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Abstract: Due to the big volume of data and complex execution, event logs of business processes inevitably contain 

various errors. In the field of process mining, if we derive process models from the event data without 

repairing, it is very likely that the resulting process is extremely different from what we expect. Current 

methods of repairing logs generally compare the log with an existing reference model to seek an optimal 

alignment, which requires that there should be a reliable reference model. Therefore, this paper presents an 

approach which only refers to the log itself to repair mistaken traces. We identify loop structures and frequent 

event sequences (sound conditions) between certain events. For each trace, basic trace and loop events are 

separated in advance. The basic trace is split into several parts to get repaired one by one according to sound 

conditions. Then loop events are added back and checked according to corresponding loop structure we 

discover. The repaired log should be as clean as possible and as similar to the original log as possible so that 

correctness and integrity of the original log are guaranteed. Experimental results based on different logs prove 

that our approach is effective and efficient. 

1 INTRODUCTION 

Process mining is a young and emerging research 

discipline which sits between data mining and 

machine learning. It establishes links between their 

actual executing processes and their data on the one 

hand and process models on the other hand. Process 

mining includes three main aspects, namely process 

discovery (learning process models from raw event 

data), conformance checking (monitoring deviations 

by comparing model and log) and process 

enhancement (extend or improve an existing process 

model) (Aalst et al., 2011; Polyvyanyy et al., 2016). 

Among them, process discovery targets at extracting 

information from event logs, which store execution 

data logged by information systems, to discover real 

process models which are mainly presented by Petri 

net (Murata et al., 1989), YAWL (Aalst et al., 2005) 

or high level Petri net (Jensen et al., 1991) without 

any prior information (Aalst et al., 2004). Lots of 

algorithms have been put forward to efficiently 

achieve the goal. Event log is the starting point of this 

research. In enterprises, hospitals, government and 

other agencies, execution data logged by information 

systems are often stored in system or application logs 

which can be converted into event logs. Ideally, an 

event log reflects the dominant behavior accurately of 

a business process as it occurs in an organization at a 

particular time. That is, the log is complete and clean. 

Based on this, discovery algorithms are performed to 

build process models that we expect. 

However, due to the large quantity of data and 

complex execution, real-life process event logs often 

contain multiple kinds of errors. Events may get 

missed, redundant, dislocated or misspelled. If we 

ignore this problem and extract information from logs 

without cleaning, the aforesaid applications and 

mining over event data will be far from reliable. 

Failing to effectively detect and repair mistaken 

behaviors in log has a bad effect on the quality of the 

discovered model. In spite of a degree of noise-

tolerance, many state of the art discovery algorithms 

still strongly rely on the correctness of source log, 

such as the α-algorithm (Aalst et al., 2004) and its 

extensions (Medeiros et al., 2004; Aalst et al., 2007; 

Wen et al., 2009), Heuristic algorithm (Weijters et al., 

2006) methods based on regions of languages 

(Bergenthum et al., 2007) and methods based on 

regions of states (Solé et al., 2010). Most of the 

existing methods for log repair (Wang et al., 2013; 
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Figure 1: The overall framework of log repair process. 

Song et al., 2016; Song et al., 2015) are based on 

alignment between event logs and given process 

models or process specifications, which is used 

extensively in conformance checking (Leoni et al., 

2013; Adriansyah et al., 2011; Leoni et al., 2015), 

another important aspect of process mining. 

Conformance checking techniques compare event 

logs with process models so that deviations can be 

diagnosed and quantified. According to this, it is 

convenient to find out what is wrong with the logs and 

how to repair to accord with the models. The optimal 

alignment should be that the trace in the log and the 

occurrence sequence in the model have the shortest 

edit distance. However, this way is unworkable when 

we do not have the reference models or specifications. 

In this paper, we deal with the challenge of fixing 

event logs that may contain various errors by 

discovering rules the logs should follow. Since there 

is no process model as a reference, we have to rely on 

the event log itself. Our method identifies loop 

structure(s) and divides a complete log into several 

subsections without loop events where there are more 

than one frequent event sequences (sound conditions) 

in each subsection. Such subsections and sound 

conditions are recorded in a subsection list. Accepting 

one condition as sound or not depends on its total 

occurrences in the log. To make the subsection list 

complete, sequential events are also recorded and 

frequency of each event sequence is set to an 

extremely large number. When repairing, event 

sequence belonging to subsection is modified to a 

sound condition which is most similar to it. Figure 1 

shows the process of log repair introduced in this 

paper. To the best of our knowledge, there does not 

exist a method of repairing an event log by adding and 

deleting certain events without the availability of a 

reference model. 

Main contributions in this paper are summarized 

as follows: 

 We develop a general framework to transform 

a mistaken trace into a most similar one 

conforming to the log; 

 We present an effective approach based on 

heuristic to filter sound rules the logs should 

follow, namely loop structures, choice 

relationship, concurrency relationship and 

sequential relationship; 

 We report the experimental evaluation on 

synthetic data. 

The rest of paper is structured as follows. Section 

2 reviews related work with a focus on alignment 

between logs and models. Section 3 defines the 

proposed technique while section 4 presents a 

detailed solution to log repair. Section 5 reports on the 

experimental results and shows that our method is 

feasible and efficient. The last part of this paper is the 

summary and prospect on this field. 

2 RELATED WORK 

Current methods for log repair largely rely on 

alignment between event logs and given process 

models or process specifications. This is actually an 

important method in conformance checking (Rozinat 

et al., 2008). Fitness (Aalst et al., 2012), precision 

(Adriansyah et al., 2013), generalization and 

simplicity are used to describe how good a model 

represents reality. There has been lots of research on 

this topic. The conflicts in alignment show something 

wrong, point out where deviations take place and how 

severe they are. Reference (Bezerra et al., 2013) 

discusses four algorithms for detecting anomalies in 

logs of process aware systems. Reference (Leoni et 

al., 2012a) aligns event logs and declarative models. 

Sometimes it is required to take not only control flow, 

but also data and resources into account (Leoni et al., 

2012b). 

Existing conformance checking can be used to 

align the runs of the given process model to the traces 

in the log. If there is a move in the log, but it does not 

execute in the model, we call it a log move; if the 

model contains a move, but it is not recorded in the 
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log, we call it a model move. In our view, if a log 

move or model move appears, there is a problem. If 

this problem is very infrequent, the log rather than the 

model should be repaired (Fahland et al., 2015).  

As stated before, where infrequent problems are 

in alignment are where outliers occur in event log and 

research has been conducted on log recovery based on 

alignment. Missing events can be recovered by 

referring to process specifications and heuristics 

(Song et al., 2015). Reference (Leoni et al., 2013) 

repairs logs with missing events by repairing the 

control flow and the timestamps. Reference (Song et 

al., 2016) presents an approach which handles not 

only missing, but also redundant and dislocated 

events. Repairs above all require the availability of 

both event log and perfect reference model. 

Reference (Conforti et al., 2017) presents an 

automated technique to the removal of infrequent 

behavior from event logs by conducting an automaton 

from the log. In addition, two traces also can be 

aligned (Bose et al., 2012). 

3 PROBLEM STATEMENT 

First, we introduce definitions of Petri net and event 

log, and then we describe the problem to be solved. 

3.1 Preliminaries 

In this paper, we use Petri nets to represent process 

models. A Petri net is a directed graph, where places 

are represented by circles, transitions are represented 

by rectangles and flow relations are represented by 

directed arcs. 

Definition 1 (Petri Net). A Petri net is a triple PN= 

(P, T, F) where P is a finite set of places, T is a finite 

set of transitions, P ∩ T = Ø and F ⊆ (TⅩP) ∪  (PⅩT) 

is a set of flow relations.  

A Petri net starts with a place and also ends with 

a place. Places are presented as circles and transitions 

are presented as rectangles. More details are 

presented in (Murata et al., 1989). 

An event log consists of tremendous event traces, 

each of which records the footprint of a process 

instance. A trace is a succession of events according 

to the time sequence and these ordered events can 

fulfil one execution of the process. We also call a 

trace case and each case has a unique case identifier. 

Different cases may own the same succession of 

events. An event can also have many other attributes 

such as the resource(s) involved, the transaction type, 

costs, etc. These factors are beyond the discussion of 

the paper. 

Definition 2 (Event Log). A log W over a set of tasks 

T and time domain TD is defined as W= (E, C, α, β, 

γ, <) where E is a set of events; C is a set of case 

identifiers; α: E→T is a function linking each event 

to a task; β: E→C is a function linking each event to 

a case; γ: E→TD is a function linking each event to a 

timestamp; <∈  E×E is a total ordering over the events 

in E. A trace σ in a log is represented by a sequence 

of events belonging to E. 

3.2 Problem Definition 

Traces may have missing, redundant or dislocated 

events. Dislocation can also be treated as the mixture 

of the first two cases. Our objective is to repair 

nonconforming event sequences according to the 

rules the log should follow (including loop structures, 

concurrency relationship, choice relationship and 

sequential relationship). The rules are identified 

based on heuristic and recorded in a list. Each 

repaired trace should conform to the rules and be as 

similar to the original trace as possible. In our work, 

we try to minimize the edit distance between the 

original one and repaired one.  

Definition 3 (Edit Distance). If there are two event 

sequences σ1 and σ2, the edit distance ED(σ1, σ2) 

between them is minimal number of edit operations 

required to transform σ1 to σ2 or from σ2 to σ1. 

Definition 4 (Sound Condition). All sound 

conditions within a subsection is defined as a set of 

tuples including each complete event sequence and its 

occurrence in the log: sc = {(sequence, frequency) | 

frequency> threshold}. 

For an event sequence σ, its repaired sequence σ’ 

is also an event sequence such that 1) σ’ ∈  sc; 2) for 

any other sequence σ’’ ∈  sc, ED(σ, σ’’) >= ED(σ, σ’). 

A repaired trace is the combination of different 

repaired sub-sequences. 

4 HEURISTIC LOG REPAIR 

In this section, we present our detailed technique for 

log repair. The method is named Heuristic log repair. 

Before the actual repair work, we need some 

preparations. If there exist loop structures, remove 

loop events from traces to get basic traces. For logs 

produced by process models without loops, traces are 

already basic traces. Then sound conditions within 

each subsection are discovered using basic traces and 

filtered by certain thresholds. When repairing, firstly 

we split each basic trace into several parts and 

transform each part into a sound condition belonging 

to that part which is most similar to it. Repaired parts
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Figure 2: Loop with Same Start and End (up) and Loop with 

Different Start and End (down). 

are combined into a repaired basic trace. Loop events 

are added back and loop events of each loop are 

checked and repaired according to corresponding 

loop structure. 

4.1 Loop Structure Identification 

In this section, we introduce how to get loop 

structures by comparing “task sets” of traces. 

Definition 5 (Task Set). Given an event sequence σ, 

task set τ(σ) is the set of tasks producing the events.  

Example 1. If there is a trace σ= ABCDECDF, τ(σ) 

= {A, B, C, D, E, F}. A task set TS of a log W = {τ(σ) 

| σW}. 

There are two kinds of loop structures, as is shown 

in Figure 2. If in a trace with a loop structure 

executing once, each task only produces one event, 

this loop belongs to the first type, Loop with Same 

Start and End. Otherwise it belongs to the other type, 

Loop with Different Start and End. 

As we can see, in Figure 2, If s executes once, 

there is only one s in the trace. If t executes once, e 

appears twice in the trace. s and t only appear in traces 

with loops. Ordered task sequence generating events 

like them is referred to as new-task (nt). If in a trace, 

a loop executes once and there are tasks producing 

more than one event, this ordered task sequence is 

referred to as two-time-task (mt). Events in a trace 

generated by nt and mt (except the first occurrence of 

events from mt) are collectively called loop events 

(le). For each loop structure, the task set directly 

before the first occurrence of nt and not after the last 

mt (or nt if mt does not exist) is called TS_former, the 

task set directly after the last occurrence of mt (or nt 

if mt does not exist) but not before the first nt is called 

TS_later. 

For simplicity, we only consider traces with one 

loop structure and get one kind of loop structure once. 

If there are two traces σ1 and σ2, τ(σ1) is a proper 

subset of τ(σ2), τ(σ1) is not superset of any other task 

set, then in σ1 no loop executes and in σ2 tasks execute 

in the same route except that a loop executes. So we 

need to find all task sets of traces without iteration 

and with one type of iteration.  

Definition 6 (Basic Task Set). A task set ts is 

regarded as a basic task set if: 1)  ts1  TS, ts ⫋ ts1; 

2)  ts2   TS, ts2   ts. 

Definition 7 (One-loop Task Set). A task set ts is 

regarded as a one-loop task set if: 1)  ts1  TS, ts1 

⫋ ts 2) ∀  ts2  TS, ts1 ≠ts2, ts2⊄ ts. 

For each loop structure, given the task sets, nt can 

be got by subtracting a subset from a superset, and mt 

can be got by counting the number of events 

generated by the same tasks. Every time the loop 

executes for one more time, the sequence of events 

newly generated is the sequence of events produced 

once by nt and mt belonging to the current loop. 

Obviously, if the loop starts with the same start and 

end, in other words, mt is null. TS_former can be got by 

subtracting tasks producing events directly after the 

last occurrence of the last task in mt from tasks 

directly before the first occurrence of the first task in 

nt. Similarly, we can get TS_later. 

Definition 8 (Loop Structure). The set of loop 

structure(s) a log contains is defined as LS = {ls | ls = 

(TS_former, TS_later, nt, mt)} where ls is one of loop 

structure. If the log is generated by a model without 

any loop, LS is null. 

Example 2. The event log contains traces: 

case1: ABCDEFHJ, case2: ABDCEFHJ, case3: 

ADBCEFHJ (their task set is ABCDEFHJ, ts1); 

case4: ABCDEGHJ, case5: ABDCEGHJ, case6: 

ADBCEGHJ (their task set is ABCDEGHJ, ts2); 

case7: ABTUCDEFHJ, case8: ABDTUCEFHJ, 

case9: ABTUDCEFHJ (their task set is 

ABCDEFHJTU, ts3); 

case10: ABTUCDEGHJ, case11: ABDTUCEGHJ, 

case12: ABTUDCEGHJ, case13: 

ADBTUTUCEGHJ (their task set is 

ABCDEGHJTU, ts4); 

case14: ABCDS1S2DEFHJ, case15: 

ABDCS1S2DEFHJ, case16: ADBS1S2DCEFHJ, 

case17: ADS1S2DBCEFHJ (their task set is 

ABCDEFHJS1S2, ts5); 

case18: ABCDS1S2DEGHJ, case19: 

ABDCS1S2DEGHJ, case20: 

ADBS1S2DS1S2DCEGHJ (their task set is 

ABCDEGHJS1S2, ts6). 

Comparing ts1 and ts3, we get nt: TU; choose 

ABTUCDEFHJ, clearly there are no events from the 

same task, so this loop structure has no mt; Events 

before the first occurrence of T are B and D, event(s) 

after the last occurrence of U are C and D, so TS1_former 

is {B}, TS1_later is {C}. ls1 = (B, C, TU,); 

Comparing ts1 and ts5, we get nt: S1S2; choose 

ADS1S2BCDEFHJ, and we get mt: D; Event only 

before the first occurrence of S1S2 is D, event only 
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after the last occurrence of D is E, so TS2_former is {D}, 

TS2_lster is {E}. ls2 = (D, E, S1S2, D); 

Loop structures got by comparing s2 and s4 and by 

comparing s2 and s6 are the same as above. 

Having identified each loop structure, if LS is not 

empty, it is time to remove les of every trace in W. 

Each remaining event sequence is referred to as a 

basic trace and the new log is referred to as W_basic. 

Also, we record a sequence of all les of a trace in 

W_basic. Besides, to add le back to a position as close 

to its original position as possible, we keep a record 

of its previous event sequence. If W is produced by a 

model without any loop structure, itself is equal to 

W_basic. 

Definition 9 (Loop Events Set). We define the set of 

loop events of W as LE = {le | le = (CID, id, former, 

later, e, fe)}, where CID is the case identifier, id is the 

identifier of this loop event in the trace, former and 

later are TS_former and TS_later of the ls that le is in, e is 

and the name of this event and fe is the sequence of 

events before this event in the original trace. 

Example 3 (Example 2 continued). For case3, since 

it contains no nt, its basic trace is itself and it has no 

le; for case7, its basic trace is ABDCE, its loop events 

include (7, 1, {B}, {C}, T, ADB), (7, 2, {B}, {C}, U, 

ADBT), (7, 3, {B}, {C}, T, ADBTU) and (7, 4, {B}, 

{C}, U, ADBTUT). 

The process of identifying loop structures in a log 

is represented in Figure 3. 

4.2 Subsection List Discovery 

Besides discovering loop structures, we also need 

discover concurrency and choice relationship 

(collectively called non-sequential relationship since 

loops have been ruled out) in original process model 

and event sequences related. Such rules will be 

concluded in a list. For the sake of convenience in 

repairing, tasks of sequential relationship are also 

included in the list. The process is shown in Figure 4.  

To each non-sequential relationship, we wish to 

get the task set after which different executions begin 

(referred to as T_before) and the task set before which 

different executions end (referred to as T_after). 

(T_before, T_after) is regarded as a boundary task pair. If 

a boundary task pair covers another pair in time 

scope, we will omit the covered pair. Task set of all 

events occurring within a subsection is recorded as 

t_set. One possible events sequence within a 

boundary task pair is referred to one condition and its 

total occurring time is recorded as frequency. In order 

not to omit any event, we add T_after to the end of each 

condition. If .the frequency of a condition is above or 

equal to the threshold, it is accepted as a sound 

condition and therefore recorded. 

When deciding sequential relationship, T_before is 

an artificial mark “start” when before a choice or 

concurrency interval tasks are all in sequential 

relationship or the task before which different 

executions end, T_after is an artificial mark “end” when 

it gets to the end of the model or task after which 

different executions begin. But “end” will not be 

added to the end of sound condition. Each boundary 

task pair has only one sound condition and frequency 

is set to an extremely large number, like 99999999. 

Definition 10 (Subsection List). A Subsection List 

of a log is defined as LIST = {list | list = (T_before, T_after, 

t_set, sc)}. 

 

Figure 3: Loop structure identification. 

 

Figure 4: Subsection list discovery. 
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Concurrency relationship can be identified by 

checking traces sharing the same basic task set. Since 

there is no loop event, these traces also should have 

the same length. For each basic task set, its 

corresponding traces are called concurrency traces. 

We define the occurrence number of the most 

frequent concurrency trace σ1 as max_fre. If in a 

position, events in all traces are not from the same 

task, tasks producing them must be in a concurrency 

interval. When considering whether to accept a 

position in σ1, number of traces that have an event 

produced by a different task in this position should be 

above Threshold_p1 = max_fre / λ1. To each part of 

continues positions, tasks producing events directly 

before the first position and after the last position 

forms a boundary task pair. Each condition is 

accepted as a sound condition if the frequency is 

above Threshold_concurrency = max_fre_condition / μ 

where max_fre_condition refers to the biggest 

occurrence number of a condition within the 

boundary task pair. 

Then we choose the basic trace σ2 with highest 

frequency and check if each task producing an event 

in σ2 executes in all other traces. If not, this task is in 

a choice interval. We accept this task in a position if 

the number that the task dose not execute in a trace in 

the whole log is above Threshold_p2 = N / λ2 where N 

is the total number of traces in the log. To each part 

of continues positions, tasks producing events 

directly before the first position and after the last 

position forms a boundary task pair. Each event 

sequence within the pair is accepted as a sound 

condition if the frequency is above Threshold_choice = 

max_fre_condition / μ*x where if part of this event 

sequence is in concurrency relationship, x is the 

number of types of conditions within sharing the 

same part, else x is 1. 

Tasks in sequential relationship and sound 

conditions are identified using the most frequent basic 

trace. 

Example 4 (Example 3 continued). Basic traces are 

ABCDEFHJ, ABDCEFHJ, ADBCEFHJ (task set: 

ABCDEFHJ, ts1); ABCDEGHJ, ABDCEGHJ, 

ADBCEGHJ (task set: ABCDEGHJ, ts2). Comparing 

three basic traces of ts1, we find that from the second 

to the fourth index, events are produced by different 

tasks. As a result, (A, E) is a concurrency interval. 

Choosing ABCDEFHJ, F is absent in half of the 

traces. So (E, H) must be a choice interval. If we 

subtract BCDE and FH from ABCDEFHJ, we get the 

sequential intervals: (“start”, A) and (H, “end”). 

Considering frequency, LIST= {(“start”, A, {A}, {(A, 

99999999)}), (A, E, {B, C, D, E}, {(BCDE, 6),  

(BDCE, 8), (DBCE, 6)}), (E, H, {F, G, H}, {(FH, 10), 

(GH, 10)}), (H, “end”, {J}, {(J, 99999999)})}. 

4.3 The Three-step Repair Process 

Having discovered rules the log should follow, we 

can take a three-step repair approach. For each trace, 

its basic trace is split, repaired and combined first. If 

the log contains loop structure(s), loop events of the 

trace are added back. After that, loop event sequences 

belonging to each loop structure are checked 

according to the structure. The repair process is 

shown in Figure 5.  

When repairing the basic trace, we firstly split it 

into several event sequences belonging to each 

subsection. Then we compare each sequence with 

sound conditions in the corresponding subsection and 

choose the one with shortest edit distance between the 

original sequence and with highest frequency. If there 

is no event in this subsection, choose the shortest and 

most frequent sound condition. Connecting each 

chosen condition, we get a repaired basic trace which 

takes the fewest steps to transform from the original 

basic trace. 

Example 5 (Example 4 continued). The subsection 

list and loop structures are as above. Suppose there is 

a basic trace ACBDEGHJ with case id = 21. Its loop 

events are: le1 = (21, 1, {D}, {E}, S1, ACBD) and le2 

= (21, 2, {D}, {E}, S2, ACBDS1). We divide the basic 

trace into four sub-traces: A, CBDE, GH and J. Then 

we compare each sub-trace with the sound conditions. 

Both ED(CBDE, BCDE) and ED(CBDE, BDCE) are 

2. Since frequency of BDCE is higher, we transform 

CBDE into BDCE. Connecting repaired sub-traces, 

we get ABDCEGHJ. 

After repairing basic traces, add each loop event 

le back to a position p where the event sequence seq 

before p has the shortest edit distance with its fe. Then 

it can return to its original place as close as possible. 

For each le = (CID, id, former, later, e, fe): 

Set tag1 = 1, tag2 = 1 (two integers); 

 

 

Figure 5: The repair process. 
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 If  e’   seq, e’  former   e’’   

seq, e’’ later, then add le after seq; 

 If  e’   seq, e’ former   e’’   seq, 

e’’ later, then add le to tag1 position(s) before 

e’’’ such that σ(e’’’) = later, tag1+1; 

 If  e’   seq, e’ former, then add le to 

tag2 position(s) after e’’ such that σ (e’’) = 

former, tag2+1. 

Example 6 (Example 5 continued). For le1 = (21, 1, 

{D}, {E}, S1, ACBD), the event sequence ABD has 

the shortest distance with ACBD. D in ABD   {D} 

and no event in ABD belongs to {E}. So we add S1 

after ABD in ABDCEGHJ and get ABDS1CEGHJ. 

The operation on le2 is similar. 

To repair the loop events, we need to classify them 

according to nt and mt belonging to each loop 

structure. Then for each loop structure, compare loop 

events in the trace with the sequence (nt+mt). Here 

similarity of two sequences is based on Longest 

Common Subsequence (LCS). 

Definition 11 (Longest Common Subsequence). If 

there are two event sequences σ1 and σ2, the longest 

common subsequence LCS(σ1, σ2) between them is 

the longest subsequence common to σ1 and σ2. 

Since execution times of each loop are unlimited, 

we in turn compare loop events in the trace belonging 

to the current loop with correct loop events generated 

once, twice, et al. Every time we record LCS and the 

comparison stops when LCS stabilizes. Shortest loop 

event sequence with a maximal LCS is referred to as 

chosen loop sequence (CLS). 

Definition 12 (Chosen Loop Sequence). If there is 

an event sequence, its chosen loop sequence (CLS) is 

an event sequence σ_i = (nt+mt)*i(i>=0), if LCS (σ, 

σ_i) = LCS(σ, σ_i+1) and when i >0, LCS(σ, σ_i) > 

LCS(σ, σ_i-1). 

For each loop, corresponding loop events in the 

trace minus LCS is the events to be deleted and CLS 

minus LCS is the events to be added. We can modify 

them directly in the traces since loop events have been 

added back. 

Example 7 (Example 6 continued). Trace 

ABDS1S2CEGHJ does not have loop events 

belonging to ls1. Its loop event sequence of ls2 is S1S2. 

Length of LCS(S1S2, ) is 0, length of LCS(S1S2, 

S1S2D) is 2, length of LCS(S1S2, S1S2DS1S2D) is also 

2 and we can stop comparing. So we choose S1S2D as 

CLS and LCS(S1S2, S1S2D)= S1S2. S1S2 minus LCS is 

null. CLS minus LCS is D, indicating that D need to 

be added after S1S2. Doing this, we get the repaired 

trace ABDS1S2DCEGHJ. 

The whole process of log repair introduced in this 

paper is described in Algorithm 1. 

5 EVALUATION 

Algorithm 1: HeuristicLogRepair. 

Input: Event log W 

Output: Filtered Log W_f 

1 Basic Task Set BTS, One-loop Task Set LTS ← 

GetTaskSet (W); 

2 If (LTS != NULL) { 

3     Loop structure LS ←   GetLoopStructure 

(BTS, LTS, W); 

4     Basic Log W_basic, Loop Events LE ←  

RemoveLoopEvents (W, LS); 

5 } else W_basic ← W; 

6 Subsection List LIST ←  GetSubsectionList 

(W_basic, BTS); 

7 Filtered Basic Log W_basic_f ←  RepairBaicTrace 

(W_basic, LIST); 

8 If (LS != NULL) { 

9     W_temp ← AddBack (W_basic_f, LE); 

10     Longest common subsection LCS ←  GetLCS 

(LE, LS); 

11     Filtered Log W_f ← RepairLog(LCS, W_temp); 

12 } else W_f ← W_basic_f; 

13 Return W_f. 

 

In this section we present the results of our approach 

compared with two plugins in proM (Dongen, 2015). 

The first is called Filter Log using Simple Heuristics 

(SH) and it removes traces not starting or ending with 

a specified event as well as undesirable events in 

traces. The other one is called Filter out low- 

frequency Traces (FL) and it removes traces whose 

occurrence number is below the threshold you set. 

Different process models are used to generate 

correct logs and we artificially add mistakes to the 

logs. We deal with mistaken logs using SH, FL and 

our approach and do conformance checking between 

every repaired log and the corresponding process 

model. We define two criteria to express accuracy of 

each method: 

||

||||
1

E

move modelmove log
fitness Event


  where |E| 

refers to the total number of events of the repaired log, 

|log move| and |model move| respectively refer to the 

total number of log moves and model moves in the 

alignment. 

M

m

n

correct|
fitness Trace *

|
  where |correct| refers to 

the number of traces conforming to the model, n 

refers to number of traces in the repaired log, M refers 

to total number of types of traces in the original log 

and |m| refers to number of types of traces accepted 

by the model in the repaired log.  

Both Event fitness and Trace fitness reflect how 

the repaired log conforms to the process model.
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Table 1: Data of logs used in the evaluation. 

Logs with redundant events 

Log of 

M1 

Error 

rate 
Events 

Log 

of M4 

Error 

rate 
Events 

L1_1 10% 42405 L4_1 10% 42394 

L1_2 20% 42705 L4_2 20% 42794 

L1_3 30% 43065 L4_3 30% 43066 

L1_4 40% 43423 L4_4 40% 43404 

L1_5 50% 43756 L4_5 50% 43712 

L1_6 60% 44100 L4_6 60% 44068 

L1_7 70% 44398 L4_7 70% 44388 

L1_8 80% 44773 L4_8 80% 44735 

L1_9 90% 45012 L4_9 90% 45060 
 

 

Logs with missing events 

Log of 

M2 

Error 

rate 
Events 

Log 

of M5 

Error 

rate 
Events 

L2_1 10% 40652 L5_1 10% 44041 

L2_2 20% 40272 L5_2 20% 43716 

L2_3 30% 39881 L5_3 30% 43377 

L2_4 40% 39500 L5_4 40% 43060 

L1_5 50% 39144 L5_5 50% 42757 

L2_6 60% 38770 L5_6 60% 42431 

L2_7 70% 38379 L5_7 70% 42105 

L2_8 80% 38012 L5_8 80% 41801 

L2_9 90% 37636 L5_9 90% 41462 
 

 

Logs with redundant and missing events 

Log of 

M3 

Error 

rate 
Events 

Log 

of M6 

Error 

rate 
Events 

L3_1 10% 40086 L6_1 10% 39702 

L3_2 20% 40111 L6_2 20% 39697 

L3_3 30% 40121 L6_3 30% 39713 

L3_4 40% 40133 L6_4 40% 39708 

L3_5 50% 40165 L6_5 50% 39758 

L3_6 60% 40181 L6_6 60% 39751 

L3_7 70% 40195 L6_7 70% 39776 

L3_8 80% 40216 L6_8 80% 39784 

L3_9 90% 40221 L6_9 90% 39796 
 

 

Logs of different sizes 

Log L7 L8 L9 L10 L11 

Labels 10 20 30 40 50 

Events 13333 30042 44016 53596 61133 
 

However, only Trace fitness expresses the integrity 

and better reflects how the repaired log conforms to 

the original log and how a method restores the 

mistaken log. 

5.1 Experimental Setup 

The programs are implemented in Java and all the 

experiments were performed on a computer with 

AMD A10-7300 Radeon R6, 10 Compute Cores 

4C+6G, 1.90GHz CPU and 8 GB memory. 

We set λ1 to 10, λ2 to 40 and μ to 2 in our 

experiments. In the first experiment, we deal with 

logs generated by 3 models without loop structures.  

We use models M1, M2 and M3, each of which 

has 30 transitions, to automatically generated 2000 

traces. For the log from M1, we only add events to 

traces at random places and the mistaken traces 

account for 10% - 90% of the whole, each time 10% 

is increased. For the log from M2, we delete events 

and for the log from M3, we both add and delete 

events. 

In the second experiment, loops are taken into 

consideration and model M4, M5 and M6 with 30 

transitions and loop structures are used. Other settings 

are as above. 

To handle mistaken logs of different sizes, five 

models, M7, M8, M9, M10, M11, are used to generate 

original logs. There are 10, 20, 30, 40 and 50 

transitions in each model and mistaken logs are got 

by both adding and deleting events. Mistaken traces 

account for 60% of the whole log. 

Table 1 reports the characteristics of logs used in 

the experiments, including error rates, sizes and 

number of events. 

5.2 Accuracy 

For processes without loops, we can skip identifying 

loop structures and dealing with loop events. Types 

of traces in original logs generated by M1, M2 and M3 

are 12, 323 and 24 respectively. Figure 6a and 6b, 6c 

and 6d, 6e and 6f show Event fitness and Trace fitness 

of three approaches dealing with logs with only 

redundant events, with only missing events and with 

both redundant and missing events respectively. From 

Fig. 6, Event fitness of FL and our approach is close 

to 1 and is relatively stable, while SH performs much 

worse as the error rate increases. Besides, Trace 

fitness of ours is obviously superior to FL and SH, 

because FL simply removes all low-frequency 

mistaken traces, losing many types of correct traces. 

Note that in Fig. 6d, when 90% of traces have missing 

events, Trace fitness of our approach is not high
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(a) Event fitness with redundant events (b) Trace fitness with redundant events (c) Event fitness with missing events 

   
(d) Trace fitness with missing events (e) Event fitness with mixed errors (f) Trace fitness with mixed errors 

Figure 6: Event fitness and Trace fitness on logs without loops. 

   
(a) Event fitness with redundant events (b) Trace fitness with redundant events (c) Event fitness with missing events 

   
(d) Trace fitness with missing events (e) Event fitness with mixed errors (f) Trace fitness with mixed errors 

Figure 7: Event fitness and Trace fitness on logs with loops. 

0.334. That is because this log has too many different 

execution sequences and it is very easy to fail to 

discover all correct types. However, performances of 

other methods are even poorer, 0.052 and 0.146 

respectively. 

In the second experiment, traces of original logs 

generated by M4, M5 and M6 have 36, 394 and 72 

types respectively. Figure 7a and 7b, 7c and 7d, 7e 

and 7f record event fitness and trace fitness using 

three approaches to repair logs with only redundant 

events, with only missing events and with both 

redundant and missing events respectively. Figure 7 

shows the same regularity that Event fitness of FL and 

our method is almost the same and Trace fitness of 

our approach is better. SH has the worst performance 

anyway. Figure 8 shows the average value of Trace 

fitness on logs above and our approach performs the 

best. 

Types of traces in original logs generated by M7, 

M8, M9 M10 and M11 are 8, 48, 356, 246 and 857 in the 

third experiment. Event fitness and Trace fitness are 

demonstrated in Figure 9a and 9b. FL and our 

approach perform better than SH no matter what the 

model size is. When the log becomes more complex, 

our approach can still get higher Trace fitness than 

FL. 

5.3 Efficiency 

In the experiment with different logs that all contain 

2000 traces, Figure 10a, 10b and 10c individually 

show average time consumed to repair the log gener-
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Table 2: Discovering time on logs. 

Log 

Discovering time (secs) 

Inductive 
ILP-based 

Alpha 

ILP-based 

Heuristics 

L7 0.93 3.47 3.24 

L7_filter 0.58 3.26 3.13 

L8 1.27 4.74 11.12 

L8_filter 0.85 3.41 3.25 

L9 1.80 21.87 90.84 

L9_filter 1.07 4.27 4.72 

L10 2.74 85.20 392.68 

L10_filter 1.13 4.35 4.96 

L11 3.70 335.22 1162.45 

L11_filter 1.24 5.76 6.02 

 

 

Figure 8: Average Trace fitness. 

ated by models without loops, with loops and of 

different sizes. When the log contains no loop and 30 

different tasks, time needed varies from 0.97 second 

to 2.66 seconds. When loops exist, it takes 3.56 to 

5.04 seconds. When the process size increases from 

10 to 50, runtime increases from 2.07 seconds to 6.95 

seconds. Time performance is acceptable. 

We are also interested in time spent on 

discovering models by different mining algorithms. 

Table 2 shows time performance for logs L7, L8, L9, 

L10 and L11, with and without using our repair 

method. After repairing, discovering time is markedly 

reduced, especially when the log contains many tasks. 

6 CONCLUSIONS 

In this paper we present a technique for log repair 

when a sound reference model is unavailable. The 

core idea is to discover rules the log should follow 

and repair traces according to the rules. Since 

situations containing loops are unlimited, loop 

structures, if there are, are identified in advance. 

Sound condition in each subsection are discovered 

using basic traces and filtered by specific thresholds. 

The experimental results from a variety of logs of 

different error rates and different sizes to show that 

our method can effectively transform most of the 

mistaken traces into correct ones and guarantee the 

integrity of the log. Time performance is also within 

acceptance.  

 

    
(a) Event fitness  

 
(b) Trace fitness 

Figure 9: Event fitness and Trace fitness on logs of different 

model sizes. 

     
(a) 

 
(b) 

 
(c) 

Figure 10: Runtime of our method on different logs. 
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It will be interesting to explore potential behaviors 

not contained in the current log and improve the 

accuracy when the log is complex as future work. 

Also, we would like to implement our approach as a 

plugin in proM. 
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