreduce on
cloud. Journal of Computer and System Sciences,
80(5):1008–1020.

Zhang, X., Yang, L. T., Liu, C., and Chen, J. (2014b). A
scalable two-phase top-down specialization approach
for data anonymization using mapreduce on cloud.
IEEE Transactions on Parallel and Distributed Sys-
tems, 25(2):363–373.

Anonylitics: From a Small Data to a Big Data Anonymization System for Analytical Projects

71

