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Abstract: Milan Zelený, in a number of papers, proposed and developed specially structured LP model called De Novo 
Programming. This approach uses, in an essential way, a transformation of the original problem to continuous 
knapsack problem, and it concerns only models with capacity constraints and some implicit assumptions about 
the problem data. Here we extend this methodology to cases involving not only capacity constraints but also 
requirement and balance constraints. This extension is based on the methodology of Zelený and uses some 
principles of the STEM methods. We present an example of an adaptation of De Novo approach for models 
with both capacity, requirement and balance constraints. 

1 INTRODUCTION 

Optimization of systems means finding "best 
available" values of some criterion given a defined 
input and output of this system. Optimal design of 
systems means "best available" setting of proposed 
system. Process of system design requires 
understanding the content of three system approach 
phases – reality, model and metamodel. In the first 
phase the inquiring system is used for description and 
understanding the real problem. If we do not 
understand the reality, we cannot solve its problems 
properly. In the second phase, inquiring system for 
creating the model of problem solved is important. 
The proper selection of the model is important for 
obtaining the good results. In the third phases the 
inquiring system of abstract process of model 
creation, metamodel is studied (Gigch, 1991).  

Production system optimization, in business and 
marketing, is methodology for decision process, 
which leads to the optimal production mix under the 
defined criterion (criteria). Very often the 
mathematical programming, especially the linear 
optimization model is used to find the optimal 
solution. As Zelený (1986, 1990a, 1990b) 
emphasises, the already formulated model implicitly 

contains the optimal solution. Therefore, the decision 
is given by the set parameters of the model. The 
crucial problem is how to formulate this model 
correctly, respectively, how to choose the best input 
data? The question of the best design or formulation 
of the model can be seen as a metamodeling process. 

A model is the first abstraction of the real-world 
problem, and then a metamodel can be seen as the 
second abstraction, highlighting and optimizing the 
properties of the model itself. Metamodeling typically 
involves studying the input, output relationships, and 
then fitting right models to represent that behaviour. 
Metamodeling identifies the underlying modelling 
process and provides tools and techniques for model 
development that will allow the proper application to 
real problems. In this process, Zelený (1990a, 1990b) 
suggests De Novo programming for optimal design of 
production systems described by the linear 
optimization model with the constraints of the “” 
type. This approach is used in practical applications 
for instance by Babic and Pavic, (1996), Huang, 
Tzeng, (2007) and Zhang et al., 2009. Fiala (2011) 
describes the future development and possible 
applications of various modifications of De Novo 
programming.  

The main aim of this paper is to generalize the De 
Novo approach for finding of optimal design of 
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production system so that more types of constraints 
are possible, in particular “≥” and “=”.  

2 DE NOVO PROGRAMING 

To motivate the De Novo approach to optimal design 
of production systems, Zelený (1986, 1990a; 1990b, 
2005, 2010) starts with considering the standard 
linear programming model for allocating given 
resources to possible activities in order to achieve a 
given economic objective. If only one criterion is 
considered and the objective is to maximize it, then 
we have the problem 
 

ݔ்ܿ → ݔܣ  .s.t  ݔܽܯ  ܾ, ݔ  0 (1)
 

where ܣ is a real ሺ݉, ݊ሻ-matrix, ܾ is a real ݉-vector, 
and ܿ is a real ݊-vector. 

When multiple criteria are involved, we have to 
solve the multiple objective problem  

 

ݔܥ → ݔܣ  .s.t  ݔܽܯ  ܾ, ݔ  0 (2)
 

where ܥ is a real ሺݍ, ݊ሻ-matrix of coefficients of ݍ 
objective functions. 

An important question is what happens to the 
optimal solution if the resource allocation changes. 
Therefore, since the early days of linear 
programming, both practitioners and theorists have 
been interested in behaviour of solutions if 
coefficients of the problem vary. Such questions have 
led to the emergence of 
• Sensitivity analysis (investigation of changes in 

the individual coefficients which cause an optimal 
solution to become non-optimal); 

• Parametric programming (investigation of 
changes when some of the coefficients are 
functions of parameters); 

• Robust optimization (investigation of solutions 
under uncertainty that is represented as 
deterministic variability in the value of the 
parameters); 

• Inverse optimization (investigation of solutions 
with goal objective value when some of the 
coefficients are parameters); 

• De Novo programming (investigation of budget 
allocation to individual resources which results in 
optimal system structure) (Zelený, 1990a, 1990b, 
2005, 2010). 

 

The De Novo methodology (Zelený, 1990b) allows 
for changes in some of the input data, particularly, 
with changes in the components ܾ of the right-hand 
side vector ܾ of model (1) or (2). Clearly, such 

changes describe changes in resources allocation; 
modify the system design, and, therefore, the set of 
feasible solutions, which may change the optimal 
solution. In contrast to the sensitivity analysis and 
parametric programming, De Novo programming 
similarly as Robust or Inverse optimization requires 
some additional exogenous data. De Novo 
programming requires specification of cost of 
resources and level of available budget.  

According to Zelený (1990a, 1990b), if  denotes 
a given ݉-vector of unit cost of resources and ܤ 
denotes a given available budget, then De Novo 
approach gives to ܾ the freedom to vary freely in the 
region given by 

 

்ܾ  ܤ ܽ݊݀ ܾ  0. (3)
 

To indicate that the components of ܾ are now real 
variables we change the notation and use the letter ݕ 
instead of ܾ. Now it should be clear that instead 
considering the general linear programming problem 
(1), (2) resp., we deal with a special linear 
programming problem with one objective function  

 

ݔ்ܿ         →  ݔܽܯ
s.t.  ݔܣ െ ݕ  0 

ݕ்   ܤ
ݔ          0, ݕ  0. 

(4)

 

resp. with multiple objective functions 
 

ݔܥ      →  ݔܽܯ
s.t.  ݔܣ െ ݕ  0 

ݕ்   ܤ
ݔ           0, ݕ  0. 

(5)

 

To refer to the special structure of these problems, we 
say that we are considering (De Novo) optimal design 
problems with single, resp. multiple objective 
functions. 

Originally, the De Novo approach employs the 
fact that, for each feasible solution ሺݔ,  ሻ of problemݕ
 is also a feasible solution of the problem ݔ ,(4)
 

ݔ்ܿ              →  ݔܽܯ
s.t.  ܸݔ   ܤ

ݔ      0 
(6)

 

where ܸ stands for the ݊-vector ܣ்.  
This is a continuous linear knapsack problem 

whose optimal solution ݔො we can easily obtain by the 
following procedure, provided all components of c 
and V are positive: Let k be such that  

ܿ ⁄ݒ ൌ ሼܿଵݔܽ݉ ⁄ଵݒ , ܿଶ ⁄ଶݒ , … , ܿ ⁄ݒ ሽ. 

Then the components of the optimal solution ݔො are 
given by ݔො ൌ ܤ ⁄,ݒ , and ݔො ൌ 0 otherwise. Using ݔො, 
we set ݕො ൌ 	ܤ ො andݔܣ  ො. The resulting tripleݔܸ	=
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൫ݔො, ,ොݕ  ൯ is called the optimal system design for Deܤ
Novo problem (4). It is clear that, in this simple case 
with one objective function, we have	ܤ ൌ  .ܤ

For the decision making under multiple criteria, 
the De Novo approach first proceeds by solving ݍ 
single objective optimization problems (replacing ܿ 
by ܥ, ݇ ൌ 1,… ,  vector of optimal-ݍ be the	Let ܼ∗ .(ݍ
values of individual objective functions over the set 
of feasible solutions, which is the same as in problem 
(4). Then ܼ∗ is used to define an auxiliary problem, 
called the meta-optimization problem, which is 
formulated as the minimization problem (Zelený 
1990b) 
 

ݔܸ           →  ݊݅ܯ
s.t.  ݔܥ  ܼ∗ 

ݔ     0. 
(7)

 

Let x* be an optimal solution of this problem and 
define ݕ∗ and ܤ∗ by  ݕ∗ ൌ ∗ܤ and ∗ݔܣ ൌ  It is .∗ݔܸ
easy to see that ܤ∗   is the ∗ܤ and that the value ܤ
minimum budget for obtaining at least ܼ∗ by using 
 The model (7) is often (Zelený, 1986, 2005) .∗ݕ	and∗ݔ
defined using equations in the form 
 

ݔܸ           →  ݊݅ܯ
s.t.  ݔܥ ൌ ܼ∗ 

ݔ     0. 
(8)

 

The fraction ݎ∗ ൌ


∗
 is called the optimum path ratio 

(Shi (1995), Zelený (1990b)) for approaching ܼ∗ with 
respect to given budget ܤ, and the ordered triple 
ሺݔ∗ݎ∗; ;∗ݕ∗ݎ  ሻ is called the optimal system design∗ܼ∗ݎ
for the De Novo problem (5). 

Shi (1995) proposes some variations of Zelený’s 
approach, and introduces several (formally 
uncountable many) optimum path ratios for enforcing 
different budget levels of resources, which leads to 
alternative optimal system designs. However, it turns 
out that most of the proposed alternatives are not real 
alternatives. To see it clearly let us consider Shi's 
proposal in more detail. 

Unlike the Zelený procedure, which is based on 
ሺݔ∗; ;∗ݕ ܼ∗ሻ, Shi’s uses triple ሺݔ∗∗; ;∗∗ݕ ܼ∗∗ሻ. The 
solution ݔ∗∗ is defined by the non-zero components of 
the ݍ) ∗ݍ∗  ݍ  ݊) different single objective optimal 
solutions ݔො, ݇ ൌ 1,… ,  ,Without loss of generality .∗ݍ
for each solution ݔො we suppose ݔො

 ൌ ܤ ⁄ݒ , and 
ොݔ
 ൌ 0, otherwise. Hereupon Shi defines synthetic 

solution ݔ∗∗ ൌ ቀݔොଵ	ଵ , ොଶݔ
ଶ,… , ∗ොݔ

∗, 0,… ,0ቁ, and 

respective values ݕ∗∗ ൌ ∗∗ܼ and∗∗ݔܣ ൌ  Then ∗∗ݔܥ
ሺݔ∗∗; ;∗∗ݕ ܼ∗∗ሻ is used to define the following 
optimum-path ratios. 

 

ଵݎ ൌ
∗

∗∗
, ଶݎ ൌ



∗∗
, ሻߣଷሺݎ ൌ

∑ ఒೖ
ೖ∗

ೖసభ

∗∗
, 

ସݎ ൌ


∗
ሻߣହሺݎ			, ൌ

∑ ఒೖ
ೖ∗

ೖసభ

∗
,	

ሻߣሺݎ ൌ
∑ ఒೖ

ೖ∗

ೖసభ


, 

(9)

 

where ܤ∗∗ ൌ ሺܣሻܤ ,∗∗ݔ ൌ ሺܣሻݔො, 0  ߣ  1, 
and 	∑ ߣ


ୀଵ ൌ 1. 

However, simple computations show that all ܤ 
are equal to ܤ. Thus, for each ݎ ,ߣସ ൌ  ሻ are equalߣହሺݎ
(Zelený’s ratio). The following equalities also apply 
ଶݎ ൌ ସݎ ;ሻߣଷሺݎ ൌ  .ሻ=1ߣሺݎ ;ሻߣହሺݎ

The question of solvability of problem (4) by 
transforming it into a knapsack problem is mentioned 
only in Zelený (1990b). Almost none of other 
published articles mentions the prerequisites for using 
the classical De Novo Programming approach. Some 
of the usually tacitly assumed conditions are 
discussed in Vlach and Brožová, (2018). Let us 
noticed that: 
• The model construction supposes only the 

constraints of type ݔܣ  ܾ, so called the capacity 
constraints, which ensure compliance with 
resource capacity. 

• The transformation of the model (4) to the 
knapsack problem (6) requires the positivity of 
components of ܣ். The positivity of ܣ் is 
guaranteed if matrix ܣ is nonnegative and has no 
zero-column and all components of vector  are 
positive. 

• It is also necessary to find out whether the system 
of equations ݔܥ ൌ ܼ∗ or ݔܥ  ܼ∗ is solvable, as 
required in Zelený (1990b).  

• This approach can easily be extended to situations 
with upper bounds on the components of ݔ. 

3 DESIGN OPTIMIZATION OF 
GENERAL PRODUCTION 
SYSTEM 

The system design optimization using a linear 
optimization model should be based on several tasks: 

 The optimal choice of the type of constraints and 
their number; 

 The optimal choice of criterion or criteria; 
 The optimal choice of the model data values. 

The De Novo standard procedure supposes only 
constraints of type ்ܽݔ  ܾ, called the capacity 
constraints. The objective of these conditions is to 
maintain the consumption of resources below the 
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given limits. De Novo also supposes, that the unit cost 
of these resources is known and total cost of these 
resources is known, also. 

In the linear optimization models, often other 
types of constraints appear. For example, the 
constraints of type  ܽ ݔ் ൌ ܾ, so called the definitional 
or binding constraints, serve to meet a particular 
demand. Or, the so-called balance constraints, that is, 
the constraints of type ܽା்ݔା  ିݔ்ିܽ  ܵ െ ܮ ൌ 0, 
(ܽା are positive values and ܽି are negative values) 
assure the balance between production and 
consumption perhaps with a surplus ܵ or lack ܮ 
allowed. Moreover, the constraints of type ்ܽݔ  ܾ,	 
so called the requirements constraints, guarantee the 
required amount of production for sale. In practical 
applications, it is often necessary to assume the cost 
of such requirements (the cost of the contract signed).  

The typical multiple objective linear optimization 
model with the all types of mentioned constraints can 
be written as follows  

 

ݔெ௫ܥ                  →  ݔܽܯ
ݔெܥ                →  ݊݅ܯ

s.t.  ܣஸݔ  ܾஸ 
ݔୀܣ        ൌ ܾୀ 
ݔஹܣ        ܾஹ 

ݔ  0 

(10)

 

where ܣஸ, ܾஸ are coefficients from the capacity 
constraints, 

,ୀܣ ܾୀ are coefficients from constraints in the 
equational form,  

,ஹܣ ܾஹ are coefficients from the requirements 
constraints, and 

,ெ௫ܥ  .ெ are coefficients of objective functionsܥ

The (criteria) optimization means to find the optimal 
values of objective functions. Using De Novo 
approach, the system design optimization means to 
find the optimal values of capacities and requirements 
under the given budget. 

Consider now the values of all capacities and 
requirements (right hand side values) as variables and 
reformulate constraints into form of equations as 
follows: 
 capacity constraints with unknown capacities 

 

ݔஸܣ െ ஸݕ ൌ 0 (11)
 

 equational constraints with unknown definitional 
value 

 

ݔୀܣ െ ୀݕ ൌ 0 (12)
 

 requirements constraints with unknown 
requirements 

 

ݔஹܣ െ ஹݕ ൌ 0 (13)
 

 cost of necessary capacities and possible 
requirements has to be less than or equal to the 
given budget ܤ 

 

ஸݕஸ்  ୀݕୀ்  ஹݕஹ்  (14) ܤ
 

where ݕ ൌ ሺݕஸ, ,ୀݕ  ஹሻ are unknown values ofݕ
capacities and requirements, ஸ, ,ୀ  ஹ are the cost of
capacities and requirements and ܤ is the available 
budget.  

Optimal system design means optimal budget 
allocation and it means looking for optimal necessary 
capacities and possible requirements. If these values 
are known, the constraints of type (11), (12) and (13) 
can be seen as the equations (Zelený, 1986). Into this 
relaxed model, the budget constraint (14) has to be 
added. In order to ensure finding of a non-trivial 
solution, it is necessary to assume that the entire 
budget will be used, i.e. the condition (14) will be in 
the form of an equation. New model formulation will 
be 

 

ݔெ௫ܥ            →  ݔܽܯ
ݔெܥ           →  ݊݅ܯ

s.t.  ݔܣ െ ݕ ൌ 0 
ஸݕஸ்  ୀݕୀ்  ஹݕஹ் ൌ  ܤ
,ݔ ݕ  0

(15)

 

The feasible solution exists if ܣ் ് 0. The optimal 
solutions of model (15) are found individually for 
each objective function and these ideal values of all 
objective functions create the ideal vector  

 

ܼூ ൌ ൫ݖଵூ, … , ூݖ ൯ (16)
 

The problem of optimal system design is now to find 
the values of capacities and requirements under the 
minimal necessary budget that guarantee at least the 
ideal values of objective functions. The general 
formulation of this meta-optimum model should be 
(Zhuang and Hocine, 2018)  

 

ஸݕஸ்  ୀݕୀ்  ஹݕஹ் →  ݊݅ܯ
s.t.  ݔܣ െ ݕ ൌ 0 

ݔெ௫ܥ          ܼூ௫ 
ݔெܥ         ܼூ 

,ݔ   ݕ  0

(17)

 

After solving model (17), the minimal budget ܤ∗	for 
achieving at least ideal objective functions values, the 
optimal solution ሺݔ∗,  ሻ and the corresponding∗ݕ
values of objective functions ܼ∗ ൌ  .are received ∗ݔܥ
Generally, this minimal budget ܤ∗ can be either 
smaller or larger than available budget ܤ. The 
optimum path ratio for achieving the best 
performance ܼ for a given budget ܤ can be defined 

using ݎ ൌ


∗
. By using optimum path ratio ݎ, the 
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following data for optimal system design can be 
received: 

Optimal right-hand side values  ܾ ൌ  ∗ݕݎ
Optimal values of variables  ݔ ൌ  ∗ݔݎ
Optimal values of objective functions  ܼ ൌ  ∗ݔܥݎ
The optimal system design is done by equations  
 

ݔஸܣ ൌ ܾஸ ,ܣୀݔ ൌ ܾୀ, ܣஹݔ ൌ ܾஹ (18)
 

Unfortunately, this approach cannot be used for all 
problems because there is no guarantee that there 
exists a solution of the system of criterial constraints 
as inequalities 

 

ݔெ௫ܥ  ܼூ௫ 
ݔெܥ  ܼூ 

(19)
 

or a solution of the system of criterial constraints as 
equations 
 

ݔெ௫ܥ ൌ ܼூ௫ 
ݔெܥ ൌ ܼூ 

(20)
 

Therefore, some principles of the method STEM 
(Benayoun et al., 1971, Roostaee et al., 2012) for 
multiple objective optimization can be utilized. We 
suggest not to solve inequalities (19) or equations 
(20) but to find minimal weighted deviations ݀ from 
the goal values) 

 

ሺܼ
ூ௫ െ ܥ

௫ݔሻݓ ൌ ݀, ݇ ൌ 1,… ,  ݍ
൫ܥ

ݔ െ ܼ
ூ൯ݓ ൌ ݀, ݇ ൌ 1,… ,  ݍ

(21)

 

where the additional signs min or max mean the type 
of objective optimization. 

This idea generally could allow to decision-maker 
to change the goal values, which have to be reached. 

4 GENERALIZED DE NOVO 
PROGRAMMING 

To solve the general linear optimization model (10) 
to optimize the system design we suggest the 
Generalized De Novo optimization approach. This 
methodology of system design consists of the 
following four steps. 

Suppose now we look for a solution of the model 
(10) under the possibility to change the values of ܾ 
with ஸ, ,ୀ  ஹ as the cost of capacities and
requirements while respecting budget ܤ. 

1) Model Reformulation. 
To allow the change the values of ܾ, the model 
reformulation (15) with unknown variables ݕ 
represents unknown values of capacities and 
requirements while respecting budget ܤ will be used. 

2) Partial Optimization. 
Model (15) is now solved separately for the 
individual objective functions. Received solutions are 
filled into the decision matrix containing all values of 
individual objective functions for ݍ single optimal 
solutions of model (15)  
 

ܿଵ ܿଶ ⋯ ܿ

ଵݔ
௧

ଶݔ
௧

⋮
ݔ
௧

ۉ

ۈ
ۇ
ଵݖ
ଵ ଵݖ

ଶ ଵݖ


ଶݖ
ଵ ଶݖ

ଶ ଶݖ


⋱
ଵݖ ଶݖ ݖ


ی

ۋ
ۊ

 

(22)

 

Besides the vector of ideal values ܼூ	 (16) which 
contains the best values from each column in the 
decision matrix (22), the nadir vector is created  
 

ܼே ൌ ൫ݖଵே, … , ே൯ (23)ݖ
 

which contains the worst values of each objective 
function in the decision matrix (22). 

3) Metaoptimization. 
The solution with the minimal deviations from the 
ideal values of the criteria is found by solving the 
following single objective model. 
 

  ݀ →  ݊݅ܯ
s.t.  ݔܣ െ ݕ ൌ 0 

ሺܼ
ூ௫ െ ܥ

௫ݔሻݓ ൌ ݀, ݇ ൌ 1,… ,   ݍ
൫ܥ

ݔ െ ܼ
ூ൯ݓ ൌ ݀, ݇ ൌ 1,… ,  ݍ

,ݔ      ,ݕ ݀  0 

(24)

 

Weights ݓ are calculated based on the ideal and 
nadir values as normalized values 

 

ݓ ൌ
ݖ
ூ  ݖ

ே2
2

.
1

∑ భ
మሺ௭ೕ

ା௭ೕ
ಿሻ


ୀଵ

 (25)

 

Such values of weights allow comparisons of the 
deviations from ideal values of objective functions 
without affecting their size.  

The solution of this problem is ሺݔ∗,  ሻ and∗ݕ
achieved values of objective functions ܼ∗ ൌ  ∗ݔܥ

Remarks: Similarly as in the STEP method, the 
decision maker could change the required goal values 
and repeat the metamodel optimization. 

4) Metametaoptimization. 
Minimal necessary budget is found by solving the 
following optimization model with one objective 
function 
 

ஸݕஸ்  ୀݕୀ்  ஹݕஹ் →  				݊݅ܯ
s.t.  ݔܣ െ ݕ ൌ 0 
ݔெ௫ܥ        ൌ ܼ∗ 
ݔெܥ       ൌ ܼ∗ 

,ݔ ݕ  0

(26)
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Solution of the model (26) exists, because the solution 
of the model (24) exists.  

Let the solution of problem (26) is ሺݔ∗∗,  ,ሻ∗∗ݕ
values of objective functions ܼ∗∗ ൌ ܼ∗ and minimal 
necessary budget is ܤ∗∗. 

5) Solution – Optimal System Design. 

By using optimum-path ratio ݎ ൌ


∗∗
, the following 

solution of the optimal system design is received: 
Optimal right hand side values  ܾ ൌ  ∗∗ݕݎ
Optimal values of variables  ݔ ൌ  ∗∗ݔݎ
Optimal values of objective functions  ܼ ൌ  ∗∗ݔܥݎ
The optimal system design 
 

ݔஸܣ ൌ ܾஸ ,ܣୀݔ ൌ ܾୀ, ܣஹݔ ൌ ܾஹ (27)
 

Remark: It is possible to suppose that not all resources 
or requirements as RHS values (or corresponding 
constraints) are subject of optimization of system 
design. Such constraints of model (9) are not 
transformed for system design optimization. In such 
case the model (15) would have the following form 

 

ݔெ௫ܥ             →  ݔܽܯ
ݔெܥ            →  ݊݅ܯ

s.t.  ܣଵݔ െ ݕ ൌ 0 
ଶܣ   

ஸݔ  ܾஸ 
ଶܣ				

ୀݔ ൌ ܾୀ 
ଶܣ   

ஹݔ  ܾஹ 
ஸݕஸ்  ୀݕୀ்  ஹݕஹ் ൌ  ܤ
,ݔ ݕ  0

(28)

 

where ܣଵ consists of the coefficients from the 
constraints for which the optimal RHS have to be find 
and ܣଶ consists of the coefficients from the 
constraints with fixed RHS values ܾ. 

The steps of the suggested methodology then are 
used accordingly. However, the model (28) may not 
have a feasible solution with the budget constraints in 
equation or inequality form. 

5 EXAMPLE 

The question of this problem is how many pieces of 
three products have to be produced to fulfil the 
contracts and minimized the labour cost and 
maximized the profit under the production system 
constraints. Problem with three products P1, P2, and 
P3, two capacity constraints R1 and R2 (limited 
recourses), three requirements constraints C1, C2 and 
C3 (contracts with minimal supply), and two criteria 
(minimization of the labour cost, maximization of the 
profit) will be solved. The initial formulation of the 

model is in Table 1 together with the price of the 
resources and contracts and the total budget.  

Table 1: Model of the three products problem. 

 P1 P2 P3  RHS Price 
Total 

budget
R1 2 0 1 ≤ 25 5 206
R2 1 1 1 ≤ 20 3 
C1 1 ≥ 10 1 
C2 1 ≥ 3 1 
C3 1 ≥ 4 2 

L. costs 1 1 8 MIN  
Profit 2 3 6 MAX  
 
Ideal values of objective functions of this model 

are in the vector  ܼ ൌ ሺ65; 45ሻ. 

1) Model Reformulation. 
The model is reformulated using 5 unknown variables 
,ଵݕ … ,  ହ representing unknow values of capacitiesݕ
and requirements while respecting budget ܤ. The new 
formulation of model is in Table 2. 

Table 2: Reformulated model. 

P1 P2 P3 yR1 yR2 yC1 yC2 yC3  

R1 2 0 1 -1 0 0 0 0 = 0
R2 1 1 1 0 -1 0 0 0 = 0
C1 1 0 0 0 0 -1 0 0 = 0
C2 0 1 0 0 0 0 -1 0 = 0
C3 0 0 1 0 0 0 0 -1 = 0

Budget 0 0 0 5 3 1 1 2 = 206    
L. cost 1 1 8 0 0 0 0 0  MIN
Profit 2 3 6 0 0 0 0 0  MAX

 

2) Partial Optimization. 
Ideal solutions are found solving two single objective 
optimization models received by reformulation of the 
initial model according to the (15).  

The solution of minimization of the labour cost is 
to produce only 14.71 pcs of the product P1 with 
necessary 29.43 units of resource 1 and 14.71 units of 
resource 2. This system design allows to closed only 
the first contract. The minimal labour cost is 14.71 
thous. CZK and maximal profit is 29.43 thous. CZK. 

The solution of maximization of the profit is to 
produce only 51.5 pcs of the product P2 with 
necessary 51.5 units of resource 2. This system design 
allows to closed only the second contract. The 
minimal labour cost is 154.5 thous. CZK and 
maximal profit is 51.5 thous. CZK. 

Ideal values of objective functions under budget ܤ 
are in the vector  ܼூௗ ൌ ሺ14.71; 154.5ሻ. 

3) Metaoptimization. 
Based on the ideal and nadir objective function values 
the following weights are used for calculation of 
metaoptimization model (Table 3) 
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Table 3: Normalized weights. 

 Cost Profit
ܼூ 14.71 154.5
ܼே 51.5 29.43

Average 33.11 91.96
Normalized weights 0.73 0.27 

 

The formulation of the metaoptimization model 
minimizing the deviation of ideal values is in Table 4.  

Table 4: Formulation and solution of metaoptimization 
model. 

 P1 P2 P3 yR1 yR2 yC1 yC2 yC3 ݀ 
R1 2 0 1 -1 0 0 0 0 0 = 0
R2 1 1 1 0 -1 0 0 0 0 = 0
C1 1 0 0 0 0 -1 0 0 0 = 0
C2 0 1 0 0 0 0 -1 0 0 = 0
C3 0 0 1 0 0 0 0 -1 0 = 0

L. cost 1 1 8 0 0 0 0 0 -1.4 = 14.7
Profit 2 3 6 0 0 0 0 0 3.8 = 154.5
Dev. 0 0 0 0 0 0 0 0 1 MIN

 

Its optimal solution is to produce only 33.82 pcs 
of the product P2 with necessary 33.8 units of 
resource 2. This system design allows to closed only 
the second contract. The minimal labour cost is 33.82 
thous. CZK and maximal profit is 101.44 thous. CZK. 
The vector ܼ∗ is ሺ33.82; 101.44ሻ 

4) Metametaoptimization. 
With the best obtainable values of both criteria is 
solved the metametamodel to find the minimal 
necessary budget. Similarly, as in the STEP method, 
the decision maker could change these values and 
repeat the metamodel optimization from the previous 
step. Now the minimal budget is calculated with 
objective functions values of the optimal solution of 
metaoptimization model (Table 5). 

Table 5: Metametaoptimization model. 

 P1 P2 P3 yR1 yR2 yC1 yC2 yC3 
R1 2 0 1 -1 0 0 0 0 = 0
R2 1 1 1 0 -1 0 0 0 = 0
C1 1 0 0 0 0 -1 0 0 = 0
C2 0 1 0 0 0 0 -1 0 = 0
C3 0 0 1 0 0 0 0 -1 = 0

L. cost 1 1 8 0 0 0 0 0 ≤ 33.8
Profit 2 3 6 0 0 0 0 0 ≥ 101.4       

Budget 0 0 0 5 3 1 1 2 MIN 
 

The optimal solution of metametaoptimization 
model is equal to the solution of the previous 
metaoptimization model, so we receive ܼ∗∗ ൌ ܼ∗ ൌ
ሺ33.82; 101.44ሻ. The minimal necessary budget ܤ is 
135.26 thous. CZK, what is less then we suppose to 
invest to production. So, it is possible to extend the 
production process. 

4) Optimal System Design. 
Optimal production structure under optimal design of 
production system and available budget allows 
expansion according to the optimal path ratio which 

is equal to ݎ ൌ


∗
ൌ

ଶ

ଵଷହ.ଶ
ൌ 	1,523. 

The optimal system design (Table 6) allows 
producing 51.5 pcs of the product P2 with necessary 
51.5 units of resource 2. This system design allows to 
closed only the second contract on 51.5 pcs of 
products of products sold. The minimal labour cost is 
51.5 thous. CZK and maximal profit is 154.5 thous. 
CZK; 	ܼݎ∗∗ ൌ ሺ51.5; 154.5ሻ. This means that there is 
no need for resource 1 but higher consumption of 
resource 2, e. g. 51.5 units. Also, there is only one 
optimal contract, the contract C2 with 51.5 pcs of 
product 2.  

Table 6: Optimal system design. 

P1 P2 P3  

0 51.5 0 Solution 
L. costs 1 1 8 51.5 
Revenue 2 3 6 154.5 

  Input data
Resource R1 2 0 1 0 25
Resource R2 1 1 1 51.5 20
Contracts C1 1 0 0 0 10
Contracts C2 0 1 0 51.5 3
Contracts C3 0 0 1 0 4

 

In the figure 1 the objective functions values of 
selected models are shown. 
 

 

Figure 1: Values of labour costs and profit for selected 
solutions of three products problem.  

It is possible to say, that the optimal system design 
has resulted in significantly higher profit but with the 
highest labour cost. Optimal system design results in 
necessity to product only one type of product and 
allocate the whole budget for the second resource and 
the contract for the optimal type of products. 
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6 CONCLUSIONS 

In this paper, we continued our previous discussion of 
De Novo Programming; see Vlach and Brožová 
(2018). We briefly recalled the original approach of 
Zelený, rectified some oversights in the alternative 
proposal by Shi. Then we presented adaptation of De 
Novo methodology for models with capacity, 
requirement, and balance constraints, where the 
transformation to continuous knapsack problem is not 
possible.  

Our proposal for Generalized De Novo 
Programing is a way to optimize the system design in 
more general settings. In particular, it is possible to 
deal with more types of constraints and more types of 
criteria. 
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