
SQL for Stored and Inherited Relations

Witold Litwin*
Université Paris-Dauphine PSL Pl. de Mal. de Lattre, Paris, France

Keywords: SQL Databases, Information Systems, Non-procedural Data Definition and Manipulation, Logical
Navigation

Abstract: A stored and inherited relation (SIR) is a stored relation (SR) extended with inherited attributes (IAs)
calculated as in a view. Without affecting the normal form of the SR, IAs can make queries free of logical
navigation or of value expressions. A view of the SR can do the same. The virtual (dynamic, computed…)
attributes (VAs) possibly extending SRs at major DBSs, can do as well for value expressions defining them.
VAs are less procedural to declare than any alternate view. Likewise, altering any attribute of an SR with
VAs leading to view altering otherwise is less procedural. We propose extensions to SQL generalizing the
latter two properties to SIRs. In particular, one may define IAs through value expressions not supported as
VAs at present. Also, to define an IA instead of a VA is at most as procedural. We motivate our proposals
through the "biblical" Supplier-Part DB. We postulate SIRs standard on SQL DBSs.

1 INTRODUCTION

Universally applied Codd’s (relational) model for a
Database (Management) System (DBS), (Codd,
1969) & (Codd, 1970), proposed two constructs: a
stored relation (SR) and a view. An SR, often called
also base table, has stored attributes, (SAs), only,
often called columns. Clients or applications provide
the stored tuples. The SR definition (scheme) does
not allow calculating any of these. A view has only
the inherited attributes (IRs). These are basically
only calculated on-the-fly from SRs or from other
views through relational or value expressions in the
view scheme. In 1992, we proposed an additional
construct. It was an SR with IAs added to, (Litwin,
1992). Examples showed it attractive. No further
work followed however. *

We now refine our proposal for SQL DBs. We
call our construct Stored and Inherited Relation,
(SIR). For every SIR R, we define every SA as usual
for an SR. We calculate IAs as in a view. We refer
to the calculus scheme within SIR scheme as to
Inheritance Expression (IE). For every SIR R, a
single Create Table R defines both the SAs and the
IE. As we will show, the IAs of a SIR may then
model properties inconvenient to declare as SAs.
Supposing indeed the SR formed by all the SAs of a

* https://www.lamsade.dauphine.fr/~litwin/witold.html

SIR normalized, declaring an SA instead of an IA
could adversely impact the normal form or could
imply impractically frequent updates.

It will appear next that an SQL query addressing
SAs and IAs in a SIR, may avoid the logical
navigation. That one is otherwise necessary for
every equivalent query to the DB scheme with
normalized SRs only. We recall that such navigation
occurs whenever a query refers to several relations,
usually through a relational expression with joins
over foreign keys, defined in the query. Also, IAs in
a SIR may avoid selected value expressions to
queries. Altogether, it will appear that an SQL query
to a DB with SIRs should end up usually less
procedural (simpler, more usable…) than the
equivalent to a DB with normalized SRs only, by the
basic measure of fewer characters per query, without
all unnecessary spaces. We recall that clients usually
prefer less procedural statements and find joins
dreadful, the outer ones especially, (Date, 1991),
(Jajodia, 1990).

On the other hand, it will appear also that for
every SIR R, there is always at least one specific
view R that we call equivalent to SIR R. Every such
view R defines mathematically the same SQL
relation as SIR R. Also, for every SA in SIR R with
unambiguous proper name, view R has an IA
bearing the same proper name at least. We recall that
"mathematically the same” means abstraction of the
implementation. Whether a value is stored in SIR R

Litwin, W.
SQL for Stored and Inherited Relations.
DOI: 10.5220/0007676700370048
In Proceedings of the 21st International Conference on Enterprise Information Systems (ICEIS 2019), pages 37-48
ISBN: 978-989-758-372-8
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

37

or calculated in view R becomes irrelevant. For SQL
relations, it also means that for the attributes of view
R the same order as in SIR R, unlike perhaps for
equal mathematical relations, (Date, 2004) . At least
for every SQL query to SIR R where the
unambiguous proper names above are not prefixed,
every equivalent view R provides for the same
outcome as SIR R. Actually, one knows such
prefixing useless in SQL queries, i.e., the outcome is
independent of.

Every equivalent view R provides then in
particular also for every query to SIR R free of the
logical navigation or of selected value expressions.
That property, de facto independent of SIRs, makes
equivalent views, without being called so, the basic
“escape routes” since decades for clients tired by the
navigation or value expressions within the
equivalent queries to normalized SRs only, i.e.,
intended for the same outcome. An equivalent view
may in particular be universal, providing all the
attributes and, possibly, all the values of the DB in
one relation, (Maier, 1984).

We propose extensions to Create Table
accommodating SIRs. Likewise, we propose
extensions to Alter Table. We show that for every
SIR R, IE in Create Table R can be less procedural
than Create View R of any equivalent view R. SIR R
expanding with IAs some SR, say R_, provides in
this way for the simpler queries to R_ at lower
procedural data definition cost. Likewise, it will
appear that for every SIR R and every view R,
altering SIR R can be less procedural. We show also
how to implement SIRs on popular DBSs, with
negligible storage and processing overhead.

In particular, we show that some popular DBSs
provide unknowingly already for limited SIRs for
decades. These are SRs possibly carrying also so-
called virtual attributes (VAs) or computed,
generated… columns. We recall that one declares a
VA as a named value expression in Create Table.
Queries avoid the expression by simply referencing
the name. The advantage is that for any number of
VAs in Create Table, their declarations are
altogether always less procedural than any Create
View of an equivalent view. The advantage extends
to all the other SQL DDL statements concerning
VAs.

Our clauses for SQL aim at the same goal. But
the declarations generalize the gain to every SIR.
More specifically, we gain also for value
expressions defining IAs that cannot be VAs.
Finally, we gain for every SIR with, in addition or
instead, IAs avoiding the logical navigation, as
already discussed.

Next section defines SIRs for SQL DBs. We
illustrate our proposals with the "biblical" Supplier-
Parts DB. Section 3 discusses the implementation of
SIRs over a popular DBS. We show the storage and
processing overhead negligible. Section 4 discusses
the related work. Section 5 concludes that SIRs
should be standard on SQL DBSs and proposes
future work.

2 STORED AND INHERITED
RELATIONS

2.1 The Concept

We qualify the SR expanded with IAs of base of
SIR R. Each IA extends every base tuple with a
calculated value or is null. The latter occurs when
the calculus through IE does not provide a value. As
said already, we suppose IA values basically
immaterial. Finally, an easy to see property of every
SIR R is that the primary key of the base is also a
key of (entire) R. For practical reasons we consider
the former as the primary key of R as well.

For every SIR R, its base has its proper default
proper name that is simply R_ below. As every
relation name, every default name should be unique
in the DB. Next, every SIR considered below is an
SQL relation. Hence, the order of attributes matters
and DBA may intentionally inter-mix IAs and SAs.
Furthermore, we suppose every SQL naming rule
applying to SIRs. For every SIR R in particular, one
may qualify every SA or IA A as R.A. One may
qualify further every SA A of every SIR R as R_.A.
That is the default we motivate soon and more in
(Litwin, 2016a).

Below, we may refer to any SQL dialect, DB or
DBS providing for SIRs as SIR SQL, SIR DB or
SIR DBS. In practice, we mean by SIR SQL a
backward compatibility with some popular SQL
dialect, e.g., MySQL dialect. We refer to the latter as
to the kernel (SQL or dialect). Every SIR SQL
should preserve the SQL syntax and every capability
of the kernel. Especially, every kernel's statement
should continue to apply to any SR or view in a SIR
DB.

2.2 Creating a SIR

We create every SIR through kernel's Create Table
SQL DDL statement expanded with the IE. We base
the design of that statement on a specific SQL view.
Given some SR R, we call that view conceptually

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

38

expanded view (of) R and denote as C-view R or
view R simply. As the name suggests, every C-view
R presents every tuple of SR R expanded with some
or all attributes and values that conceptually should
be in SR R. Typical reason for not being there
nonetheless for some, is that each would create some
notorious normalization anomaly. As known, every
such attribute may then be within another relation.
Alternatively, one may define it only in a query
through a named value expression over SAs in SR R
or over other IAs referred to or defined in the query.

It is well known that for every relation, say F,
with attributes of C-view R missing in SR R because
of the normalization, a key of F in R represents
conceptually all the attributes of F. We recall that
such keys, perhaps composed, are usually qualified
of foreign. C-view R inherits first every attribute and
tuple of R, including thus every foreign key. Next,
every C-view R tuple has in principle every IA value
that every foreign key represents, except for the
referenced key. In practice, DBA can restrict the
inherited set, e.g., because of security concerns.
Each IA represented through foreign key in C-view
R inherits every value through some relational
expression over F. Every foreign key in C-view R
inherits in contrast all its values from SR R only. A
foreign key may thus have a value in C-view R that
is not in F. Every IA otherwise inherited from F is
null in every tuple with such a value.

As already hinted to, C-view R may also or even
only, have IAs with values inherited through value
expressions from SR R itself or may have IAs
inheriting through a value expression from such IAs
and so on. Finally, C-view R may have conceptual
attributes inherited through value expressions and
out of SR R not because of anomalies, but since they
would require impractically frequent updates or
would eat storage relatively uselessly.

Technically, to declare C-view R, one has to first
rename SR R. No relations may share a name indeed
in an SQL DB. We suppose R_ as default new name
for SR R. Create View R for C-view R has then to
be so that for every tuple t' of SR R_, there is exactly
one tuple t of view R with t' as sub-tuple. For every
t, Create View R should furthermore value or make
null every other IA as above discussed. Next, view R
should not have other tuples.

The known practical result is that query Q to C-
view R may avoid the logical navigation or value
expressions necessary for an equivalent query Q' to
SR R and to any of attributes in some F or requiring
a value expression in Q' over some attributes of SR
R. The known result is that Q ends up less
procedural than Q'. We will illustrate it with

examples soon. Actually, also it is also known that
lesser procedurality characterizes in this way most of
practical queries. That is why, without being named
so, C-views are in fact already among those already
discussed views that simplify queries for decades.

We intend SIR R as a single construct merging
C-view R and SR R. More precisely, we aim on SIR
equivalent to C-view R with the only difference that
SIR R has R_ as the base, i.e., that every attribute
R_.A of view R is materialized back in SIR R into
SA A of SR R. Accordingly, we define SIR R
through Create Table R of SR R, expanded with the
scheme of every IA A in C-view R, with full source
name other than R_.A. The order of SAs and of IAs
in SIR R is that of all the IAs in C-view R. The
whole Create Table R consists accordingly of the R_
scheme and of the IE. It may appear as designed
through the following steps.

Start with: 'Create Table R As ('. Continue with
the intended C-view R scheme, i.e., the SQL
expression that would follow Select keyword in
Create View R. If the scheme includes R_.* term,
expand it to every attribute of R_, referred to by its
proper name. Also, when relevant, refine the
remaining part of C-view R in Create Table R to its
implicit form we discuss in next section. Next,
expand every R_.A with its data type etc. intended
for Create Table R for SR R. Finally, append every
table option, declaring thus optional multi-attribute
primary key, indexing, partitioning…

Observe that the result conforms to our generic
requirement on the primary key of every SIR R.
Also, observe that our rule for default source naming
of SAs in SIR R, keeps all the clauses From…
within view R referring there to R_, valid for SIR R
as well. Instead of referring to stand-alone SR R_,
i.e., defined by dedicated Create Table R, they
simply refer to the base of SIR R, equal to the
former as an SQL relation and with respect to the
full attribute naming.

For every SIR R, it follows from all the above
that IE is C-view R scheme with Select list restricted
to only and every IA A not with full source name
R_.A in view R. If not refined as we spoke about, IE
contains that sub-list (without Select keyword) and
the From… clauses of C-view. If C-view R names
every IA that is an SA in SIR R or declares all these
as R_.*, then IE is a strict sub-list of the Select list in
view R, followed by the From… clauses of the view.
Recall also that for every SIR R, the scheme of its
base R_ has the procedurality of that of SR R. As we
already hinted to and will illustrate with examples, it
follows that every IE of SIR R, has strictly lower
procedurality than Create View R for C-view R.

SQL for Stored and Inherited Relations

39

SIR R becomes consequently more advantageous
than SR R and C-view R for the avoidance of the
logical navigation or of selected value expressions.

In what follows, we qualify of explicit, every IE
with the above sub-list. We denote it as E or ER for
SIR R. Observe that while these IAs are always
contiguous in ER, they may be separated by SAs in
Create Table R, we recall.

Ex. 1. Recall the ‘biblical’ Supplier-Part DB,
often named S-P in short, modelling some suppliers,
parts and supplies. Every supply contains some
quantity of a part shipped by some supplier. A
supplier may supply nothing for the time being.
Likewise, a part may be not supplied. S-P motivated
the original proposal of the relational model, [C69],
[C70]. Variants settled the relational (conceptual
schema) design rules of SRV-model, based on NFs
as known. Through these rules, S-P molded about
every practical DB. The variant we pick up below
seems best known, (Date, 2004) . We refer to it as S-
P1. We restate S-P1 into variants with different
SIRs. We call S-P2 the variant that follows.

S-P1 has three well-known relations: S (S#,
SNAME, STATUS, CITY), P (P#, PNAME,
COLOR, WEIGHT, CITY), SP (S#, P#, QTY).
Figure 1 shows the original sample data type for
every attribute. Actually, the figure shows S-P2 DB.
S-P1.S and P are the same SRs as in S-P2. For S-
P1.SP, data types are these of S-P2.SP at the figure.
The latter is however SIR SP that we present it in
detail soon. All the SA definitions at the figure skip
some practical details, e.g., the data length. We
underline the primary key, as usual.

Figure 2 shows the original sample data values
for S-P1. For S-P1.SP, these are among those of SIR
SP there, according to the attribute names. For the
relational algebra, considered by the original S-P1
proposal, the order of attributes in a relation, hence
the left-to-right one at the figures does not matter.
As known, it does for SQL, e.g., for Select * From
SP. The S-P1 scheme is the optimal one, in the sense
of having the minimal number of SRs free of
normalization anomalies, (Date, 2012) .

The notorious drawback of S-P1 is that practical
Select queries to SP usually need values from S or P
as well. E.g., most actual clients searching for a
supply need the supplier or part name(s). These are
evidently conceptual attributes of every supply.
However they are not in SP, since the notorious
normalization anomaly would make SP losing its
BCNF form (in fact, SP is in 5Th form even). Every
related query has then to logically navigate over SP
and S or P or both through inter-relational joins
SP.S# = S.S# or SP.P# = P.P#. One knows well that

clients usually hate the logical navigation, feeling it
making the queries more procedural than they
should be, (Maier, 1984). The well-know “escape
route” for S-P1 is adding the (universal) view,
named view SP, providing the image of SP with
every tuple preserved bijectively and expanded with
every matching value of every attribute of S and of P
or with nulls otherwise. Such a view avoids the
logical navigation to more queries than any other
view of SP with fewer attributes or values. To create
view SP, one has to rename first SR SP, to, say, SP_,
since every relation in an SQL DB must have a
different name. Then, likely the least procedural
view SP declaration in SQL is as follows, provided
the removal of all the spaces added for easier
readability only, e.g., after each comma:
(1) Create View SP As (Select SP_.*,
SNAME, STATUS, S.CITY, PNAME, COLOR,
WEIGHT, P.CITY From (SP_ Left Join S On
SP_.S# = S.S#) Left Join P On SP_.P# =
P.P#);

Unlike for the original SR SP, the SQL
formulation of a typical query to SP, such as name
of the supplier, quantity supplied and name of the
part for every supply with supplier Id ‘S1’, does not
need the logical navigation. The query becomes
notably less procedural, as one may easily verify.

To have a DB, say S-P2, with S, P and SIR SP,
instead of S-P1 with S, P and SP renamed to SP_,
and view SP defined by (1), one should figure out
first whether the view qualifies as C-view SP. This
is the case. First, view SP inherits bijectively every
tuple of SP_ as exactly one sub-tuple and has no
other tuples. In particular, (SP_.S#, SP_.P#) is the
primary key of SP_ and (SP.S#, SP.P#) is the one of
view SP. The rationale for all these properties is that
S.S# and P.P# are also the keys for S and P,
respectively. Accordingly, for the first tuple of SP_
at Figure 2 for instance, i.e., with SAs S# = S1 and
P# = P1, the join clauses match only one source
tuple in S and only one in P. Only a single tuple in
view SP results from that is the first one at the
figure. Similarly for SAs S# = S1 and P# = P2 etc.
View SP qualifying thus as C-view SP, we can
define SIR SP as above discussed through the
following Create Table SP:
(2) Create Table SP (S# Char, P# Char,
Qty Int, SNAME, STATUS, S.CITY, PNAME,
COLOR, WEIGHT, P.CITY From (SP_ Left
Join S On SP_.S# = S.S#) Left Join P On
SP_.P# = P.P#), Primary Key (S#, P#));

Figure 1 shows S-P2 scheme. Figure 2 shows the
content of SIR SP that would result for the sample
data of S-P1. Every SA is in plain text and every IA
in Italics. We suppose the SAs schemes in S-P2.SP

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

40

these of S-P1.SP, hence of SP_ for C-view SP.
These SAs and their tuples form also the base SP_ of
S-P2.SP. These SRs are equal, hence SP_ preserves
the normal form of S-P2.SP. The (underlined) key of
S-P2.SP is also that of S-P1.SP. Its definition in
Create Table SP in (2) above follows entire ESP, as
required for every Create Table R for SIR R. ESP is
the string: ‘SNAME…P.P#’ that happens to be
contiguous one. This string is also a (strict) substring
in (1) hence in C-view SP, as well as is defining the
SQL projection there on the enumerated IAs. These
are also all and only IAs in (2). As only a substring,
it is strictly less procedural than (1).

More precisely, assuming all spacing
unnecessary for SQL syntax in (1) removed, its
procedurality, say p1, is p1 = 144 (characters). ESP
saves then the string ‘Create View SP As (Select
SP_.*,’. This reduces the procedurality to p2 = 112.
Likely the simplest measure of procedurality gain
(reduction) is p1/p2. ESP appears then 1.29 times less
procedural than (1). Alternate measures are also
possible, (Litwin, 2016a.).

The remaining part of (2) is simply Create Table
SP for S-P1.SP that (2) replaces in S-P2. Thus, there
is neither procedurality loss nor gain on SA schemes
in (2), with respect to SAs schemes for (1).

In both statements (1) and (2) above, the already
reminded SQL ordering makes all the SAs preceding
all the IAs. It is our subjective choice. The rationale
is that keeping the IAs inheriting from SP_ together,
minimizes, in SQL, the procedurality of view SP,
through SP_.*. Note nevertheless that many consider
‘*’ less safe for Create View than the list of
attributes '*' represents. The latter choice would
make ESP reducing procedurality even more, 1.44
times in fact. The same would occur if an IA
dispersed the SAs of SP within Create Table SP and
in C-view SP thus. The list of IAs (contiguous) in
ESP would still consist of the same IAs, but now non-
contiguous in Create Table SP. The same From
clause of (2) would follow both lists. Finally, for S-
P2, the query Select * From SP; would output the
attribute order at Figure 1 for the tuples of Figure 2.

Observe also that in (1), every prefix SP_ in joins
refers to SR SP_ that is one of the source relations of
view SP. In (2) in contrast, it refers to SIR SP base
SP_, hence to a part of SIR SP itself. We qualify
below every join in some SIR R referring similarly
to a part of R, of recursive. Actually, a recursive join
may be a θ -join, as one may easily find out.
Recursive joins are basically not permitted in SQL
views, we recall. The example suggests them in
contrast typical for IEs.

The graphic at Figure 1 schematizes the

proposed evolution of the "biblical" SR SP in S-P1
into SIR SP in S-P2. At the left, we have S-P1
scheme. Next, we have S-P1 with SP renamed to the
default name of SP_ and the C-view SP, as defined
by (1). This is what DBA could do best at present to
avoid the logical navigation within queries to SP.
The view contains the sub-view that is a virtual copy
of SP_, with every SA of SP_ becoming an IA.
Finally, at the right, SP_ replaced its copy, becoming
the base SP_ of our SIR SP.

In all rectangles, the grey color symbolizes SAs
and green IAs. The green rectangle of S-P1 with
view SP is as large as SIR SP. It is larger than the
green one of SIR SP by its left sub-part. That one is
fully redundant with SP_, as just discussed. The
redundancy costs view SP the clause S_.* in (1),
with respect to the IE in SIR SP, as defined by (2).
This is the core of the higher procedurality of Create
View SP with respect to the IE in Create Table SP
for SIR SP. By the same token, it is the cause of
lower procedurality of Create Table SP as in (2) than
of Create Table SP_ followed by Create View SP as
in (1).

2.3 Implicit IEs

As said above, the IE ‘SNAME…P.P#’ for SIR SP
is an explicit one that we denoted thus ESP. One
defines an explicit ER as a view could be. For some
SIR, the IE can also be a furthermore a specific
expression that we call implicit and denote as I or
IR. An IR can contain a generic character '#' or
brackets () around an SA or several consecutive
SAs, forming a foreign key. Alternatively, IR may
define only IAs being named value expressions not
followed in Create Table by any From… clause(s).
Every IR is intended to be less procedural than an
ER could ever be. We define three following rules
for an IR definition. Rules 1 define and Rule 2
defines each preprocessing of IR to a specific ER
denoted EIR. Rule 1 concerns '#', Rule 2 deals with
(…). Rule 3 preprocesses every IR with value
expressions.

Rule 1. Create Table R may contain, after the last
SA scheme, IR in the form: ‘# From R1…R2… ;',
with (necessarily) some Ri = R_ or Ri = R ; i ≥ 1.
Let also R'1, R'2… be, successively, all the other
relations. Then, EIR is:

EIR = R'1.*,R'2.*… From R1…R2…;
The terms R'1.*,R'2.*… that precede Ri in From

clause, insert into Create Table R before the first SA
scheme. All the others replace #.@

Rule 2. IR contains brackets (). In Create Table
R, these form term(s): (A1,A2...)…. Each A is an

SQL for Stored and Inherited Relations

41

SA scheme. A1,A2… names also a foreign key of
some relation F. DBA may designate F through the
usual Foreign Key clause. This one is mandatory if
the term does not designate the referenced key of F
uniquely. Alternatively, F is designated by the
equality of all the (proper) name(s) A1,A2… with all
the (proper) name(s) of key attribute(s) of F. DBS
preprocesses Create Table R with the discussed IR
towards EIR as follows.

Rule 3. The IE defines every its IA A as: V As
A. Also, the IE has no From… clauses. Finally the
kernel supports VAs. Then, every term V As A is
preprocessed into the VA-term of the kernel so that
Create Table R statement becomes the kernel's one.
The final result for every such statement is SR R
with VAs that kernel SQL would create.@

Ex. 2. To illustrate Rule1, suppose for S-P1 that
only selected clients should be able to match the
supplies of any supplier or part. All the others may
still access every relation, nevertheless. The DBA
may therefore use a secret function Enc, encrypting
SP.S# and SP.P# of every supply. The DBA may
furthermore provide the selected clients with the
following universal view SP, after renaming SR SP
to SP_, as already discussed. The right join replaces
the left one in (1) for the sake of the example.
(3) Create View SP As (Select * From (S
Right Join SP_ On SP_.S# = Enc (S.S#))
Left Join P On SP_.P# = Enc (P.P#));

View SP defined so may clearly be C-view SP
for SIR SP with base SP_. Given Rule 1, DBA may
define ISP simply as:
(4) ISP = # From (S Right Join SP_ On
SP_.S# = Enc (S.S#)) Left Join P On
SP_.P# = Enc (P.P#));

Clause From is the same for (3) and (4). Hence,
ISP remains less procedural than View SP. Actually,
(4) is 1.4 times less procedural than (3). When one
declares Create Table SP, DBS applies Rule 1 and
pre-processes it using (4) to:
Create Table SP (S.*, S# Char, P# Char,
Qty Int, SNAME, STATUS, S.CITY, PNAME,
COLOR, WEIGHT, P.CITY, P.* From (S
Right Join SP_ On SP_.S# = Enc (S.S#))
Left Join P On SP_.P# = Enc (P.P#)),
Primary Key (S#, P#));

EISP is then equal to:
(5) EISP = S.*, P.* From (S Right Join
SP_ On SP_.S# = Enc (S.S#)) Left Join P
On SP_.P# = Enc (P.P#));

In Create Table SP, S.* term of EISP precedes
all the SAs, since S precedes SP_ in the right join
within From clause. P.* replaces #. The list S.*,
SP_.*, P.* would be simply a more procedural
expression of '*' in (3) that we spoke about in
general terms.

As in general for every ER and C-view R, EISP
in (5) is also less procedural than Create View SP of
C-view SP defining it as ESP, i.e., Create View SP
As (Select S*, S_P.*, P* From (S Right

Join SP_…);. In fact, one may easily see that (5)
remains also less procedural than (3). ISP as in (4) is
not thus really necessary here for our goal. However,
visibly, it could not be so if relations S and P had
instead longer names, e.g., SUPPLIERS and
PARTS_IN_STOCK. This would prove our point
that without Rule 1, we could not attain our goal of
an IE being always less procedural than the C-view
it may replace.

Ex. 3. To illustrate Rule 2, suppose, just for the
sake of the example, that S is atypical, namely is
S (SNAME, S#, STATUS, CITY). Suppose also the
referential integrity between SP, S and P. DBA of S-
P2 can then declare the following SIR, instead of
(2), with the advantage of visibly less procedural
Create Table:
(6) Create Table SP ((S# Char), (P#
Char), Qty Int From S, P, SP_ Where
SP_.S# = S.S# And SP_.P# = P.P#,
Primary Key (S#, P#));

Clause Where of (6) is visibly less procedural
than the one with outer joins in (2). It is however
obviously possible only for the referential integrity.
The IE for scheme (6) contains two terms conform
to Rule 2. Hence ISP is:
(7)ISP = (), () From S, P, SP_ Where
SP_.S# = S.S# And SP_.P# = P.P# ;

Given (6), first () indicates presence of the
foreign key of S to expand to all the attributes of S
except for S.S#. SP should furthermore preserve the
total order in S, with however, in SP, the foreign key
SP.S# instead of the referenced one S.S#. Likewise,
2nd () does for P. The order of all non-added
attributes in SP should finally remain unaffected.
ISP (7) should thus be preprocessed to EISP as
follows:
(8) EISP = SNAME, STATUS, S.CITY,
PNAME, COLOR, WEIGHT, P.CITY, QTY From
S, P, SP_ Where SP_.S# = S.S# And
SP_.P# = P.P#);

Finally, the resulting Create Table SP should be:
(9) Create Table SP (SNAME, S# Char,
STATUS, S.CITY, P# Char, P#, PNAME,
PNAME, COLOR, WEIGHT, P.CITY, Qty Int
From S, P, SP_ Where SP_.S# = S.S# And
SP_.P# = P.P#, Primary Key (S#, P#));

If DBA considered C-view SP instead, the least
procedural one would be:
(10) Create View SP As (SNAME, SP_.S#,
STATUS, S.CITY, SP_.P#, PNAME, COLOR,
WEIGHT, P.CITY, QTY, From S, P, SP_
Where SP_.S# = S.S# And SP_.P# = P.P#);

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

42

(10) is clearly more procedural than (8), hence is
not a practical alternative. However, DBA can be
interested only in the freedom from the logical
navigation for practical queries, i.e., those where no
unique proper attribute name is (uselessly) prefixed
with source name. E.g., for (10) a query Select S#
From SP Where SNAME = 'Smith' would be a
practical one, while Select SP_.S# From SP… would
not. The following view can make then more sense
for the DBA than (10):
(11) Create View SP (Select S.*, P.*,
QTY From S, P, SP_ Where SP_.S# =
S.S# And SP_.P# = P.P#);

Indeed, view SP defined by (11) is visibly less
procedural than (10), taking advantage of '*'. It is
however not a C-view SP. The full source names of
attributes S# and P# are indeed S.S# and P.P#,
unlike in (10) and unlike it should be for any C-view
SP. The DBA can nevertheless realize that (11) is
still an equivalent view. At least for every SQL
query to SIR SP where the unambiguous proper
names above are not prefixed, it provides for the
same outcome as SIR SP. We call every such view
query equivalent or Q-view. SIR SP here illustrates
thus the case where only I is less procedural than an
equivalent view. More precisely, with respect to ISP
(9), Create View SP (11) is 1.2 times more
procedural. It would be so, also for any equivalent
variant of (11). See (Litwin, 2016a.) for more on Q-
views. Likewise, see there easy examples illustrating
Rule 3. Example in next section also illustrates that
rule.

2.4 Other DDL Statements for SIR
Model

We now focus on SIR SQL DDL statements other
than Create Table. We continue supposing every
such statement backward compatible with some
kernel (dialect). E.g., for MySQL SQL as the kernel,
we suppose Create View of SIR SQL, being simply
the MySQL Create View, except that among source
relations could be SIRs. We suppose similarly for
SQL Server as the kernel etc.

The other SQL DDL statements we suppose for
SIRs are all the popular ones, i.e., Alter Table, Drop
Table, Alter View, Drop View and Create Index. For
Alter Table R for some SR R or SIR R, we suppose
for the former the semantics of Alter Table R of the
kernel SQL. E.g., for MySQL kernel thus, Add may
create an SA or IA intended as VA or may be
followed by optional First and After keywords
specifying how the added SA mixes with the
existing SA and VAs. Also, one Alter Table may

alter several attributes, unlike for SQL standard. On
the other hand, for every kernel, Alter Table R for R
that is an SR may expand R with an IE. This is done
only through the clause specific to Alter Table for
SIRs, we named IE as well, and refer to as IE-clause.
Every IE-clause defines new IE replacing an existing
one, if any. It acts thus similarly to every Select
expression in any Alter View at present, replacing
the existing view scheme. IE-clause is finally
mutually exclusive with the existence of IAs defined
as VAs.

The IE-clause defines the IE and, necessarily, the
placement of each IA among all the SAs. The latter
are defined by Create Table and, perhaps, successive
Alter Table statements, including the one with the
IE-clause. The IE-clause for SIR R may define all
this in the terms of C-view R after the Select
keyword. As for IR, the IE-clause may alternatively
contain instead of some or even all such terms the
generic character '#' or terms in brackets (). As for
an IE, the rationale is to have IE-clause less
procedural even when C-view or Q-view definition
takes advantages of '*' we have discussed. Every IE-
clause with '#' is preprocessed to as IR with would
be, with however the additional insert(s) by name or
as R_.*, of every SA into the list of the attributes
resulting from the preprocessing. Thus, for sole '#',
there is the additional insert of R_.* at the position
determined by R_ or R in From clause. The
additional inserts for every term Ri.# are the
(unique) names of every SA with the proper name of
some Aj in Ri. The position of each insert is
determined by that of Aj among the attributes of Ri,
as we discussed for Rule 2.

Next, for every SIR R, we allow Alter Table R to
drop the IE through simple Drop_IE verb. This
obviously alters SIR R into SR R. Then, if Alter
Table drops, adds or renames any SAs, new IE
clause is optional. Like would be optional the Alter
View R statement for C-view R resulting from Alter
Table R_ with the same alterations of SAs. Next, for
any SIR R, we prohibit to drop all SAs, as usual for
every alteration of every SR R, besides. In
particular, we prohibit thus for every SIR R, any
alterations into a view instead. If such need occurs,
one should use Drop Table R followed by Create
View R. Likewise, if view R should evolve to SIR
R, we presume Drop View R followed by Create
Table R. These procedures are obviously the
simplest to put into practice.

We discuss in (Litwin, 2016a) Drop Table R and
all the others remaining SQL DDL commands.

Ex. 4. DBA adds to S-P2.P the IA WEIGHT_KG
defined as Round (WEIGHT * 0.454). S/he also

SQL for Stored and Inherited Relations

43

adds WEIGHT_T in tons. For application dependent
reasons, WEIGHT_T should precede WEIGHT_KG.

1. MySQL is the SQL kernel dialect for SIRs:
(12) Alter Table P Add WEIGHT_KG / 1000
As WEIGHT_T After WEIGHT, Round (WEIGHT
* 0.454) As WEIGHT_KG After WEIGHT_T;

Both IA schemes are so since these IAs could be
VAs. As the result, Alter modifies SR P into SIR P
that, e.g., on MySql, could be S-P1.P with two VAs
added. By not needing parentheses around the value
expressions, (12) is (slightly but still) less procedural
than the similar altering adding VAs WEIGHT_T
and WEIGHT_KG directly under MySQL.

2. The SQL dialect for SIRs does not have VAs,
e.g., MS Access.
(13) Alter Table P IE (P#, PNAME,
COLOR, WEIGHT, WEIGHT_KG / 1000 As
WEIGHT_T, Round (WEIGHT * 0.454) As
WEIGHT_KG, CITY From P_) ;

3. The DBA from (2) above decides to drop
WEIGHT_T.
(14) Alter Table P IE (P#, PNAME,
COLOR, WEIGHT, Round (WEIGHT * 0.454)
As WEIGHT_KG, CITY From P_) ;

For view P, if the SQL dialect provides Alter
View, then the DBA could use:
(15) Alter View P As (Select P#, PNAME,
COLOR, WEIGHT, Round (WEIGHT * 0.454)
As WEIGHT_KG, CITY From P_) ;

If the kernel does not provide Alter View, DBA
would need Drop View P followed (atomically) by
Create View P.

4. DBA of S-P2 has created SP initially as S-
P1.SP SR. Then, s/he decided to alter SP to SIR SP
at Figure 1. Thus all the IAs should follow the base
SP_. Regardless of the kernel dialect, the following
statement should do:
(16) Alter Table SP IE (S.#, P.# From
(SP_ Left Join S On SP_.S# = S.S#) Left
Join P On SP_.P# = P.P#);
Suppose now that DBA rather prefers to create SIR
SP as in Ex. 2. IE-clause would be then ISP (4). The
preprocessing would rewrite it to:
IE (S.*, S#, P#, Qty, SNAME, STATUS,
S.CITY, PNAME, COLOR, WEIGHT, P.CITY,
P.* From (S Right Join SP_ On SP_.S# =
Enc (S.S#)) Left Join P On SP_.P# = Enc
(P.P#)), Primary Key (S#, P#));
Likewise, for the alteration to SP from Ex. 3, IE-
clause would be defined as in (7). The preprocessing
would insert SA names, making IE-clause like in (9)
without the data type declarations.@

Altering SR P to SIR P as in (13) is (slightly, but
still) less procedural than Create View P for any

equivalent view P, C-view P, in particular (why?).
Likewise, the alteration (14) is visibly less
procedural than (15). The difference increases if one
uses Drop View P followed by Create View P
instead of (15), e.g., for MsAccess kernel. Likewise,
altering SR SP to SIR SP as in (16), is visibly less
procedural than Create View SP for any equivalent
view SP or C-view SP. In fact, the actual view
creation should be typically even more procedural
by far. The reason is that since the view should be
named as the existing SR, SQL requires first to
rename the SR. This needs one more statement with
its procedurality adding on. Furthermore, to avoid
any run-time error for a client, both statements
should typically be again an atomic transaction. That
one requires additional SQL statements. An atomic
transaction is likewise needed for Drop View
followed by Create View above discussed.

Ex. 5 Consider again S-P1.SP becoming either
SIR S-P2.SP or C-view SP. For the former, the
single Alter SP statement (16) suffices. To create the
C-view SP in contrast, one has to first rename SP
into SP_. This costs one Alter SP Rename To SP_P
statement. Then, one has to formulate the already
mentioned Create View SP as in (1). For the
atomicity, SQL Begin Transaction and Commit
brackets are necessary. Likewise, SQL Error Code
tests for Commit or Rollback should follow every
DDL statement. All this leads to several SQL
statements (how many?). The result is clearly
several times more procedural than (16).@

Similar savings occur for any equivalent view
SP. It is also so for SIR SP variant (6) and Q-view
SP (7).

Finally, SA name change, SA addition or
deletion leads to similar advantages of SIRs. E.g.,
work out the shortening of SP_.QTY to Q, (i) for S-
P2.SP and C-view SP and (ii) for SP variant (6) and
its Q-view SP.

Our examples obviously generalize to every SIR.
It should be clear thus that to alter any SR R to SIR
R, should be always several times less procedural
than renaming every SR R to R_ and creating C-
view R or Q-view R. Next, for every SIR R, altering
an IA A through IE-clause, should be always less
procedural than altering A in C-view R or Q-view R.
In the same time, that altering an SA of SIR R
should be always several times simpler than altering
R_.A and C-view R or dropping and recreating view
R instead. Finally, every altering of SIR R with IAs
preprocessed to VAs, by adding, modifying or
dropping such IAs, is equally or less procedural that
the same operation on SR R with these VAs today.

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

44

2.5 DML Statements for SIRs

SQL DML statements manipulate relations
regardless of their implementation. We presume
therefore operationally for every SIR DB, that the
syntax of every DML statement (query) is that of the
kernel SQL dialect. The semantical difference is that
a name in the statement may refer to a SIR or its
base. Then, for every query Q referring to any SIR
R the outcome of Q should be as if it addressed C-
view R instead. If Q refers to R_ in contrast, the
outcome should be that of R_ supposed stand-alone
SR R_. Every update query Q addressing SIR R is
accordingly valid (executable) only if C-view R is
updatable by Q. In practice, the updatability will
depend on the kernel DBS, [D4]. The constraint may
impair even Q addressing R, but updating SAs of R
only. Q should refer then to R_.

Ex. 6, Suppose SQL Server kernel. Every
statement Update SP…. would fail, even if it
addressed an SA only. C-view SP is indeed a view
with joins, while such views are not updatable at that
kernel. One should formulate every such update as
Update SP_.... In contrast, every Update SP…
addressing SAs only would be OK for, e.g., MS
Access or MySQL kernel. Both are indeed free of
that restriction. But, every Delete From SP… in S-
P2 would fail even under MS Access because of
these joins (it would succeed however in QBE of
MS Access, perhaps surprisingly). Again, it would
succeed with this dialect only if formulated as a
Delete From SP_... .

3 IMPLEMENTING SIRS

3.1 Basic Processing Scheme

As already said, the most practical way towards a
SIR DB seems the reuse of a popular SQL DBS as
the kernel DBS with its SQL as the kernel dialect.
One way is to create the SIR-layer, managing SIR
SQL DDL and DML statements through the calls for
the kernel services, Figure 3. For the kernel DBS,
SIR-layer appears then as any clients.

In particular, for the Create Table R statement
received, SIR-layer determines first the relation to
create. If R is an SR, SIR-layer forwards the
statement as is. In turn, the processing must be more
involved for every SIR R. Except for R with VAs,
the simplest seems to represent every SIR R in the
kernel as stand-alone SR R_ and C-view R. SIR-
layer simply forwards then every query Q as is to the
kernel. This one processes Q either towards view R

or towards R_ only. Only for every SIR R with VAs,
hence for the kernel with VAs as well, the simplest
design, implied actually by Rule 3, appears that SIR-
layer simply forwards the preprocessed Create Table
R. The kernel creates SR R with VAs accordingly.

We qualify of basic (processing) scheme, (BPS),
the processing as above sketched. Thus, for Create
Table R for SIR R in every case other than applying
Rule 3, BPS always starts with the preprocessing of
IR, if there is any into EI

R. Next, BPS passes Create
Table R_ statement to kernel DBS, using for that all
and only SAs of Create Table R. Then BPS creates
the C-view simply as follows. Let A1,…,Am be the
list of the names of every SA and of every IA in
attribute list of ER, in the order resulting from that in
Create Table R. Then, BPS simply issues to the
kernel the following statement, with From, Where
etc. clauses of ER:
Create View R As (Select A1,…,Am
From…Where…)

Ex. 7. (1) We submit to SIR-layer S-P2 scheme
at Figure 1. BPS finds no IEs in Create Table S and
Create Table P. It passes each statement to the
kernel that creates each SR. BPS determines that
Create Table SP in contrast defines ESP we
discussed. If BPS found any of ISP we discussed, it
would eventually pre-process it to EISP. For ESP,
BPS issues the following two statements to the
kernel DBS. We systematically omit below the
statements making an atomic transaction from the
presented ones, obviously necessary.
Create Table SP_… ;/* With all and only

stored attributes of SP at Figure 1.
Create View SP As (… ;/* Statement (1).

We leave as exercise the variants for each ISP
already discussed.

(2) Suppose now the kernel dialect backward
compatible with MySQL, hence supporting VAs.
Suppose also that DBA creates SIR P with IAs
WEIGHT_KG and WEIGHT_T defined as in (12).
BPS forwards Create Table P from SIR-layer as is to
the kernel DBS. The result is SR P with VAs.

(3) Suppose that the kernel dialect does not
support VAs. Create Table P for SIR P may only
define both IAs as for a view, i.e., again as in (12)
for each. BPS generates two statements for the
kernel:
Create Table P_… /* With attributes of
P at Figure 1.
Create View P As Select P#, PNAME,
COLOR, WEIGHT, WEIGHT_KG/1000 As
WEIGHT_T, WEIGHT_KG As Round (WEIGHT *
0.454), CITY From P_; @

SQL for Stored and Inherited Relations

45

Figure 3 illustrates BPS outcome for S and SP as
in S-P2 and P as in Ex. 7. We call the result S-P3
DB. SIR-layer shows SIRs as rectangles. Each size
reflects the number of tuples and tuple width
appearing to the client. The lower part displays SRs
and C-views within the kernel DBS similarly.

3.2 BPS of Other DDL & of DML
Statements

Alter Table R and Drop Table R for SIR-layer also
require from BPS more processing than calling their
kernel counterparts only. For every SIR R, each
statement requires in fact the atomic transaction that
DBA should formulate to R_ and C-view R instead.
We recall from Section 2.3 that the latter is always
more procedural than the former, usually several
times. See (Litwin 2016a) for more details, as well
as for BPS for the other DDL statements. As
motivating example, spell out BPS outcome for
Alter Table SP for Ex. 5 and its follow up in
Section 2.3.

BPS implementation is a future work. In the
meantime, (Litwin, 2016) simulates BPS for S-P2 on
MS Access as the kernel. As detailed also in
(Litwin, 2016), one may experiment with every
manipulation of SP or P we have discussed.

3.3 Operational Overhead of
SIR-Layer

The kernel storage for every SIR data is in practice
the one for the base data only. C-view storage
should be obviously always negligible. The storage
for the SIR-layer meta-tables should be clearly
larger. But, it should remain still typically negligible
with respect to the data storage. Altogether, the
storage for a SIR DB should be only negligibly
greater than that required by the DB with the SIR
bases as stand-alone SRs only or with C-views or Q-
views in addition.

For DDL statements, the processing cost of each
by BPS is clearly negligible. Same for DML, since
the SIR-layer passes every query as is to the kernel.
Hence, the SIR-layer overhead through BPS has no
incidence on the query evaluation in practice.

4 RELATED WORK

We have shown that SIRs may make a relational DB
less-procedural. As shown, the views would be more
procedural to maintain. As already mentioned, same

rationale already motivated VAs, decades ago. As
discussed also, every SR with VAs is a specific SIR
R. SIRs generalize thus the old rationale for VAs to
SRs with IAs too complex to be VAs at present, e.g.,
T_QTY, or to those helping with the logical
navigation. The rationale for VAs proved
appreciated. We may thus reasonably hope SIRs
becoming popular as well.

Besides, the current capabilities of every popular
DBS with VAs are not all that the research has
proposed. E.g., some forms of VAs, hence of IAs,
could be updatable, (Litwin, 1986).

As mentioned, our example SIR S-P2.SP is a
new type of a universal relation that one may call
thus a universal SIR. There were various proposals
for universal relations, (Mendelzon, 2004), (Vardi,
2011). If a universal view R is a C-view R, the
universal SIR R should be always less procedural to
define and maintain.

We leave for future research the relational design
of a DB with SIRs, e.g., porting the decomposition
theorems, (Heath, 1971), (Fagin, 1977), (Jajodia,
1990) and others in (Date, 1991). Next, one knows
that S-P1 DB was the mold for the practical ones.
One may thus expect the benefits of SIRs extending
to most of practical DBs as well.

Finally, the inheritance model for IEs is the
original one of the relational model. We discuss
alternate proposals in (Litwin 2016a), e.g.,
(Stonebraker, 1996) and (Postgres SQL).

5 CONCLUSIONS

SIRs provide for queries free of logical navigation or
of selected value expressions. SIRs may be in
addition always less procedural to define or alter
than any equivalent view. The procedurality is
furthermore always the same or lesser than for VAs
when the kernel DBS provides those. The
implementation of SIRs on a popular DBS appears
finally simple and with negligible operational
overhead. We can therefore expect the practical
interest in SIRs even wider than in VAs.
Consequently, we postulate SIRs as we proposed
them standard on SQL DBSs.

 Future work should start with prototype
implementation. MySQL seems the best kernel for.
It is open-source and provides all the useful
abundantly discussed features. The relational design
rules for SIRs we have mentioned appear also a
promising goal. Next, BPS could perhaps optionally
create materialized C-views. MySQL and SQL
Server provide statements for. Those could speed-up

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

46

query processing for IEs with complex value
expressions, (Goldstein, 2001), (Halevy, 2001),
(Larson, 2007), (Valduriez, 1987) . Finally, most of
major DBSs are now interoperable, (Litwin, 1986) .
Multidatabase SIRs, inheriting from several DBs,
appear attractive as well.

ACKNOWLEDGMENTS

We thank Prof. Emeritus Peter Scheuermann for
helpful discussions.

REFERENCES

Codd, E., F., 1969. Derivability, Redundancy and
Consistency of Relations Stored in Large Data Banks.
IBM Res. Rep. RJ 599 #12343.

Codd, E., F., 1970. A Relational Model of Data for Large
Shared Data Banks. CACM, 13,6.

Date, C.J. 2004. An Introduction to Database Systems.
Pearson Education Inc. ISBN 0-321-18956-6.

Date, C. J., & Darwen, H., 1991. Watch out for outer join.
Date and Darwen Relational Database Writings.

Date, C. J.,, 2012. Database Design and Relational
Theory, Normal Forms and All That Jazz. O'Reilly.

Fagin, R. 1977. Multivalued Dependencies and a New
Normal Form for Relational Databases, ACM TODS.
2,3, 262-278.

Goldstein, J. Larson, P., 2001. Optimizing Queries Using
Materialized Views: A Practical, Scalable Solution.
ACM SIGMOD.

Halevy, A.,Y., 2001. Answering queries using views: A
survey. VLDB Journal 10: 270–294.

Heath, I., J., 1971. Unacceptable file operations in a
relational data base. ACM SIGFIDET '71 Workshop
on Data Description, Access and Control, 19-33.

Jajodia, S., Springsteel, F., N., 1990. Lossless outer joins
with incomplete information. BIT, 30, 1, 34-41.

Larson, P., Zhou J., 2007. Efficient Maintenance of
Materialized Outer-Join Views. ICDE.

Litwin, W., Abdellatif, A. 1986. Multidatabase
Interoperability. IEEE COMPUTER, Dec.

Litwin, W. Vigier, Ph., 1986. Dynamic attributes in the
multidatabase system MRDSM, IEEE-ICDE.

Litwin, W. Ketabchi, M., Risch, T., 1992. Relations with
Inherited Attributes. HPL. Palo Alto, CA. Tech. Rep.
HPL-DTD-92-45, 30.

Litwin, W., 2016. Supplier-Part Databases with Stored and
Inherited Relations Simulated on MS Access.
Lamsade Tech. E-Note. pdf

Litwin, W., 2016a. SQL for Stored and Inherited
Relations. Lamsade E-Report, updated: Mars, 2019.
https://www.lamsade.dauphine.fr/~litwin/Relations%2
0with%20Inherited%20Attributes%20Revisited.pdf

Mendelzon, A. 2004. Who won the Universal Relation
wars? Stanford InfoLab, http://infolab.stanford.
edu/jdu-symposium/talks/mendelzon.pdf .

Maier, D, Ullman, J. D., Vardi, M., Y., 1984. On the
foundations of the universal relation model. ACM-
TODS, 9, 2, 283-308.

Postgres SQL. https://www.postgresql.org/ .
Stonebraker, M. Moore, 1996. D. Object-Relational

DBMSs: The next Great Wave. Morgan Kaufmann. 2nd
Ed. 1998.

Vardi, M., Y., 2011. The rise, fall, and rise of dependency
theory: Part 1, the rise and fall. Sigmod/Pods.

Valduriez P., 1987. Join indices. ACM TODS, 12(2), 218–
246.

APPENDIX

 S-P2 Scheme
 Table S Table P Table SP

S# Char, P# Char, S# Char,
SNAME Char, PNAME Char, P# Char,
STATUS Int, COLOR Char, QTY Int
CITY Char; WEIGHT Char, SNAME, STATUS, S.CITY, PNAME, COLOR, WEIGHT, P.CITY
 CITY Char; From (SP_ Left Join S On SP_.S#=S.S#) Left Join P On SP_.P#=P.P#), Primary Key (S#, P#));

Figure 1: S-P1 and S-P2 schemes.

SR S

P

SP

SR

SR SR SR

SR SR

S

 SP

SR

SIR SP

SR

S

 SP_ SR

SR

C-view SP

S-P1 S-P2 S-P1 with C-view SP

P P

SQL for Stored and Inherited Relations

47

Figure 2: S-P2 content. IA (proper) names and values are in Italics.

Figure 3: S-P3 DB. Above: SIRs. Below: C-views and SRs within the kernel DBS.

S-P2 Content

Table S Table P
S# SNAME STATUS CITY P# PNAME COLOR WEIGHT CITY
S1 Smith 20 London P1 Nut Red 12 London
S2 Jones 10 Paris P2 Bolt Green 17 Paris
S3 Blake 30 Paris P3 Screw Blue 17 Oslo
S4 Clark 20 London P4 Screw Red 14 London
S5 Adams 30 Athens P5 Cam Blue 12 Paris
 P6 Cog Red 19 London
Table SP

S# P# QTY SNAME STATUS S.CITY PNAME COLOR WEIGHT P.CITY
S1 P1 300 Smith 20 London Nut Red 12 London
S1 P2 200 Smith 20 London Bolt Green 17 Paris
S1 P3 400 Smith 20 London Screw Blue 17 Oslo
S1 P4 200 Smith 20 London Screw Red 14 London
S1 P5 100 Smith 20 London Cam Blue 12 Paris
S1 P6 100 Smith 20 London Cog Red 19 London
S2 P1 300 Jones 10 Paris Nut Red 12 London
S2 P2 400 Jones 10 Paris Bolt Green 17 Paris
S3 P2 200 Blake 30 Paris Bolt Green 17 Paris
S4 P2 200 Clark 20 London Bolt Green 17 Paris
S4 P4 300 Clark 20 London Screw Red 14 London
S4 P5 400 Clark 20 London Cam Blue 12 Paris

SIR Layer

Kernel DBS

S SP P

 S

SP

 SP_

 P

 P_

C-views

SRs

S-P3 DB
(CS)

S-P3 DB
(IS)

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

48

