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Abstract: Decision making in automated driving is highly specific to the environment and thus semantic segmentation
plays a key role in recognizing the objects in the environment around the car. Pixel level classification once
considered a challenging task which is now becoming mature to be productized in a car. However, semantic
annotation is time consuming and quite expensive. Synthetic datasets with domain adaptation techniques have
been used to alleviate the lack of large annotated datasets. In this work, we explore an alternate approach
of leveraging the annotations of other tasks to improve semantic segmentation. Recently, multi-task learning
became a popular paradigm in automated driving which demonstrates joint learning of multiple tasks improves
overall performance of each tasks. Motivated by this, we use auxiliary tasks like depth estimation to improve
the performance of semantic segmentation task. We propose adaptive task loss weighting techniques to address
scale issues in multi-task loss functions which become more crucial in auxiliary tasks. We experimented
on automotive datasets including SYNTHIA and KITTI and obtained 3% and 5% improvement in accuracy

respectively.

1 INTRODUCTION

Semantic image segmentation has witnessed tremen-
dous progress recently with deep learning. It provides
dense pixel-wise labeling of the image which leads
to scene understanding. Automated driving is one of
the main application areas where it is commonly used.
The level of maturity in this domain has rapidly grown
recently and the computational power of embedded
systems have increased as well to enable commercial
deployment. Currently, the main challenge is the cost
of constructing large datasets as pixel-wise annotation
is very labor intensive. It is also difficult to perform
corner case mining as it is a unified model to detect all
the objects in the scene. Thus there is a lot of research
to reduce the sample complexity of segmentation net-
works by incorporating domain knowledge and other
cues where-ever possible. One way to overcome this
is via using synthetic datasets and domain adaptation
techniques (Sankaranarayanan et al., 2018), another
way is to use multiple clues or annotations to learn
efficient representations for the task with limited or
expensive annotations (Liebel and Korner, 2018).

In this work, we explore the usage of auxiliary
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Figure 1: Semantic Segmentation of an automotive scene.

task learning to improve the accuracy of semantic seg-
mentation. We demonstrate the improvements in se-
mantic segmentation by inducing depth cues via auxi-
liary learning of depth estimation. The closest rela-
ted work is (Liebel and Korner, 2018) where auxili-
ary task was used to improve semantic segmentation
task using GTA game engine. Our work demonstra-
tes it for real and synthetic datasets using novel loss
functions. The contributions of this work include:

1. Construction of auxiliary task learning architec-
ture for semantic segmentation.

2. Novel loss function weighting strategy for one
main task and one auxiliary task.

3. Experimentation on two automotive datasets na-
mely KITTI and SYNTHIA.
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Figure 2: Illustration of several Auxiliary Visual Perception tasks in an Automated driving dataset KITTI. First Row shows
RGB and Semantic Segmentation, Second Row shows Dense Optical Flow and Depth, Third row shows Visual SLAM and

meta-data for steering angle, location and condition.

The rest of the paper is organized as follows:
Section 2 reviews the background in segmentation in
automated driving and learning using auxiliary tasks.
Section 3 details the construction of auxiliary task ar-
chitecture and proposed loss function weighting stra-
tegies. Section 4 discusses the experimental results
in KITTI and SYNTHIA. Finally, section 5 provides
concluding remarks.

2 BACKGROUND

2.1 Semantic Segmentation

A detailed survey of semantic segmentation for auto-
mated driving is presented in (Siam et al., 2017). We
briefly summarize the relevant parts focused on CNN
based methods. FCN (Long et al., 2015) is the first
CNN based end to end trained pixel level segmenta-
tion network. Segnet (Badrinarayanan et al., 2017)
introduced encoder decoder style semantic segmenta-
tion. U-net (Cicek et al., 2016) is also an encoder de-
coder network with dense skip connections between
the them. While these papers focus on architectures,
Deeplab (Chen et al., 2018a) and EffNet (Freeman
et al., 2018) focused on efficient convolutional layers
by using dilated and separable convolutions.
Annotation for semantic segmentation is a tedious
and expensive process. An average experienced anno-
tator takes anywhere around 10 to 20 minutes for one
image and it takes 3 iterations for correct annotations,
this process limit the availability of large scale accura-
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tely annotated datasets. Popular semantic segmenta-
tion automotive datasets like CamVid (Brostow et al.,
2008), Cityscapes (Cordts et al., 2016), KITTI (Gei-
ger et al., 2013) are relatively smaller when compared
to classification datasets like ImageNet (Deng et al.,
2009). Synthetic datasets like Synthia (Ros et al.,
2016), Virtual KITTI (Gaidon et al., 2016), Synsca-
pes (Wrenninge and Unger, 2018) offer larger annota-
ted synthetic data for semantic segmentation. Efforts
like Berkley Deep Drive (Xu et al., 2017), Mapillary
Vistas (Neuhold et al., 2017) and Toronto City (Wang
et al., 2017) have provided larger datasets to facilitate
training a deep learning model for segmentation.

2.2 Multi-task Learning

Multi-task learning (Kokkinos, 2017), (Chen et al.,
2018b), (Neven et al., 2017) has been gaining signifi-
cant popularity over the past few years as it has proven
to be very efficient for embedded deployment. Mul-
tiple tasks like object detection, semantic segmenta-
tion, depth estimation etc can be solved simultane-
ously using a single model. A typical multi-task lear-
ning framework consists of a shared encoder coupled
with multiple task dependent decoders. An encoder
extracts feature vectors from an input image after se-
ries of convolution and poling operations. These fe-
ature vectors are then processed by individual deco-
ders to solve different problems. (Teichmann et al.,
2018) is an example where three task specific de-
coders were used for scene classification, object de-
tection and road segmentation of an automotive scene.
The main advantages of multi-task learning are im-
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proved computational efficiency, regularization and
scalability. (Ruder, 2017) discusses other benefits and
applications of multi-task learning in various dom-
ains.

2.3 Auxiliary Task Learning

Learning a side or auxiliary task jointly during trai-
ning phase to enhance main task’s performance is
usually referred to auxiliary learning. This is simi-
lar to multi-task learning except the auxiliary task is
nonoperational during inference. This auxiliary task
is usually selected to have much larger annotated data
so that it acts a regularizer for main task. In (Liebel
and Korner, 2018) semantic segmentation is perfor-
med using auxiliary tasks like time, weather, etc. In
(Toshniwal et al., 2017), end2end speech recognition
training uses auxiliary task phoneme recognition for
initial stages. (Parthasarathy and Busso, 2018) uses
unsupervised aux tasks for audio based emotion re-
cognition. It is often believed that auxiliary tasks can
be used to focus attention on a specific parts of the in-
put. Predictions of road characteristics like markings
as an auxiliary task in (Caruana, 1997) to improve
main task for steering prediction is one instance of
such behaviour.

Figure 2 illustrates auxiliary tasks in a popular
automated driving dataset KITTIL. It contains various
dense output tasks like Dense optical flow, depth es-
timation and visual SLAM. It also contains meta-data
like steering angle, location and external condition.
These meta-data comes for free without any annota-
tion task. Depth could be obtained for free by making
use of Velodyne depth map, (Kumar et al., 2018) de-
monstrate training using sparse Velodyne supervsion.

2.4 Multi-task Loss

Modelling a multi-task loss function is a critical step
in multi-task training. An ideal loss function should
enable learning of multiple tasks with equal impor-
tance irrespective of loss magnitude, task complexity
etc. Manual tuning of task weights in a loss function
is a tedious process and it is prone to errors. Most of
the work in multi-task learning uses a linear combi-
nation of multiple task losses which is not effective.
(Kendall et al., 2018) propose an approach to learn
the optimal weights adaptively based on uncertainty
of prediction. The log likelihood of the proposed
joint probabilistic model shows that the task weights
are inversely proportional to the uncertainty. Mini-
mization of total loss w.r.t task uncertainties and los-
ses converges to an optimal loss weights distribution.
This enables independent tasks to learn at a similar

rate allowing each to influence on training. Howe-
ver, these task weights are adjusted at the beginning
of the training and are not adapted during the learning.
GradNorm (Chen et al., 2018c) proposes an adap-
tive task weighing approach by normalizing gradients
from each task. They also consider the rate of change
of loss to adjust task weights. (Liu et al., 2018) adds
a moving average of task weights obtained by met-
hod similar to GradNorm. (Guo et al., 2018) on other
hand proposes dynamic weight adjustments based on
task difficulty. As the difficulty of learning changes
over training time, the task weights are updated allo-
wing the model to prioritize difficult tasks. Modelling
multi-task loss as a multi-objective function was pro-
posed in (Zhang and Yeung, 2010), (Sener and Kol-
tun, 2018) and (Désidéri, 2009). A reinforcement le-
arning approach was used in (Liu, 2018) to minimize
the total loss while changing the loss weights.

3 METHODS

Semantic segmentation and depth estimation have
common feature representations. Joint learning of
these tasks have shown significant performance gains
in (Liu et al., 2018), (Eigen and Fergus, 2015), (Mou-
savian et al., 2016), (Jafari et al., 2017) and (Gurram
et al., 2018). Learning underlying representations be-
tween these tasks help the multi-task network allevi-
ate the confusion in predicting semantic boundaries
or depth estimation. Inspired by these papers, we pro-
pose a multi-task network with semantic segmenta-
tion as main task and depth estimation as an auxiliary
task. As accuracy of the auxiliary task is not impor-
tant, weighting its loss function appropriately is im-
portant. We also discuss in detail the proposed auxili-
ary learning network and how we overcame the multi-
task loss function challenges discussed in section 2.4.

3.1 Architecture Design

The proposed network takes input RGB image and
outputs semantic and depth maps together. Figure 3
shows two task specific decoders coupled to a shared
encoder to perform semantic segmentation and depth
estimation. The shared encoder is built using ResNet-
50 (He et al., 2016) by removing the fully connected
layers from the end. The encoded feature vectors
are now passed to two parallel stages for indepen-
dent task decoding. Semantic segmentation decoder
is constructed similar to FCN8 (Long et al., 2015) ar-
chitecture with transposed convolutions, up sampling
and skip connections. The final output is made up of
a softmax layer to output probabilistic scores for each
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Figure 3: AuxNet: Auxiliary Learning network with Segmentation as main task and Depth Estimation as auxiliary task.

semantic class. Depth estimation decoder is also con-
structed similar to segmentation decoder except the
final output is replaced with a regression layer to esti-
mate scalar depth.

3.2 Loss Function

In general, a multi-task loss function is expressed as
weighted combination of multiple task losses where
L;is loss and A; is associated weight for task i.

!
Lrotal = 27‘114 (1)
i=1

For the proposed 2-task architecture we express
loss as:

Lrotar = 7\‘SegLSeg + kDepthLDepth )

Ly, is semantic segmentation loss expressed as an
average of pixel wise cross-entropy for each predicted
label and ground truth label. Lp,;, is depth estima-
tion loss expressed as mean absolute error between
estimated depth and true depth for all pixels. To over-
come the significant scale difference between seman-
tic segmentation and depth estimation losses, we per-
form task weight balancing as proposed in Algorithm
1. Expressing multi-task loss function as product of
task losses, forces each task to optimize so that the
total loss reaches a minimal value. This ensures no
task is left in a stale mode while other tasks are ma-
king progress. By making an update after every batch
in an epoch, we dynamically change the loss weights.
We also add a moving average to the loss weights to

sn%)o]t%len ]thPrO Wg{ }étsl%%l Bglsn%af)rezs tg Pthe end
II}EII’IHC segglen atl es 1rgation.
every rith , We propose focu-

sed task weight balancmg to prioritize the main task’s
loss in auxiliary learning networks. We introduce an
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for epoch < 1 to n do
for batch < 1 to s do
7\-Seg = LDepth
7\'Depth = LSeg
Lrotal = LDepthLSeg + LSegLDepth
Lrotal =2 % LSegLDepth
end
end

additional term to increase the weight of main task.
This term could be a fixed value to scale up main task
weight or the magnitude of task loss.

Algorithm 2: Proposed Focused Task Weight Balancing for
Auxiliary Learning.
for epoch < 1 to n do
for batch < 1 to s do
7\-Seg = LSeg X LDepth
7\'Depth = LSeg
Lrotal = Seg LDepth + LSeg LDepth
L/Total = (LSeg + 1) X LSegLDepth
end
end
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Figure 4: Results on KITTI and SYNTHIA datasets.

4 RESULTS AND DISCUSSION

In this section, we present details about the experi-
mental setup used and discuss the observations on the
results obtained.

4.1 Experimental Setup

We implemented the auxiliary learning network as
discussed in section 3.1 to perform semantic segmen-
tation and depth estimation. We chose ResNet-50 as
the shared encoder which is pre-trained on ImageNet.
We used segmentation and depth estimation deco-
ders with random weight initialization. We performed
all our experiments on KITTI (Geiger et al., 2013)
semantic segmentation and SYNTHIA (Ros et al.,
2016) datasets. These datasets contain RGB image
data, ground truth semantic labels and depth data re-
presented as disparity values in 16-bit png format. We
re-sized all the input images to a size 224x384.

The loss function is expressed as detailed in
section 3.2. Categorical cross-entropy was used to
compute semantic segmentation loss and mean abso-
lute error is used to compute depth estimation loss.
We implemented four different auxiliary learning net-
works by changing the expression of loss function.
AuxNetyoo and AuxNet;ggp weighs segmentation loss
400 and 1000 times compared to depth estimation
loss. AuxNetrwg and AuxNetgrwg are built based on
Algorithms 1 and 2 respectively. These networks are
trained with ADAM (Kingma and Ba, 2014) optimi-
zer for 200 epochs. The best model for each network
was saved by monitoring the validation loss of seman-
tic segmentation task. Mean IoU and categorical IoU
were used for comparing the performance.

4.2 Results and Discussion

In Table 1, we compare the proposed auxiliary lear-
ning networks (AuxNet) against a simple semantic
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Table 1: Comparison Study : SegNet vs different auxiliary networks.

KITTI

Model Sky Building Road Sidewalk Fence Vegetation Pole Car Lane IoU

SegNet 46.79 87.32 89.05 60.69 22.96 85.99 - 74.04 - 74.52
AuxNetp 49.11 88.55 93.17 69.65 22.93 87.12 - 74.63 - 78.32
AuxNetjooo  49.17 89.81 90.77 64.16 14.77 86.52 - 71.40 - 76.58
AuxNettwp  49.73 91.10 92.30 70.55 18.64 86.01 - 77.32 - 78.64
AuxNetprwp  48.43 89.50 92.71 71.58 15.37 88.31 - 79.55 - 79.24

SYNTHIA

Model Sky Building Road Sidewalk Fence Vegetation Pole Car Lane IoU

SegNet 95.41 58.18 93.46 09.82 76.04 80.95 08.79 85.73 90.28 89.70
AuxNetyy 95.12 69.82 92.95 21.38 77.61 84.23 51.31 9042 91.20 91.44
AuxNetioog  95.41 59.57 96.83 28.65 81.23 82.48 56.43 88.93 94.19 92.60
AuxNettwp ~ 94.88 66.41 94.81 31.24 77.01 86.04 21.83 90.16 9447 91.67
AuxNetprwp  95.82 56.19 96.68 21.09 81.19 83.26 55.86 89.01 92.11 92.05

segmentation network (SegNet) constructed using an
encoder decoder combination. The main difference
between these two networks is the additional depth
estimation decoder. It is observed that auxiliary net-
works perform better than the baseline semantic seg-
mentation. It is evident that incorporating depth in-
formation improves the performance of segmentation
task. It is also observed that depth dependent catego-
ries like sky, sidewalk, pole and car have shown better
improvements than other categories due to availability
of depth cues.

Table 2: Comparison between SegNet, FuseNet and Aux-
Net in terms of performance and parameters.

KITTI
Model IToU Params
SegNet  74.52 23,672,264
FuseNet 80.99 47,259,976
AuxNet 79.24 23,676,142
SYNTHIA
Model IoU Params
SegNet  89.70 23,683,054
FuseNet 92.52 47,270,766
AuxNet 92.60 23,686,932

We compare the performances of SegNet, AuxNet
with FuseNet in Table 2. FuseNet is another seman-
tic segmentation network (FuseNet) that takes RGB
images and depth map as input. It is constructed in a
similar manner to the work in (Hazirbas et al., 2016).
We compare the mean IoU of each network and the
number of parameters needed to construct the net-
work. AuxNet required negligible increase in para-
meters while FuseNet almost needed twice the num-
ber of parameters compared to SegNet. It is observed
AuxNet can be chosen as a suitable low cost replace-
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ment to FuseNet as the needed depth information is
learned by shared encoder.

S CONCLUSION

Semantic segmentation is a critical task to enable fully
automated driving. It is also a complex task and requi-
res large amounts of annotated data which is expen-
sive. Large annotated datasets is currently the bott-
leneck for achieving high accuracy for deployment.
In this work, we look into an alternate mechanism
of using auxiliary tasks to alleviate the lack of large
datasets. We discuss how there are many auxiliary
tasks in automated driving which can be used to im-
prove accuracy. We implement a prototype and use
depth estimation as an auxiliary task and show 5% im-
provement on KITTI and 3% improvement on SYN-
THIA datasets. We also experimented with various
weight balancing strategies which is a crucial problem
to solve for enabling more auxiliary tasks. In future
work, we plan to augment more auxiliary tasks.
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