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Abstract: In recent years, the need to use NoSQL systems to store and exploit big data has been steadily increasing. 
Most of these systems are characterized by the property "schema less" which means absence of the data model 
when creating a database. This property brings an undeniable flexibility by allowing the evolution of the 
model during the exploitation of the base. However, query expression requires a precise knowledge of the 
data model. In this article, we propose a process to automatically extract the physical model from  a document-
oriented NoSQL database. To do this, we use the Model Driven Architecture (MDA) that provides a formal 
framework for automatic model transformation. From a NoSQL database, we propose formal transformation 
rules with QVT to generate the physical model. An experimentation of the extraction process was performed 
on the case of a medical application. 

1 INTRODUCTION 

Recently, there has been an explosion of data 
generated and accumulated by more and more 
numerous and diversified computing devices. 
Databases thus constituted are designated by the 
expression "Big Data" and are characterized by the 
so-called "3V" rule (Chen, 2014). This is due to the 
volume of data that can exceed several terabytes and 
the variety of these data that are described as 
complex. In addition, these data are often entered at 
very high frequency and must therefore be filtered 
and aggregated in real time to avoid unnecessary 
saturation of the storage space. 

Traditional implantation techniques, based 
primarily on the relational paradigm, have limitations 
in managing massive databases (Angadi, 2013). Thus, 
new data storage and manipulation systems have been 
developed. Grouped under the term NoSQL (Han, 
2011), these systems are well suited for managing 
large volumes of data with flexible models. They also 
bring great scalability and good performance in 
response time (Angadi, 2013). 

Most of the NoSQL DBMS are characterized by 
the "schema less" property which corresponds to the 
absence of the data schema when creating a database. 
This property appears in many NoSQL systems such 
as MongoDB, CouchDB, HBase and Neo4j. Note 

however that it is absent in some systems such as 
Cassandra and Riak TS. The "schema less" property 
offers undeniable flexibility by allowing the model to 
evolve easily. For example, the addition of new 
attributes in an existing line is done without 
modifying the other lines of the same type previously 
stored; something that is not possible with relational 
DBMS, where all elements of the model are fixed 
before data entry. However, the model of a database 
is an essential knowledge element for data 
manipulation. Indeed, the knowledge of the model of 
the base proves necessary, even indispensable, to 
express a query where appear the names of the tables, 
the names of the attributes and values compatible 
with a type. And this is all the more important if the 
queries are written by decision-makers, who are not 
supposed to be non-computer scientists. 

Currently, NoSQL systems characterized by the 
property "schema less" do not have a feature to 
dynamically display the database model. In this 
article, we propose a process to automatically extract 
the model from the data stored on a NoSQL DBMS. 
The goal is to allow users to visualize the data model 
on demand. 

The rest of the paper is structured as follows: 
Section 2 motivates our work using a case study in the 
healthcare field; Section 3 reviews previous work on 
extracting the data model; Section 4 introduces our 
MDA-based approach; A model to model 
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transformation is presented in this section to 
automatically extract the data model from a NoSQL 
database; Section 5 details our experiments; Section 
6 presents the positioning of our work and Section 7 
concludes the paper and announces future work. 

2 MOTIVATION 

To motivate and illustrate our work, we present a case 
study in the healthcare filed. This case study concerns 
international scientific programs for monitoring 
patients suffering from serious diseases. The main 
goal of this program is (1) to collect data about 
diseases development over time, (2) to study 
interactions between different diseases and (3) to 
evaluate the short and medium-term effects of their 
treatments. The medical program can last up to 3 
years. Data collected from establishments involved in 
this kind of program have the features of Big Data 
(the 3 V) (Doug, 2001). Indeed, the amount of data 
collected daily from all the establishments in three 
years can reach several terabytes. Furthermore, data 
entered while monitoring patients come in different 
types; it could be structured as the patient's vital signs 
(respiratory rate, blood pressure, etc.), semi-
structured document such as the package leaflets of 
medicinal products, unstructured such as consultation 
summaries, paper prescriptions and radiology reports. 
Finally, some data are produced in continuous way by 
sensors; it needs a real time process because it could 
be integrated into a time-sensitive processes (for 
example, some measurements, like temperature, 
require an emergency medical treatment if they cross 
a given threshold).  

This is a typical example in which the use of a 
NoSQL system is suitable. On the one hand, in the 
medical application, briefly presented above, the 
database contains structured data, data of various 
types and formats (explanatory texts, medical 
records, x-rays, etc.), and big tables (records of 
variables produced by sensors). On the other hand, 
NoSQL data stores are ideally suited to this kind of 
applications that need a database which can cope with 
large amounts of disparate data. Therefore, we are 
convinced that a NoSQL DBMS, like MongoDB, is 
the most adapted system to store the medical data. 

As an illustration, Figure 1 gives an excerpt from 
the data model of the medical application. This is the 
graphical description of the data structures stored in 
the MongoDB (MongoDB, 2018) system that we 
used in our experiment. Note now that MongoDB is a 

"schema less" system, it does not provide this model, 
either in textual form or in graphical form. 

 

Figure 1: Excerpt from the physical model of data. 

This case study is a typical example of applications 
where users need a tool to display the database model. 
Indeed, doctors enter measures regularly for a cohort 
of patients. They can also recording new data in cases 
where the patient's state of health evolve over time. 
Few months later, doctors will analyze the entered 
data in order to follow the evolution of the pathology. 
For this, they need to use a model to express their 
queries.    

In our view, it’s important to have a precise and 
automatic solution that guides and facilitates the data 
model extraction task within NoSQL systems. For 
this, we propose the Query2Model process presented 
in the next section that extracts the physical model of 
a database stored in MongoDB.  

3 RELATED WORK 

In industry, several integration systems and access to 
heterogeneous data such as Apache Drill (Drill, 
2018), CloudMdsQL (CloudMdsQL, 2018) and 
BigIntegrator (BigIntegrator, 2018), allow to extract 
the physical model of a NoSQL database, 
(Bondiombouy, 2015). For example Apache-Drill, 
which appears as the most successful system, allows 
to query heterogeneous data stored on different types 
of systems. The user can obtain the data model by 
applying a shell script to the NoSQL database. 

On the other hand, research work has been 
proposed in order to extract a physical model from a 
NoSQL database of type "schema less", mainly for 
document-oriented databases such as MongoDB. 
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Thus, a process has been proposed in (Klettke, 2015) 
to extract the model from a collection of JSON 
documents stored on MongoDB. The model returned 
by this process is in JSON format; it is obtained by 
capturing the names of the attributes that appear in the 
input documents and replacing their values with their 
types. Attribute values can be atomic type, lists or 
nested documents. 

In the article of (Sevilla, 2015), the authors 
propose another process of extraction of the model of 
a document-oriented NoSQL database which can 
include several collections. The returned result is not 
a unified model for the whole database but it gives the 
different versions of models for each collection. The 
extraction process is composed of two successive 
steps. The first one runs through the database and, for 
each distinct template version, generates a document 
in a collection called "Template". In the second step, 
the process provides a model of each version by 
instantiating the JSON meta-model. 

We can also mention the work of (Gallinucci, 
2018) which proposes a process called BSP (Build 
Schema Profile) to classify the documents of a 
collection by applying rules corresponding to the 
requirements of the users. These rules are expressed 
through a decision tree whose nodes represent the 
attributes of the documents; the edges specify the 
conditions on which the classification is based. These 
conditions reflect either the absence or the presence 
of an attribute in a document or its value. As in the 
previous article (Sevilla, 2015), the result returned by 
this approach is not a unified model but a set of 
version models; each of them is common to a group 
of documents. 

Regarding the state of the art, the solutions 
proposed to extract the model of a NoSQL database, 
only partially answer our problem. Indeed, in 
(Klettke, 2015) and (Gallinucci, 2018), the authors 
propose processes that take as input a single 
collection of documents. As a result, the links 
between the collections are not studied. Similarly, the 
work of (Sevilla, 2015) does not deal with links 
although they consider several collections. In our 
process, we propose a solution to take into account 
the links between the collections. 

4 ToNoSQLmodel PROCESS 

The purpose of this article is to automate the 
extraction of the model from NoSQL databases of 
type "schema less" which generally divided into four 
categories: key / value, columns, documents and 

graphs. We limit ourselves to the type documents 
which is the most complete in terms of expression of 
the links (use of references and nestings). 
ToNoSQLmodel process that we propose, 
automatically extracts the model from a document-
oriented NoSQL database.  

To formalize and automate our process, we use 
OMG's Model Driven Architecture (OMG, 2018), 
which provides a formal framework for automating 
model transformations. The purpose of this 
architecture is to describe separately the functional 
specifications and implementation specifications of 
an application on a given platform (Hutchinson, 
2011). For this, it uses three models representing the 
abstraction levels of the application. These are (1) the 
Computational Independent Model (CIM) in which 
no IT considerations appear, (2) the Independent 
Platform Independent Model (PIM) model of analysis 
and design. Execution platforms and (3) Platform 
Specific Model (PSM) specific to a particular 
platform. Since the input of our process is a NoSQL 
database and its output is a physical model, we only 
retain the PSM level. 

The passage of a NoSQL database to its model is 
done via a sequence of transformations. We will 
formalize these transformations using the standard 
QVT (Query View Transformation) defined by the 
EMF. Figure 2 shows an overview of our process. 

 

Figure 2: Overview of ToNoSQLmodel process. 

In the following sections, we detail the 
components of our process by specifying the 
following three elements: (a) the source, (b) the 
target, and (c) the transformation rules. 

4.1 Source 

A document-oriented NoSQL database (DB) is 
defined as a pair (N, CLL), where: 

- N is the DB name, 
- CLL = {݈݈ܿଵ, … , ݈݈ܿ௡} is a set of collections ∀ i ∈ [1..n], ܿ ݈݈௜ ∈ DB. CLL is a pair (N, ܮܨூே), where: 
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          - ݈݈ܿ௜.N the collection name,           - ݈݈ܿ௜. ܮܨூே = AFLIN ∪ CFLIN, is a set of input 
fields of ݈݈ܿ௜ , where:                 - AFLIN =  {݂݈ܽଵூே, … , ݂݈ܽ௞ூே} is a set of atomic 
fields, where: ∀ i ∈ [1..k], ݂݈ܽ୧ூே ∈ AFLIN is defined as a pair  
(N, V), where: 

                 - ݂݈ܽ୧ூே.N is the name of ݂݈ܽ୧ூே, 

           - ݂݈ܽ୧ூே.V is the value of ݂݈ܽ୧ூே,                - CFLIN =  {݂݈ܿଵூே, … , ݂݈ܿ௟ூே} is a set of complex fields, where: ∀ i ∈ [1..l], ݂݈ܿ௜ூே ∈ CFLIN is defined as a pair (N, ܮܨூே′), where:     

                 - ݂݈ܿ௜ூே.N is the name of ݂݈ܿ௜ூே, 
                 - ݂݈ܿ௜ூே. ܮܨூே′ ∈  ூே is the set of fieldsܮܨ 
that  ݂݈ܿ௜ூேcontains.  

To express a link between the collections, we used 
a field called: reference field, denoted by ܿℎ௥௘௙ 
(MongoDB, 2018). This one is a special case of a 
complex field. ܿℎ௥௘௙ is composed of two atomic 
fields ܿℎଵ௥௘௙ and ܿℎଶ௥௘௙, each of them is defined as a 
pair (N, V), where: 

- ܿℎଵ௥௘௙.N = $id 

- ܿℎଵ௥௘௙.V : corresponds to the identifier of the 
referenced document 

And, 

- ܿℎଶ௥௘௙.N = $ref 

- ܿℎଶ௥௘௙.V : is the name of the collection that 
contains the referenced document. 

We present these different concepts through the 
meta-model of Figure 3. Note that all the meta-
models presented in this article are formalized with 
the standard Ecore language (Ecore, 2018). 

4.2 Target 

The NoSQL model noted M generated by our process, 
is stored in a collection ݈݈ܿெ௢ௗ௘௟. This is defined as a 
pair (N, D), where:  

- ݈݈ܿெ௢ௗ௘௟. N is the model name, 
- ݈݈ܿெ௢ௗ௘௟. D = {݀ଵ, … , ݀௡} is a set of 

documents that ݈݈ܿெ௢ௗ௘௟ contains. 
 

 
Figure 3: Source Metamodel. ∀ i ∈ [1..n], ݀ ௜ is defined as a pair (Id, ܮܨை௎்), where             - ݀௜. Id is the identifier of ݀௜, 

        - ݀௜. ,ை௎்ܮܨܣ} =ை௎்ܮܨ … ,  ை௎்} is a set ofܮܨܥ
imput fields of ݀௜, where :         - AFLOUT =  {݂݈ܽଵை௎், … , ݂݈ܽ௞ை௎்} is a set of atomic fields of ݀௜, where: ∀ i ∈ [1..k], ݂݈ܽ୧ை௎் ∈ AFLOUT is defined as a pair (N, 
Ty), where: 
                    - ݂݈ܽ୧ை௎்.N is the name of ݂݈ܽ୧ை௎், 

              - ݂݈ܽ୧ை௎்.Ty is the type of ݂݈ܽ୧ை௎். 

Note that the type of ݂݈ܽ୧ை௎் can be either 
predefined (for example: String, Boolean, Integer, ...) 
or defined by the user (for example: Patient, Doctors, 
...). 

              - CFLOUT =  {݂݈ܿଵை௎், … , ݂݈ܿ௟ை௎்} is a set of complex fields of ݀௜, where: ∀ i ∈ [1..l], ݂݈ܿ௜ை௎் ∈ CFLOUT is defined as a pair (N, ܮܨை௎்′), where:     

                    - ݂݈ܿ௜ை௎்.N is the name of ݂݈ܿ௜ை௎், 
         - ݂݈ܿ௜ை௎். ܮܨை௎்′ ∈  ை௎் is the set ofܮܨ 
fields that  ݂݈ܿ௜ை௎்contains.  
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Figure 4: Target Metamodel. 

4.3 Transformation Rules 

We have formalized the concepts present in the 
source (document-oriented database) and in the target 
(NoSQL physical model). In this section, we present 
our process as a sequence of transformation rules 
described below. 

R1: The DB model is stored in a collection ݈݈ܿ௠௢ௗ௘௟. 
This is defined as a pair (N,D), where:  

- ݈݈ܿ௠௢ௗ௘௟.N= DB.N,   
- ݈݈ܿ௠௢ௗ௘௟.D is generated by applying R2. 

 
R2: For each collection ݈݈ܿ௜ ∈ DB. CLL with i ∈ 
[1..n],  we create a document ݀௜, where: 

- ݀௜.N = ݈݈ܿ௜. ܰ 
- ݀௜. ܮܨை௎் is generated by applying R3 or R4. 

Note that ݀௜contains a unified template for all 
documents that ݈݈ܿ௜ contains. This means that our 
process generates a unique collection model grouping 
all the fields of the documents. We therefore do not 
consider several versions of models for the same input 
collection. 

R3: Each atomic field ݂݈ܽ୨ூே  ∈ ݈݈ܿ௜.AFLIN is 
transformed into a field ݂݈ܽ୨ை௎் with i ∈ [1..n] and j ∈ 
[1..k], where:   

- ݂݈ܽ୨ை௎். ܰ = ݂݈ܽ୨ூே.N 

- ݂݈ܽ୨ை௎்.  is generated according to the form ݕܶ
of the value of ݂݈ܽ୨ூே.  

For example, if ݂݈ܽ୨ூே. ܸ = " ", then ݂݈ܽ୨ை௎்.  = ݕܶ
String. And, If ݂݈ܽ୨ூே. ܸ = {" "," ", … " "}, then ݂݈ܽ୨ை௎்.  .Set (String) = ݕܶ

R4: Each complex field ݂݈ܿ୨ூே  ∈ ݈݈ܿ௜.CFLIN is 
transformed into a field ݂݈ܿ୨ை௎் with i ∈ [1..n] and j ∈ 
[1..l], where:   

- ݂݈ܿ୨ை௎். ܰ = ݂݈ܿ୨ூே.N 
- ݂݈ܿ୨ை௎்.  :ை௎்′ is generated as followsܮܨ

            - Apply R3 for each atomic field ݂݈ܽூே ∈ ݂݈ܿ୨ூே.  .′ூேܮܨܣ
      - Apply the R4 for each complex field ܿ ݂݈ூே ∈ ݂݈ܿ୨ூே.  ′ூேܮܨܥ

R5: A reference field  ܿℎ௥௘௙ is transformed into a 
complex field ݂݈ܿ୨ை௎் with j ∈ [1..2], where :   

- ݂݈ܿଵை௎். N = ܿℎଵ௥௘௙.N 
- ݂݈ܿଵை௎். Ty = ObjectID 
- ݂݈ܿଶை௎். N = ܿℎଶ௥௘௙.N 
- ݂݈ܿଶை௎். Ty = ܿℎଶ௥௘௙.V 

5 EXPERIMENTS 

5.1 Technical Environment 

We briefly describe the techniques we used to 
implement the approach presented in Figure 2. Since 
our approach is model driven, we used a technical 
environment suitable for modeling, meta-modeling 
and model transformation. We used the Eclipse 
Modeling Framework (EMF) (EMF, 2018). EMF 
provides a set of tools for introducing a model-driven 
development approach within the Eclipse 
environment. These tools provide three main features. 
The first is the definition of a meta-model 
representing the concepts used by the user. The 
second is the creation of the models instantiating this 
meta-model and the third is the transformation from 
model to model and from model to text (Budinsky, 
2004). Among the tools provided by EMF, we used: 
(1) Ecore: a meta-modeling language used for the 
creation of our meta-models. Figure 3 and Figure 4 
illustrate the source and target Ecore meta-models 
used by our ToNoSQLmodel process. (2) XML 
Metadata Interchange (XMI): which is a standard 
used to represent models in XML. (3) QVT (Query, 
View, and Transformation): which is a standardized 
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language for expressing model transformations. The 
choice of QVT was based on criteria specific to our 
approach. Indeed, the transformation tool must be 
integrated into the EMF environment so that it can be 
easily used with modeling and meta-modeling tools. 
Thus, we used the operational QVT language. 

We have implemented our process on medical 
data presented in section 2. The essential aspect, 
showing the interest of our process, lies in the variety 
of data used: text, multivalued data, and structured 
documents. Since we did not study the performance 
of our prototype, the Volume dimension of the data 
was not significant; our experiment was therefore 
limited to a BD of about 500GB.  

5.2 Implantation of the ToNoSQLmodel 
Process 

Our ToNoSQLmodel process is expressed in the form 
of a sequence of elementary steps that build the 
resulting model (NoSQL physical model) step by step 
from the source model (document-oriented NoSQL 
database): 

Step 1: We create Ecore meta-models 
corresponding to the source (Figure 3) and the target 
(Figure 4). 

Step 2: we build an instance of the source meta-
model to produce the document-oriented NoSQL 
database (see Figure 5); this database is an extract 
from the medical application data described in section 
2 and stored as an XMI file. 

Step 3: We implement the transformation rules 
using the QVT language provided by EMF. An 
excerpt from the QVT script is shown in Figure 7; the 
comments in the script indicate the rules used. 

Step 4: We test the transformations by running 
the QVT script created in step 3. This script takes as 
input the source model created in step 2 and outputs 
the NoSQL physical model. The result is provided as 
an XMI file, as shown in Figure 6. 

Our source database contains various data as 
shown in Figure 5: multivalued fields (such as First-
name in the Patients collection), complex fields 
(Address in the Patients collection) as well as 
monovalued (Medical-history) and multivalued links 
(Competent). 

 

Figure 5: Source Model. 

Multivalued Field 

Complex Field 

Reference Field 
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Figure 6: Target Model. 

Figure 6 shows the data model resulting from our 
ToNoSQLmodel process. This model is generated in 
the Json formalism but it corresponds to the graphical 
representation that we gave in Figure 1. 

 

 

 

 

Figure 7: Excerpt of the QVT code. 

6 POSITIONING OF OUR WORK 

We position our work against Apache Drill system 
and the state-of-the-art presented in Section 3. 

modeltype NoSQL_DB uses 
"http://nosqldatabaseMM.com"; 

modeltype NoSQL_Schema uses 
"http://nosqlschemaMM.com"; 

transformation NoSQLdb2NoSQLschema(in Source:      
NoSQL_DB, out Target: NoSQL_Schema); 

main() { 
Source.rootObjects()[NoSQL_DB] -> map 

toNoSQL_Schema();} 
mapping NoSQL_DB 

::NoSQL_DB::toNoSQL_Schema():NoSQLSchema::NoSQL
_Schema{ 

sName:=self.dbName; 
collection:=self.collections -> map toCollection();} 
-- Transforming Collections 
mapping Insert 

::Collections::toCollection():Update::Collection{ 
cName:=self.cName; 
atomicufield:=self.atomicifield -> map toAtomicField(); 
structuredufield:=self.structuredifield -> map 

toStructuredField();} 
-- Transforming Atomic Fields 
mapping Insert 

::AtomicIField::toAtomicField():Update::AtomicUField{ 
fielduname:=self.fieldiname -> map toFieldName(); 
fielduvalue:=self.fieldivalueform -> map 

toFieldValue1(); 
fielduvalue:=self.fieldivalue -> map toFieldValue2();} 
mapping Insert 

::FieldIName::toFieldName():Update::FieldUName{NameU:
=self.NameI;} 

mapping 
Insert::FieldIValue::toFieldValue1():Update::FieldUValue{ 

if ((self.FieldIValue = "True") or (self.FieldIValue = 
"False")) {FieldUValue:= "Boolean";} 

FieldUValue:= "Number"; endif;} 
mapping 

Insert::FieldIValueForm::toFieldValue2():Update::FieldUValue
{ 

if (self.FieldIValueForm = "") {FieldUValue:= "String";} 
endif; 

if (self.FieldIValueForm = --/--/--/) {FieldUValue:= 
"Date";}endif;} 

-- Transforming Structured Fields 
 mapping Insert 

::StructuredIField::toStructuredField():Update::StructuredUFiel
d{ 

The script output

The script input 
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Apache-Drill system does not display a complete 
model for data stored under MongoDB. Indeed, only 
the names of the collections and the fields of the first 
level are displayed, which means that the nested fields 
do not appear. However, our process gives, for each 
collection, its name as well as all the names and types 
of the fields, that these are atomic or complex. 

On the other hand, for the three research works 
cited in the state of the art, the proposed solutions do 
not consider the links between collections. However, 
in the application presented in section 2 (see Figure 
1), the links between collections are useful for 
treatments and requests made by doctors. Thus, our 
process proposes a solution to take into consideration 
the links between the collections and formalize them 
in the resulting data model. 

Finally, it should be emphasized that our process 
is based on the MDA architecture. This brings both a 
standard formalism of description of the 
transformation rules and a way of automating the 
sequences of transformations. 

7 CONCLUSION AND 
PERSPECTIVES 

Our work is part of the evolution of databases towards 
Big Data. Our studies are currently focused on the 
extraction mechanisms of the data model from a 
NoSQL database in order to facilitate the expression 
of queries. 

 In this article, we have proposed an automatic 
process to extract the physical model from a 
document-oriented NoSQL database. This process is 
based on the Model Driven Architecture (MDA) 
architecture that provides a formal framework for 
automating model transformations. Our process 
generates a NoSQL physical model from a NoSQL 
database by applying a sequence of transformations 
formalized with the QVT standard. The returned   
model describes the structure of the collections that 
make up the database and their links. We have 
experimented our process on the case study in 
healthcare filed. This case study concerns scientific 
programs for monitoring patients having serious 
diseases; the database is stored on MongoDB system.  

As future work, we plan to study the update of the 
data model as the database is being exploited. Indeed, 
the data volume can reach several terabytes, the 
generation of the model requires the scan of the entire 
database. It is therefore not possible for a user to 
restart the process each time he wishes to express a 
new query. 
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