
MDA Process to Extract the Data Model from Document-oriented
NoSQL Database

Amal Ait Brahim, Rabah Tighilt Ferhat and Gilles Zurfluh
Toulouse Institute of Computer Science Research (IRIT), Toulouse Capitole University, Toulouse, France

Keywords: Big Data, NoSQL, Model Extraction, Schema Less, MDA, QVT.

Abstract: In recent years, the need to use NoSQL systems to store and exploit big data has been steadily increasing.
Most of these systems are characterized by the property "schema less" which means absence of the data model
when creating a database. This property brings an undeniable flexibility by allowing the evolution of the
model during the exploitation of the base. However, query expression requires a precise knowledge of the
data model. In this article, we propose a process to automatically extract the physical model from a document-
oriented NoSQL database. To do this, we use the Model Driven Architecture (MDA) that provides a formal
framework for automatic model transformation. From a NoSQL database, we propose formal transformation
rules with QVT to generate the physical model. An experimentation of the extraction process was performed
on the case of a medical application.

1 INTRODUCTION

Recently, there has been an explosion of data
generated and accumulated by more and more
numerous and diversified computing devices.
Databases thus constituted are designated by the
expression "Big Data" and are characterized by the
so-called "3V" rule (Chen, 2014). This is due to the
volume of data that can exceed several terabytes and
the variety of these data that are described as
complex. In addition, these data are often entered at
very high frequency and must therefore be filtered
and aggregated in real time to avoid unnecessary
saturation of the storage space.

Traditional implantation techniques, based
primarily on the relational paradigm, have limitations
in managing massive databases (Angadi, 2013). Thus,
new data storage and manipulation systems have been
developed. Grouped under the term NoSQL (Han,
2011), these systems are well suited for managing
large volumes of data with flexible models. They also
bring great scalability and good performance in
response time (Angadi, 2013).

Most of the NoSQL DBMS are characterized by
the "schema less" property which corresponds to the
absence of the data schema when creating a database.
This property appears in many NoSQL systems such
as MongoDB, CouchDB, HBase and Neo4j. Note

however that it is absent in some systems such as
Cassandra and Riak TS. The "schema less" property
offers undeniable flexibility by allowing the model to
evolve easily. For example, the addition of new
attributes in an existing line is done without
modifying the other lines of the same type previously
stored; something that is not possible with relational
DBMS, where all elements of the model are fixed
before data entry. However, the model of a database
is an essential knowledge element for data
manipulation. Indeed, the knowledge of the model of
the base proves necessary, even indispensable, to
express a query where appear the names of the tables,
the names of the attributes and values compatible
with a type. And this is all the more important if the
queries are written by decision-makers, who are not
supposed to be non-computer scientists.

Currently, NoSQL systems characterized by the
property "schema less" do not have a feature to
dynamically display the database model. In this
article, we propose a process to automatically extract
the model from the data stored on a NoSQL DBMS.
The goal is to allow users to visualize the data model
on demand.

The rest of the paper is structured as follows:
Section 2 motivates our work using a case study in the
healthcare field; Section 3 reviews previous work on
extracting the data model; Section 4 introduces our
MDA-based approach; A model to model

Brahim, A., Ferhat, R. and Zurfluh, G.
MDA Process to Extract the Data Model from Document-oriented NoSQL Database.
DOI: 10.5220/0007676201410148
In Proceedings of the 21st International Conference on Enterprise Information Systems (ICEIS 2019), pages 141-148
ISBN: 978-989-758-372-8
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

141

transformation is presented in this section to
automatically extract the data model from a NoSQL
database; Section 5 details our experiments; Section
6 presents the positioning of our work and Section 7
concludes the paper and announces future work.

2 MOTIVATION

To motivate and illustrate our work, we present a case
study in the healthcare filed. This case study concerns
international scientific programs for monitoring
patients suffering from serious diseases. The main
goal of this program is (1) to collect data about
diseases development over time, (2) to study
interactions between different diseases and (3) to
evaluate the short and medium-term effects of their
treatments. The medical program can last up to 3
years. Data collected from establishments involved in
this kind of program have the features of Big Data
(the 3 V) (Doug, 2001). Indeed, the amount of data
collected daily from all the establishments in three
years can reach several terabytes. Furthermore, data
entered while monitoring patients come in different
types; it could be structured as the patient's vital signs
(respiratory rate, blood pressure, etc.), semi-
structured document such as the package leaflets of
medicinal products, unstructured such as consultation
summaries, paper prescriptions and radiology reports.
Finally, some data are produced in continuous way by
sensors; it needs a real time process because it could
be integrated into a time-sensitive processes (for
example, some measurements, like temperature,
require an emergency medical treatment if they cross
a given threshold).

This is a typical example in which the use of a
NoSQL system is suitable. On the one hand, in the
medical application, briefly presented above, the
database contains structured data, data of various
types and formats (explanatory texts, medical
records, x-rays, etc.), and big tables (records of
variables produced by sensors). On the other hand,
NoSQL data stores are ideally suited to this kind of
applications that need a database which can cope with
large amounts of disparate data. Therefore, we are
convinced that a NoSQL DBMS, like MongoDB, is
the most adapted system to store the medical data.

As an illustration, Figure 1 gives an excerpt from
the data model of the medical application. This is the
graphical description of the data structures stored in
the MongoDB (MongoDB, 2018) system that we
used in our experiment. Note now that MongoDB is a

"schema less" system, it does not provide this model,
either in textual form or in graphical form.

Figure 1: Excerpt from the physical model of data.

This case study is a typical example of applications
where users need a tool to display the database model.
Indeed, doctors enter measures regularly for a cohort
of patients. They can also recording new data in cases
where the patient's state of health evolve over time.
Few months later, doctors will analyze the entered
data in order to follow the evolution of the pathology.
For this, they need to use a model to express their
queries.

In our view, it’s important to have a precise and
automatic solution that guides and facilitates the data
model extraction task within NoSQL systems. For
this, we propose the Query2Model process presented
in the next section that extracts the physical model of
a database stored in MongoDB.

3 RELATED WORK

In industry, several integration systems and access to
heterogeneous data such as Apache Drill (Drill,
2018), CloudMdsQL (CloudMdsQL, 2018) and
BigIntegrator (BigIntegrator, 2018), allow to extract
the physical model of a NoSQL database,
(Bondiombouy, 2015). For example Apache-Drill,
which appears as the most successful system, allows
to query heterogeneous data stored on different types
of systems. The user can obtain the data model by
applying a shell script to the NoSQL database.

On the other hand, research work has been
proposed in order to extract a physical model from a
NoSQL database of type "schema less", mainly for
document-oriented databases such as MongoDB.

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

142

Thus, a process has been proposed in (Klettke, 2015)
to extract the model from a collection of JSON
documents stored on MongoDB. The model returned
by this process is in JSON format; it is obtained by
capturing the names of the attributes that appear in the
input documents and replacing their values with their
types. Attribute values can be atomic type, lists or
nested documents.

In the article of (Sevilla, 2015), the authors
propose another process of extraction of the model of
a document-oriented NoSQL database which can
include several collections. The returned result is not
a unified model for the whole database but it gives the
different versions of models for each collection. The
extraction process is composed of two successive
steps. The first one runs through the database and, for
each distinct template version, generates a document
in a collection called "Template". In the second step,
the process provides a model of each version by
instantiating the JSON meta-model.

We can also mention the work of (Gallinucci,
2018) which proposes a process called BSP (Build
Schema Profile) to classify the documents of a
collection by applying rules corresponding to the
requirements of the users. These rules are expressed
through a decision tree whose nodes represent the
attributes of the documents; the edges specify the
conditions on which the classification is based. These
conditions reflect either the absence or the presence
of an attribute in a document or its value. As in the
previous article (Sevilla, 2015), the result returned by
this approach is not a unified model but a set of
version models; each of them is common to a group
of documents.

Regarding the state of the art, the solutions
proposed to extract the model of a NoSQL database,
only partially answer our problem. Indeed, in
(Klettke, 2015) and (Gallinucci, 2018), the authors
propose processes that take as input a single
collection of documents. As a result, the links
between the collections are not studied. Similarly, the
work of (Sevilla, 2015) does not deal with links
although they consider several collections. In our
process, we propose a solution to take into account
the links between the collections.

4 ToNoSQLmodel PROCESS

The purpose of this article is to automate the
extraction of the model from NoSQL databases of
type "schema less" which generally divided into four
categories: key / value, columns, documents and

graphs. We limit ourselves to the type documents
which is the most complete in terms of expression of
the links (use of references and nestings).
ToNoSQLmodel process that we propose,
automatically extracts the model from a document-
oriented NoSQL database.

To formalize and automate our process, we use
OMG's Model Driven Architecture (OMG, 2018),
which provides a formal framework for automating
model transformations. The purpose of this
architecture is to describe separately the functional
specifications and implementation specifications of
an application on a given platform (Hutchinson,
2011). For this, it uses three models representing the
abstraction levels of the application. These are (1) the
Computational Independent Model (CIM) in which
no IT considerations appear, (2) the Independent
Platform Independent Model (PIM) model of analysis
and design. Execution platforms and (3) Platform
Specific Model (PSM) specific to a particular
platform. Since the input of our process is a NoSQL
database and its output is a physical model, we only
retain the PSM level.

The passage of a NoSQL database to its model is
done via a sequence of transformations. We will
formalize these transformations using the standard
QVT (Query View Transformation) defined by the
EMF. Figure 2 shows an overview of our process.

Figure 2: Overview of ToNoSQLmodel process.

In the following sections, we detail the
components of our process by specifying the
following three elements: (a) the source, (b) the
target, and (c) the transformation rules.

4.1 Source

A document-oriented NoSQL database (DB) is
defined as a pair (N, CLL), where:

- N is the DB name,
- CLL = {݈݈ܿଵ, … , ݈݈ܿ௡} is a set of collections ∀ i ∈ [1..n], ܿ ݈݈௜ ∈ DB. CLL is a pair (N, ܮܨூே), where:

ToNoSQLmodel

(2)
Transformation
Model to Model

(1)
Document-

Oriented
NoSQL DB

(3)
NoSQL Physical

Model

MDA Process to Extract the Data Model from Document-oriented NoSQL Database

143

 - ݈݈ܿ௜.N the collection name, - ݈݈ܿ௜. ܮܨூே = AFLIN ∪ CFLIN, is a set of input
fields of ݈݈ܿ௜ , where: - AFLIN = {݂݈ܽଵூே, … , ݂݈ܽ௞ூே} is a set of atomic
fields, where: ∀ i ∈ [1..k], ݂݈ܽ୧ூே ∈ AFLIN is defined as a pair
(N, V), where:

 - ݂݈ܽ୧ூே.N is the name of ݂݈ܽ୧ூே,

 - ݂݈ܽ୧ூே.V is the value of ݂݈ܽ୧ூே, - CFLIN = {݂݈ܿଵூே, … , ݂݈ܿ௟ூே} is a set of complex fields, where: ∀ i ∈ [1..l], ݂݈ܿ௜ூே ∈ CFLIN is defined as a pair (N, ܮܨூே′), where:

 - ݂݈ܿ௜ூே.N is the name of ݂݈ܿ௜ூே,
 - ݂݈ܿ௜ூே. ܮܨூே′ ∈ ூே is the set of fieldsܮܨ
that ݂݈ܿ௜ூேcontains.

To express a link between the collections, we used
a field called: reference field, denoted by ܿℎ௥௘௙
(MongoDB, 2018). This one is a special case of a
complex field. ܿℎ௥௘௙ is composed of two atomic
fields ܿℎଵ௥௘௙ and ܿℎଶ௥௘௙, each of them is defined as a
pair (N, V), where:

- ܿℎଵ௥௘௙.N = $id

- ܿℎଵ௥௘௙.V : corresponds to the identifier of the
referenced document

And,

- ܿℎଶ௥௘௙.N = $ref

- ܿℎଶ௥௘௙.V : is the name of the collection that
contains the referenced document.

We present these different concepts through the
meta-model of Figure 3. Note that all the meta-
models presented in this article are formalized with
the standard Ecore language (Ecore, 2018).

4.2 Target

The NoSQL model noted M generated by our process,
is stored in a collection ݈݈ܿெ௢ௗ௘௟. This is defined as a
pair (N, D), where:

- ݈݈ܿெ௢ௗ௘௟. N is the model name,
- ݈݈ܿெ௢ௗ௘௟. D = {݀ଵ, … , ݀௡} is a set of

documents that ݈݈ܿெ௢ௗ௘௟ contains.

Figure 3: Source Metamodel. ∀ i ∈ [1..n], ݀ ௜ is defined as a pair (Id, ܮܨை௎்), where - ݀௜. Id is the identifier of ݀௜,

 - ݀௜. ,ை௎்ܮܨܣ} =ை௎்ܮܨ … , ை௎்} is a set ofܮܨܥ
imput fields of ݀௜, where : - AFLOUT = {݂݈ܽଵை௎், … , ݂݈ܽ௞ை௎்} is a set of atomic fields of ݀௜, where: ∀ i ∈ [1..k], ݂݈ܽ୧ை௎் ∈ AFLOUT is defined as a pair (N,
Ty), where:
 - ݂݈ܽ୧ை௎்.N is the name of ݂݈ܽ୧ை௎்,

 - ݂݈ܽ୧ை௎்.Ty is the type of ݂݈ܽ୧ை௎்.

Note that the type of ݂݈ܽ୧ை௎் can be either
predefined (for example: String, Boolean, Integer, ...)
or defined by the user (for example: Patient, Doctors,
...).

 - CFLOUT = {݂݈ܿଵை௎், … , ݂݈ܿ௟ை௎்} is a set of complex fields of ݀௜, where: ∀ i ∈ [1..l], ݂݈ܿ௜ை௎் ∈ CFLOUT is defined as a pair (N, ܮܨை௎்′), where:

 - ݂݈ܿ௜ை௎்.N is the name of ݂݈ܿ௜ை௎்,
 - ݂݈ܿ௜ை௎். ܮܨை௎்′ ∈ ை௎் is the set ofܮܨ
fields that ݂݈ܿ௜ை௎்contains.

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

144

Figure 4: Target Metamodel.

4.3 Transformation Rules

We have formalized the concepts present in the
source (document-oriented database) and in the target
(NoSQL physical model). In this section, we present
our process as a sequence of transformation rules
described below.

R1: The DB model is stored in a collection ݈݈ܿ௠௢ௗ௘௟.
This is defined as a pair (N,D), where:

- ݈݈ܿ௠௢ௗ௘௟.N= DB.N,
- ݈݈ܿ௠௢ௗ௘௟.D is generated by applying R2.

R2: For each collection ݈݈ܿ௜ ∈ DB. CLL with i ∈
[1..n], we create a document ݀௜, where:

- ݀௜.N = ݈݈ܿ௜. ܰ
- ݀௜. ܮܨை௎் is generated by applying R3 or R4.

Note that ݀௜contains a unified template for all
documents that ݈݈ܿ௜ contains. This means that our
process generates a unique collection model grouping
all the fields of the documents. We therefore do not
consider several versions of models for the same input
collection.

R3: Each atomic field ݂݈ܽ୨ூே ∈ ݈݈ܿ௜.AFLIN is
transformed into a field ݂݈ܽ୨ை௎் with i ∈ [1..n] and j ∈
[1..k], where:

- ݂݈ܽ୨ை௎். ܰ = ݂݈ܽ୨ூே.N

- ݂݈ܽ୨ை௎். is generated according to the form ݕܶ
of the value of ݂݈ܽ୨ூே.

For example, if ݂݈ܽ୨ூே. ܸ = " ", then ݂݈ܽ୨ை௎். = ݕܶ
String. And, If ݂݈ܽ୨ூே. ܸ = {" "," ", … " "}, then ݂݈ܽ୨ை௎். .Set (String) = ݕܶ

R4: Each complex field ݂݈ܿ୨ூே ∈ ݈݈ܿ௜.CFLIN is
transformed into a field ݂݈ܿ୨ை௎் with i ∈ [1..n] and j ∈
[1..l], where:

- ݂݈ܿ୨ை௎். ܰ = ݂݈ܿ୨ூே.N
- ݂݈ܿ୨ை௎். :ை௎்′ is generated as followsܮܨ

 - Apply R3 for each atomic field ݂݈ܽூே ∈ ݂݈ܿ୨ூே. .′ூேܮܨܣ
 - Apply the R4 for each complex field ܿ ݂݈ூே ∈ ݂݈ܿ୨ூே. ′ூேܮܨܥ

R5: A reference field ܿℎ௥௘௙ is transformed into a
complex field ݂݈ܿ୨ை௎் with j ∈ [1..2], where :

- ݂݈ܿଵை௎். N = ܿℎଵ௥௘௙.N
- ݂݈ܿଵை௎். Ty = ObjectID
- ݂݈ܿଶை௎். N = ܿℎଶ௥௘௙.N
- ݂݈ܿଶை௎். Ty = ܿℎଶ௥௘௙.V

5 EXPERIMENTS

5.1 Technical Environment

We briefly describe the techniques we used to
implement the approach presented in Figure 2. Since
our approach is model driven, we used a technical
environment suitable for modeling, meta-modeling
and model transformation. We used the Eclipse
Modeling Framework (EMF) (EMF, 2018). EMF
provides a set of tools for introducing a model-driven
development approach within the Eclipse
environment. These tools provide three main features.
The first is the definition of a meta-model
representing the concepts used by the user. The
second is the creation of the models instantiating this
meta-model and the third is the transformation from
model to model and from model to text (Budinsky,
2004). Among the tools provided by EMF, we used:
(1) Ecore: a meta-modeling language used for the
creation of our meta-models. Figure 3 and Figure 4
illustrate the source and target Ecore meta-models
used by our ToNoSQLmodel process. (2) XML
Metadata Interchange (XMI): which is a standard
used to represent models in XML. (3) QVT (Query,
View, and Transformation): which is a standardized

MDA Process to Extract the Data Model from Document-oriented NoSQL Database

145

language for expressing model transformations. The
choice of QVT was based on criteria specific to our
approach. Indeed, the transformation tool must be
integrated into the EMF environment so that it can be
easily used with modeling and meta-modeling tools.
Thus, we used the operational QVT language.

We have implemented our process on medical
data presented in section 2. The essential aspect,
showing the interest of our process, lies in the variety
of data used: text, multivalued data, and structured
documents. Since we did not study the performance
of our prototype, the Volume dimension of the data
was not significant; our experiment was therefore
limited to a BD of about 500GB.

5.2 Implantation of the ToNoSQLmodel
Process

Our ToNoSQLmodel process is expressed in the form
of a sequence of elementary steps that build the
resulting model (NoSQL physical model) step by step
from the source model (document-oriented NoSQL
database):

Step 1: We create Ecore meta-models
corresponding to the source (Figure 3) and the target
(Figure 4).

Step 2: we build an instance of the source meta-
model to produce the document-oriented NoSQL
database (see Figure 5); this database is an extract
from the medical application data described in section
2 and stored as an XMI file.

Step 3: We implement the transformation rules
using the QVT language provided by EMF. An
excerpt from the QVT script is shown in Figure 7; the
comments in the script indicate the rules used.

Step 4: We test the transformations by running
the QVT script created in step 3. This script takes as
input the source model created in step 2 and outputs
the NoSQL physical model. The result is provided as
an XMI file, as shown in Figure 6.

Our source database contains various data as
shown in Figure 5: multivalued fields (such as First-
name in the Patients collection), complex fields
(Address in the Patients collection) as well as
monovalued (Medical-history) and multivalued links
(Competent).

Figure 5: Source Model.

Multivalued Field

Complex Field

Reference Field

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

146

Figure 6: Target Model.

Figure 6 shows the data model resulting from our
ToNoSQLmodel process. This model is generated in
the Json formalism but it corresponds to the graphical
representation that we gave in Figure 1.

Figure 7: Excerpt of the QVT code.

6 POSITIONING OF OUR WORK

We position our work against Apache Drill system
and the state-of-the-art presented in Section 3.

modeltype NoSQL_DB uses
"http://nosqldatabaseMM.com";

modeltype NoSQL_Schema uses
"http://nosqlschemaMM.com";

transformation NoSQLdb2NoSQLschema(in Source:
NoSQL_DB, out Target: NoSQL_Schema);

main() {
Source.rootObjects()[NoSQL_DB] -> map

toNoSQL_Schema();}
mapping NoSQL_DB

::NoSQL_DB::toNoSQL_Schema():NoSQLSchema::NoSQL
_Schema{

sName:=self.dbName;
collection:=self.collections -> map toCollection();}
-- Transforming Collections
mapping Insert

::Collections::toCollection():Update::Collection{
cName:=self.cName;
atomicufield:=self.atomicifield -> map toAtomicField();
structuredufield:=self.structuredifield -> map

toStructuredField();}
-- Transforming Atomic Fields
mapping Insert

::AtomicIField::toAtomicField():Update::AtomicUField{
fielduname:=self.fieldiname -> map toFieldName();
fielduvalue:=self.fieldivalueform -> map

toFieldValue1();
fielduvalue:=self.fieldivalue -> map toFieldValue2();}
mapping Insert

::FieldIName::toFieldName():Update::FieldUName{NameU:
=self.NameI;}

mapping
Insert::FieldIValue::toFieldValue1():Update::FieldUValue{

if ((self.FieldIValue = "True") or (self.FieldIValue =
"False")) {FieldUValue:= "Boolean";}

FieldUValue:= "Number"; endif;}
mapping

Insert::FieldIValueForm::toFieldValue2():Update::FieldUValue
{

if (self.FieldIValueForm = "") {FieldUValue:= "String";}
endif;

if (self.FieldIValueForm = --/--/--/) {FieldUValue:=
"Date";}endif;}

-- Transforming Structured Fields
 mapping Insert

::StructuredIField::toStructuredField():Update::StructuredUFiel
d{

The script output

The script input

MDA Process to Extract the Data Model from Document-oriented NoSQL Database

147

Apache-Drill system does not display a complete
model for data stored under MongoDB. Indeed, only
the names of the collections and the fields of the first
level are displayed, which means that the nested fields
do not appear. However, our process gives, for each
collection, its name as well as all the names and types
of the fields, that these are atomic or complex.

On the other hand, for the three research works
cited in the state of the art, the proposed solutions do
not consider the links between collections. However,
in the application presented in section 2 (see Figure
1), the links between collections are useful for
treatments and requests made by doctors. Thus, our
process proposes a solution to take into consideration
the links between the collections and formalize them
in the resulting data model.

Finally, it should be emphasized that our process
is based on the MDA architecture. This brings both a
standard formalism of description of the
transformation rules and a way of automating the
sequences of transformations.

7 CONCLUSION AND
PERSPECTIVES

Our work is part of the evolution of databases towards
Big Data. Our studies are currently focused on the
extraction mechanisms of the data model from a
NoSQL database in order to facilitate the expression
of queries.

 In this article, we have proposed an automatic
process to extract the physical model from a
document-oriented NoSQL database. This process is
based on the Model Driven Architecture (MDA)
architecture that provides a formal framework for
automating model transformations. Our process
generates a NoSQL physical model from a NoSQL
database by applying a sequence of transformations
formalized with the QVT standard. The returned
model describes the structure of the collections that
make up the database and their links. We have
experimented our process on the case study in
healthcare filed. This case study concerns scientific
programs for monitoring patients having serious
diseases; the database is stored on MongoDB system.

As future work, we plan to study the update of the
data model as the database is being exploited. Indeed,
the data volume can reach several terabytes, the
generation of the model requires the scan of the entire
database. It is therefore not possible for a user to
restart the process each time he wishes to express a
new query.

REFERENCES

Angadi, A. B., Angadi, A. B., & Gull, K. C. (2013). Growth
of New Databases & Analysis of NOSQL Datastores.
International Journal of Advanced Research in
Computer Science and Software Engineering, 3, 1307-
1319.

BigIntegrator (2018). IBM BigIntegrate.
https://www.ibm.com/us-en/marketplace/ibm-
biginsights-bigintegrate; 5 December 2018.

Bondiombouy, C. (2015). Query processing in cloud
multistore systems. In BDA : Bases de Données
Avancées.

Budinsky, F., Steinberg, D., Ellersick, R., Grose, T. J., &
Merks, E. (2004). Eclipse modeling framework: a
developer's guide. Addison-Wesley Professional.

Chen, CL Philip et Zhang, Chun-Yang. Data-intensive
applications, challenges, techniques and technologies:
A survey on Big Data. Information Sciences, 2014, vol.
275, p. 314-347.

CloudMdsQL (2018). CloudMdsQL Compiler. http
://cloudmdsql.gforge.inria.fr/ Online ; 5 December
2018.

Douglas, L., 2001. 3d data management: Controlling data
volume, velocity and variety. Gartner. Retrieved, 6,
2001.

Drill (2018). Apache Drill. https: //drill.apache.org/ Online
; 5 December 2018.

Ecore (2018). The eclipse modeling framework project.
http ://www.eclipse.org/emf Online; 5 December 2018.

EMF (2018). Projets EMF. www.eclipse.org/stp/ and
www.eclipse.org/emf/ Online; 5 December 2018.

Gallinucci, E., Golfarelli, M., & Rizzi, S. (2018). Schema
profiling of document-oriented databases. Information
Systems, 75, 13-25.

Han, Jing, Haihong, E., LE, Guan, et al. Survey on NoSQL
database. Pervasive computing and applications
(ICPCA), 2011 6th international conference on. IEEE,
2011. p. 363-366.

Harrison, G. (2015). Next Generation Databases:
NoSQLand Big Data. Apress.

Hutchinson, J., Rouncefield, M., & Whittle, J. (2011, May).
Model-driven engineering practices in industry. In
Proceedings of the 33rd International Conference on
Software Engineering (pp. 633-642). ACM.

Klettke, M., U. Störl, et S. Scherzinger (2015). Schema
extraction and structural outlier detection for json-
based nosql data stores. Datenbanksysteme für
Business, Technologie und Web (BTW 2015).

MongoDB (2018). Mongodb atlas database as a service.
https://docs.mongodb.com/manual/reference/database-
references/ Online ; 5 December 2018.

OMG (2018). Object Management Group.
http://www.omg.org/ Online ; 5 December 2018.

Sevilla, Diego Ruiz, Severino Feliciano Morales, and Jesús
García Molina. "Inferring versioned schemas from
NoSQL databases and its applications." International
Conference on Conceptual Modeling. Springer, Cham,
2015.

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

148

