
Dynamic Vehicle Routing under Uncertain Travel Costs and Refueling
Opportunities

Giorgos Polychronis and Spyros Lalis
Department of Electrical and Computer Engineering, University of Thessaly, Volos, Greece

Keywords: Traveling Salesman Problem, Vehicle Routing Problem, Uncertainty, Dynamic Route Planning.

Abstract: We study the vehicle routing problem for a system where there is some uncertainty regarding both the cost of
travel and the refueling opportunities. Travel cost stands for the energy spent by the vehicle to move between
locations. Refueling opportunities are offered at known locations where the vehicle can harvest or re-gain
some of the lost energy. The objective is to visit a set of predefined locations without exhausting the energy
of the vehicle. We describe the problem in a formal way, and propose a heuristic algorithm for taking routing
decisions at runtime. We evaluate the algorithm for a grid topology as a function of the number of locations to
be visited and the autonomy degree of the vehicle, showing that the proposed algorithm achieves good results
as long as the energy margins are not very tight.

1 INTRODUCTION

Unmanned Vehicles (UVs) will play a major role
in next-generation applications. In particular, Un-
manned Aerial Vehicles (UAVs) are already being
used in the domain of agriculture and surveillance.
Other types of UVs, such as Unmanned Ground Ve-
hicles (UGVs) or Unmanned Underwater Vehicles
(UUVs), though more exotic, are becoming more ma-
ture and affordable, and will most likely be used in
several applications in the future.

A typical scenario is for UVs to visit specific lo-
cations or entire areas in order to take measurements
or to detect objects / phenomena of interest. For ex-
ample, in agriculture, UVs scan a crop field to detect
problematic spots that are infected with pests. Simi-
larly, in search and rescue missions, UVs scan a tar-
get area to find missing persons. Yet another example
is for a UV to patrol an area by visiting several pre-
defined locations. In all these cases, the UV should
perform the mission as efficiently as possible.

This problem is known as the Vehicle Routing
Problem (VRP), which in turn is an extension of the
Traveling Salesman Problem (TSP). In a nutshell, the
VRP consists in finding a travel plan that can be fol-
lowed by a vehicle in order to visit a set of target loca-
tions. The problem has been studied in many variants
and different constraints regarding the specific paths
that can be followed by the vehicle, the locations to
be visited or the time window where certain locations

have to be visited. Also, in several formulations, the
vehicle is assumed to have finite fuel/energy reserves
or serving capacity, which can be replenished by vis-
iting special so-called depot nodes.

In this paper, we investigate a variant of the VRP
where there is uncertainty regarding the cost of travel
and the energy harvesting / refueling opportunities
that can be exploited by the vehicle. Algorithms that
compute the travel plan based on static data are not
suitable in this case. This is because these plans may
turn out to be infeasible for the situation that the vehi-
cle faces during the mission — its energy reserves will
be depleted before completing the mission. Instead, a
more dynamic approach is required, so that routing
decisions can be taken and adjusted at runtime, based
on the situation at hand.

The main contributions of the paper are: (i) it pro-
vides a formal description for a new variant of the ve-
hicle routing problem; (ii) it proposes a heuristic algo-
rithm to tackle the problem; (iii) it evaluates the pro-
posed algorithm, showing that it performs well com-
pared to other static solutions of the problem.

The rest of the paper is structured as follows. Sec-
tion 2 gives an overview of related work. Section 3
describes the problem we study in a formal way. Sec-
tion 4 presents the algorithm for solving the problem.
Section 5 evaluates the algorithm for different scenar-
ios. Finally, Section 6 concludes the paper.

52
Polychronis, G. and Lalis, S.
Dynamic Vehicle Routing under Uncertain Travel Costs and Refueling Opportunities.
DOI: 10.5220/0007673900520063
In Proceedings of the 5th International Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS 2019), pages 52-63
ISBN: 978-989-758-374-2
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2 RELATED WORK

Different variants of the VRP and the TSP have been
investigated. We give a brief overview, and compare
with the problem we address in our work.

2.1 Vehicle Routing with Fuel/Energy
Constraints and Periodic Visits

In the so-called periodic vehicle routing problem and
multi-depot periodic vehicle routing problem (An-
gelelli and Speranza, 2002; Cordeau et al., 1997; Gau-
dioso and Paletta, 1992; Vidal et al., 2012; Alonso
et al., 2008; Rahimi-Vahed et al., 2013; Escobar et al.,
2014), the objective is to periodically visit a set of
destinations (target nodes) using one or more vehi-
cles. Vehicles have limited energy reserves and may
recharge/refuel at special depot stations. There are
more variations where the targets have different pri-
orities, vehicles have different capabilities/capacities,
and the targets must be visited within a time interval.
We briefly discuss such work below.

Work in (Las Fargeas et al., 2012) investigates the
problems of persistent visitation with fuel constraints.
In this case, the vehicle perpetually visits the target
nodes (customer nodes), while each customer must
be visited at a specific rate. The fuel of the vehicle is
limited, so it is necessary to visit nodes with refueling
properties. The problem aims at satisfying the rate of
visit for each destination, as well as at minimizing the
total cost of fuel consumption.

The problem of continuous monitoring is studied
in (Mersheeva, 2015), where the mission is accom-
plished by several heterogeneous vehicles of different
types with limited resources. The objective is to visit
periodically a set of target nodes with different prior-
ities in a given time interval. The rate at which each
target node needs to be visited by any of the vehicles
is proportional to its priority. There is also a set of de-
pot nodes where vehicles can change their batteries,
however each type of vehicle requires a different type
of battery; only vehicles of the same type can use the
same type of battery. Also, the number of the different
types of batteries available at each depot is limited.

All the above formulations correspond to VRPs
with a fleet of one or more vehicles that have en-
ergy/fuel limitations. Each edge of the graph is as-
sociated with a cost, and the energy of the vehicles
decreases accordingly based on that cost. There are
also one or more so-called depot nodes, where the ve-
hicles can refuel, fully or partially. The main goal is
to find a path that minimizes the total cost of the mis-
sion, which is the sum of the costs of the edges chosen

to be used in the path of the vehicles. Another objec-
tive is to satisfy the visit rates of the target nodes.

The main difference between the above and our
work is that in our case the cost of travel between
nodes as well as the amount of energy/fuel that can
be gained at depot nodes, is not known a priori with
full certainty.

2.2 Vehicle Routing with Stochastic
Elements

The objective of vehicle routing problem with
stochastic demands is for a fleet of one or more ve-
hicles, which have a finite serving capacity and may
also have fuel constraints, to visit and serve a set of
known target nodes (customers). However, the ex-
act demand of each customer is not known before-
hand. As a result, when a vehicle visits a customer,
it may find out that the demand exceeds its remain-
ing capacity. The failure to properly service the cus-
tomer can be ignored, at a penalty, and the vehicle
may proceed to the next customer. Alternatively, the
vehicle may go to a depot node in order to acquire
the missing resources to restore its servicing capacity,
and then return to service the customer. This problem
is researched in many works (Bertsimas, 1992; Sec-
omandi, 2001; Laporte et al., 2002; Marinakis et al.,
2013; Rei et al., 2010; Juan et al., 2011; Marinaki and
Marinakis, 2016). Moreover, in (Erera et al., 2010)
and (Mendoza et al., 2016) the problem is investigated
for the more general case where the goal is to mini-
mize the travel time with the additional constraint of
keeping the travel time below a given upper bound.

In the vehicle routing problem with stochastic
travel times, a fleet of one or more vehicles, which
may have capacity and/or fuel constraints, visit a set
of known targets, but in this case, the travel time is
a random variable. Also, each target has a time win-
dow during which it is available for visits by a vehi-
cle. If the target is not visited/served within that time
window, there is a penalty. The objective is to route
the vehicles so as to minimize the total penalty. Al-
gorithms tackling this problem are described in (Taş
et al., 2013; Laporte et al., 1992; Van Woensel et al.,
2003; Kenyon and Morton, 2003; Ehmke et al., 2015;
Miranda and Conceição, 2016; Taş et al., 2014).

The vehicle routing problem with stochastic cus-
tomers consists in using a fleet of vehicles, which may
have capacity and/or fuel constraints, to visit a set of
target customers. However, these targets require a
visit only with some probability, thus a vehicle may
visit a node that does not need to be serviced. Indica-
tive work can be found in (Gendreau et al., 1996; Gen-
dreau et al., 1995; Bent and Van Hentenryck, 2004).

Dynamic Vehicle Routing under Uncertain Travel Costs and Refueling Opportunities

53

Our work is more similar to the VRP with stochas-
tic travel times. However, the main constraint there,
is the travel time, whereas in our work the main con-
straint is the energy of the vehicle, which can also in-
crease its energy reserves by visiting certain nodes. It
is also important to note that in our work the mission
ends when the vehicle exhausts its energy. This is a
major difference compared to the VRP with stochastic
demands, in which case the vehicle can always go to a
depot node in order to restore its capacity. As a conse-
quence, in our work, it is not always possible to visit
all nodes, in contrast to most other problem formu-
lations where this is always feasible and the problem
consists in minimizing the travel cost and/or time vio-
lation penalty. In this sense, our work is closer to (Er-
era et al., 2010) and (Mendoza et al., 2016), which
have a similar constraint for the travel cost. But in
our case the stochasticity concerns the travel cost and
energy gains, not the customer demands, and the ob-
jective is to maximize the number of target nodes that
are visited by the vehicle.

2.3 Energy-efficient Path Planning

Several algorithms have been designed to compute an
energy-efficient route between two nodes, based on
an abstract graph where the weights at edges repre-
sent the energy consumption or the energy restoration.
The difference to a typical shortest-path algorithm is
that the computed routes minimize the sum of edge
costs, not the number of edges. For instance, (Sachen-
bacher et al., 2011) deals with the problem of energy-
efficiency as a special case of the constrained short-
est path problem, while in (Artmeier et al., 2010) the
problem of energy-efficient path planning is viewed
as a cost minimization problem. In both cases, the
ability of the vehicle to gain energy / recharge is mod-
eled by introducing edges with negative weights.

Our work is also related to the problem of finding
a cost-effective path between two nodes. However,
the minimization of the travel cost per se is not as
central as in the above algorithms, because it can be
counter-balanced by gaining energy at depot nodes.
What is ultimately important is for the vehicle to take
a route that turns out to be feasible, while visiting as
many target nodes as possible. To this end, the pro-
posed heuristic employs a suitably adapted version of
the Bellman-Ford algorithm (Bellman, 1958; Ford Jr,
1956), which finds the path between two nodes that
maximizes the energy reserves of the vehicle (as op-
posed to minimizing travel cost). Also, our version
can exploit beneficial cycles —not allowed in the
original algorithm as the travel cost could then be re-
duced infinitely.

3 MODEL AND PROBLEM
FORMULATION

This section presents the system model, and defines
the problem we study in a more formal way.

3.1 Terrain and Travel Paths

The terrain of travel is modeled as an incomplete di-
rected graph (N ,E), where N is the set of nodes
and E is the set of edges between nodes. Each node
ni ∈ N represents a distinct location/position in the
terrain. Each edge ei, j ∈ E captures the fact that the
vehicle can move directly from node ni to node n j
without having to go via one or more intermediate
nodes.

Edges are directed, and there can be at most one
edge between two nodes per direction. Note that the
fact that it is possible to move directly from ni to n j
does not mean that this is possible in the reverse di-
rection. In other words, ei, j ∈ E 6=⇒ e j,i ∈ E .

The vehicle can visit nodes by traveling across
the edges of the graph. The travel path is encoded
as the sequence of nodes that are visited by the ve-
hicle, including the start and end node of the path.
Let pk1,k2,k3,..,km−1,km denote the path that starts from
node nk1 , goes through nk2 , nk3 etc, and ends at
node nkm , also corresponding to the list of edges
(ek1,k2 ,ek2,k3 , ...,ekm−1,km). Let occ(p,ei, j) be the num-
ber of times edge ei, j occurs in p, and occ(p,ni) be the
number of times node ni occurs as the starting point
of an edge in p. Also, let p+ ei, j denote the path that
results by appending edge ei, j to p. Finally, let len(p)
denote the number of edges (hops) in path p, and let
nodes(p) denote the set of nodes in p.

The set V ⊆N includes the nodes that correspond
to the target locations that have to be visited by the
vehicle. We are interested in algorithms that guide
the movement of the vehicle so that it ideally visits
all nodes in V . Note that the vehicle may start its
journey from node ns 6∈ V , and may end its journey
at node nd 6∈ V . Also, the path that will be followed
by the vehicle may include nodes that do not belong
in V .

3.2 Energy Reserves, Cost and Gains

We assume that the vehicle has limited energy storage
capacity Bmax. This can be thought of as the capacity
of a fuel tank or the capacity of a battery, depending
on whether the vehicle is equipped with an internal
combustion engine or an electrical motor. Let b de-
note the current energy budget (reserves) of the vehi-
cle. Obviously, b≤ Bmax holds at any point in time.

VEHITS 2019 - 5th International Conference on Vehicle Technology and Intelligent Transport Systems

54

The movement of the vehicle comes at a cost. Let
ci, j denote the cost incurred when the vehicle trav-
els from ni to n j over ei, j, also referred to as edge
cost. This represents the amount of energy spent to
power the motors of the vehicle in order to perform
this movement. If the vehicle has an energy budget b
and moves from ni to n j over ei, j, the remaining en-
ergy budget will be b′ = b−ci, j. If b′ ≤ 0, the vehicle
will exhaust its energy and it will stop (abort the mis-
sion) before reaching n j. The edge cost is not known
in advance with certainty. However, we assume that
the edge cost ci, j follows a known random distribu-
tion over the range [cmin

i, j ..c
max
i, j] with an expected/mean

value of cmean
i, j .

The vehicle may increase its energy budget, by
gaining some energy at so-called depot nodes. One
can think of depot nodes as refueling or recharging
stations. Similarly to the edge costs, the amount of
energy that can be gained at a depot node ni is a
random variable gi, which follows a known random
distribution over the range [gmin

i ..gmax
i] with an ex-

pected/mean value of gmean
i . Without loss of gener-

ality, we assume that it is known in advance whether
a node can potentially provide some energy gain. Let
D = {ni|gmin

i > 0} be the set of all depot nodes, i.e.,
all nodes with a non-zero probability of energy gain.
In the general case, it is possible for a node that
has to be visited by the vehicle, to be a depot node,
V ∩D 6= /0.

3.3 Path Feasibility

In order for a planned path to be feasible, the budget
of the vehicle must be sufficient to cover the cost for
crossing each edge along that path. In the following,
we capture this constraint in a more formal way.

Let cx
i, j denote the actual cost of edge ei, j when the

vehicle crosses that edge for the xth time. Similarly,
gx

i is the gain of node ni when the vehicle visits that
node for the xth time.

First, we capture the budget that remains available
when starting with an initial budget b and performing
a single hop from ni to n j over edge ei, j:

rem(b,h, pi, j) =min(Bmax,b+gocc(h,ni)+1
i)

− c
occ(h,ei, j)+1
i, j

(1)

where h (history) is the path that has already been
followed up to this point. In words, the gain of ni
is added to the budget b (up to the maximum energy
storage capacity Bmax) and then the edge cost is sub-
tracted in order for the vehicle to cross the edge that
leads from ni to n j. Note the usage of occ() in order

to take into account previous occurrences of node ni
and edge ei, j in the path that was followed so far. The
equation does not take into account the gain at the des-
tination node n j (if any), as this cannot be exploited
in order to cross the edge ei, j.

We can then define the remaining budget for the
general case of a multi-hop path p from node ni to
node n j, as follows:

rem(b,h, pi,k1,k2,...,km, j) = rem(rem(b,h, pi,k1),

h+ ei,k1 , pk2,...,km, j)

(2)

In words, the budget that remains after taking a
multi-hop path equals the remaining budget for the
path without the first hop, starting with a budget that
is equal to the remaining budget after taking the first
hop. As this is the case for the 1-hop path, the re-
maining budget of a multi-hop path does not include
the gain at the destination node.

Finally, we can define the feasibility of a planned
path p, assuming the vehicle has already traveled
along path h and has a current remaining budget b,
as follows. We say that pk1,k2,...,km is feasible if for all
prefix paths pk1,k2,...,kx ,1 < x ≤ m (including the full
path itself) it holds that rem(b,h, pk1,k2,...,kx) > 0. In
words, p is feasible if the vehicle will not exhaust its
budget at any point along p.

3.4 Performance Metric

We wish to devise an algorithm that will guide the ve-
hicle so that it manages to visit all nodes in V with-
out exhausting its budget while en route. In other
words, starting with h equal to null and an initial bud-
get b, we need to find a feasible path pk1,k2,,..,km so that
V ⊆ nodes(p).

As a general performance metric, we use the cov-
erage of a path p, which is equal to the ratio between
the number of the nodes of interest that are part of
the path that was followed by the vehicle and the to-
tal number of nodes of interest that the vehicle should
visit: cov(p,V) = |nodes(p)∩V |

|V | . Obviously, the ideal
case is to find a path p so that cov(p,V) = 1.

4 MaxBudget ALGORITHM

To solve the problem, we propose a heuristic algo-
rithm, called MaxBudget. The input to the algorithm
is the graph (N ,E), the set V of the nodes to visit,
the node ns from where the patrol starts, and the ini-
tial energy budget b of the vehicle (without the gains
of the start node).

Dynamic Vehicle Routing under Uncertain Travel Costs and Refueling Opportunities

55

4.1 High-level Algorithmic Skeleton

The algorithm works in two phases. In a first step,
a path is planned from the current (source) node to
some node of interest. In a second step, the vehicle ac-
tually tries to follow that path. After each hop, an as-
sessment of the situation is made, which is then com-
pared to the assumptions of the path planning step.
If things go more or less according to plan, the ve-
hicle continues its journey according to plan. Else,
it stops following the planned path, and a fresh path
planning step is performed, based on the situation at
hand. When a node of interest is reached, this is re-
moved from the set of nodes to visit, and the algo-
rithm continues for the rest of the nodes, by planning
and then following a path to another node of interest.

In the planning phase, the paths are chosen based
on estimated values for the edge costs and node gains.
Two different estimation modes are employed. In
the normal mode, the estimates correspond to the ex-
pected/mean values (cmean

i, j and gmean
i) of the respec-

tive random distributions. In the optimistic mode,
the estimates used for the edge costs are equal to the
minimum values (cmin

i, j) of the respective distributions,
while the estimates for the node gains are the maxi-
mum (gmax

i) values of the respective distributions. In
the planning step, first, an attempt is made to find a
feasible path using the normal mode. If this does not
succeed, the planning step is repeated, for a second
time, in the optimistic mode. If this fails too, the ve-
hicle has reached a dead end —no feasible path ex-
ists from the current location to any of the remain-
ing nodes of interest. The algorithm terminates when
all target nodes have been visited or a dead end is
reached, and returns the path that was followed and
the remaining target nodes.

The high-level algorithmic skeleton is shown in
Algorithm 1. Note that the path planning step and the
assessment of the situation that drives the transition
from the normal to the optimistic path planning mode,
are captured via separate functions.

The path planning step is captured via function
Plan(ns,b,V ,mode). It takes as parameters the start-
ing node ns, the available budget b, the set of nodes
V to be visited, and the estimation mode mode. It
returns a suggested path to follow. The path p is a
complex data structure, where the hops are recorded
in an array p.hops[k],0 ≤ k ≤ len(p), p.hops[k].n is
the node at the kth hop of the path, and p.hops[k].b is
the estimated available budget at this point of the path.
For convenience, we also use p.b to store the available
budget at the end of the path p.hops[len(p)].b. Note
that p.hops[0].n = ns and p.hops[0].b = b, as per the
input parameters of the function.

Algorithm 1: High-level algorithmic skeleton.

function SKELETON(V ,ns,budget)
ncur← ns . current node
b← budget . remaining budget
f p← ncur . full path of the vehicle
V ′← V −ncur . remaining nodes to visit
p← null . planned path to next target node
while V ′ 6= /0 do

if p = null then
mode← NORM
p← Plan(ncur,b,V ′,mode)
if p = null then

mode← OPT
p← Plan(ncur,b,V ′,mode)
if p = null then . dead end

return (f p,V ′)
end if

end if
k← 1 . init hop counter

end if
b←min(b+gcur,B) . enjoy node gain
nnxt ← p.hops[k].n . take next hop
b← b− ccur,nxt . pay travel cost
if b < 0 then . dead end

return (f p,V ′)
end if
ncur← nnxt
f p← f p+ncur
V ′← V ′−ncur
if k < len(p)∧Check(p,k,b,mode) then

k← k+1 . proceed with the next hop
else

p← null . plan new path
end if

end while
return (f p,V ′)

end function

Function Check(p,k,b,mode) is used to check if
the current situation (at the kth hop of p, with available
budget b) is along the lines of what was assumed in
the planning step for the mode used. If things go as
planned, the current plan is followed, else a new plan
is devised by invoking Plan(). A new plan is also
needed when the current path is successfully followed
to its end, and there are still some nodes of interest
that have not yet been visited.

4.2 Path Planning Algorithm

The path planning heuristic we propose favors paths
that lead to nodes of interest while maximizing the re-
maining budget. The intuition is that the budget that
remains available after visiting a node of interest can

VEHITS 2019 - 5th International Conference on Vehicle Technology and Intelligent Transport Systems

56

be further exploited in the next steps of the trip so that
it is possible to pursue additional paths and to visit
more nodes of interest. The high-level pseudocode
for this heuristic is given in Algorithm 2.

Algorithm 2: Path planning heuristic.

function PLAN(ns,b,V ,mode)
nd ← null . preferred destination node
maxb←−∞ . remaining budget for nd
p[]←MaxBudgetPaths(ns,b,mode)
for each ni ∈ V do

if p[ni] 6= (null,−∞) then
if p[ni].b > maxb then

maxb,nd ← p[ni].b,ni
end if

end if
end for
if nd = null then

return null
else

return p[nd]
end if

end function

function MAXBUDGETPATHS(ns,b,mode)
p[|N |] . path and budget from ns to every ni
for each ni ∈N do

p[ni], p[ni].b← (null,−∞),−∞

end for
p[ns], p[ns].b← (ns,b),b
repeat

update← f alse
for each ni,n j|ei j ∈ E do

b2←min(p[ni].b+gmode
i ,Bmax)

b2← b2− cmode
i j . try edge

if (b2 > 0)∧ (b2 > p[n j].b) then
p[n j], p[n j].b← p[ni]+ (n j,b2),b2
update← true

end if
end for

until update = f alse
return p[]

end function

function CHECK(p,k,b,mode)
if mode = NORM then

return |p.hops[k].b−b|
p.hops[k].b ≤ T hresholdnorm

else
return |p.hops[k].b−b|

p.hops[k].b ≥ T hresholdopt

end if
end function

Function Plan() finds a feasible path that maxi-
mizes the available budget for every node of interest,

and then picks and returns the path that leads to the
maximum budget. Ties are broken by giving prefer-
ence to shorter paths (for brevity, this is not shown in
the pseudocode).

The main path finding logic is structured as a sep-
arate function, MaxBudgetPaths(). This follows the
principle of the Bellman-Ford (BF) algorithm (Bell-
man, 1958; Ford Jr, 1956), with some extensions that
we have introduced for the purposes of our heuristic.
Initially, the path from ns to every node ni is set to null
and the remaining budget for that path is set to −∞.
Then it repeats an update procedure. A path to a node
ni is updated, when a new path from ns to this node is
found and the remaining budget, when following this
new path, is greater than the current one. This proce-
dure is repeated until no more paths are updated. The
adaptations to the original BF algorithm are discussed
in more detail in the next subsection.

Function Check() compares the available budget
at any given hop of the path with the estimated avail-
able budget for that hop as this was calculated by the
MaxBudgetPaths() function. In the normal mode, the
function returns true if this difference is less or equal
to a threshold. The rationale is that there is no reason
to change the plan as long as things go according to
it. In contract, in the optimistic mode, Check() returns
true if the difference is greater or equal to a threshold.
The rationale is that as long as the real situation does
not come close to the optimistic estimates, it does not
make any sense to devise a new plan in the normal,
more conservative mode.

4.3 Adaptations to the Bellman-Ford
Algorithm

As mentioned above, function MaxBudgetPaths() is
based on the Bellmann-Ford (BF) algorithm (Bell-
man, 1958; Ford Jr, 1956). BF finds the shortest paths
from a given source node to all the other nodes in a
graph. We adapt BF to find the most beneficial paths
between a given source node and all other nodes in the
graph —the paths that maximize the remaining bud-
get. The extensions are explained below.

In BF, so-called negative cycles whose edges sum
to a negative value, are considered invalid. If such a
path is found, BF, exits with error. While in our case
negative edges do not exist (recall that ci, j ≥ 0), en-
ergy gains at nodes can have the same effect because
they can increase the budget. This can lead to so-
called beneficial cycles, where the budget after per-
forming the cycle is greater than the budget before
performing the cycle. Unlike BF, in our case, ben-
eficial cycles are allowed. In fact, letting the vehicle
perform such cycles may be necessary in order to find

Dynamic Vehicle Routing under Uncertain Travel Costs and Refueling Opportunities

57

Figure 1: For start node n1, destination node n4 and initial
budget 9, the path that minimize the cost (via n3) is not the
same as the path that maximizes the budget (via n2). The
costs are shown on the edges, the gains are shown inside
each node. The maximum budget is 10.

a solution to the problem. Therefore, instead of exit-
ing, we change the algorithm to accept such cycles
and continue as usual. Note that the same cycle can
be beneficial or not depending on the current budget.

The usual operation of BF is to iteratively check
and update the minimum distance for reaching a node.
In our case, we check and update the best budget that
can be achieved by reaching a node (provided there
is sufficient budget to reach that node). It is impor-
tant to note that minimizing the edge costs is not the
same as maximizing the budget, see Figure 1. Also,
due to the maximum budget constraint, the remaining
budget along a path cannot be calculated simply by
subtracting the sum of edge costs from the sum of the
node gains.

The original BF associates each node with a pre-
decessor that corresponds to the previous hop of the
path with the smallest distance so far for that node. A
path can be determined simply by back-tracking the
predecessors from a destination node until the source
node. In our case, we record the entire path. This is
needed because, in the presence of cycles, the knowl-
edge of the predecessor node is not sufficient to re-
construct the path that needs to be followed.

Finally, BF re-computes the distances and node
predecessors |N | − 1 times, where |N | is the num-
ber of nodes in the graph. It is guaranteed that this
suffices to find the shortest paths from the destination
node to all nodes. This is not sufficient in our case,
where beneficial cycles may exist and thus paths can
be longer than |N |−1 hops. For this reason, we run
the algorithm as long as some updates still take place
for some nodes. The algorithm always terminates de-
spite the possibility of having beneficial cycles. Due
to the budget constraint, the same cycle cannot remain
beneficial for ever, see Figure 2. Therefore a cycle can
be performed only a finite number of times. Note that

(a) Cycle is beneficial.

(b) Cycle is not beneficial.

Figure 2: The same cycle (n2, n3, n4, n2) can be beneficial
(a) or non-beneficial (b), depending on the current budget.
The costs are shown on the edges, the gains are shown in-
side each node. In both cases, the maximum budget is 10.

if there are no beneficial cycles, the algorithm works
like the original version and finds the optimal path.

4.4 Complexity

The time complexity of MaxBudgetPaths() depends
on the number of the nodes and the number of the
edges in the graph, but also on the number of bene-
ficial cycles and the number of the nodes involved in
them. More concretely, assuming K beneficial cycles
(including any iterations of the same cycle) and an av-
erage of M nodes in each cycle, the time complexity
is O((|N |+K×M)×|E |), where |N | and |E | is the
total number of nodes and the total number of edges
in the graph, respectively. In case no beneficial cycles
exist, the time complexity is the same as the Bellman-
Ford algorithm, O(|N | × |E |). So, the overall com-
plexity of the algorithm (the Skeleton() function) is
O(((|N |+K×M)×|E |)×R), where R is the num-
ber of replannings that are made during the trip of the
vehicle.

5 EVALUATION

We have evaluated the proposed algorithm (we will
refer to it as MaxBudget) for different scenarios. This

VEHITS 2019 - 5th International Conference on Vehicle Technology and Intelligent Transport Systems

58

section describes the system configuration and the
scenarios that are investigated, and presents results
from indicative experiments.

5.1 Reference Algorithms

To put the performance of the proposed algorithm into
perspective, we use several algorithms as a reference.
These are briefly described in the sequel.

As a first reference, we use an oracle algorithm
that has a priori knowledge of the actual edge costs
and node gains that will apply each time the vehicle
were to cross an edge or visit a depot node. The al-
gorithm works in three steps. In the first step, it finds
the minimum cost path from each ni ∈ V to each de-
pot node nd ∈ D as well as the minimum cost path
from each depot node nd ∈ D to each ni ∈ V , based
on the actual (known) edge costs. Then, for each de-
pot node nd , it constructs “out” and “in” node clus-
ters. Node nv ∈ V belongs to the out cluster of nd
if it can be reached from nd with the smallest cost
compared to any other depot node. Node nv ∈ V be-
longs to the in cluster of nd if the cost for reaching
nd is the smallest among all other depot nodes. In
the second step, the algorithm visits as many nodes
of interest it can based on the current budget, before
returning to a depot node to gain some energy (this
is done based on the adapted Bellman-Ford code dis-
cussed earlier). This is repeated, until it is not pos-
sible to visit some of the remaining nodes of interest
and then return to some depot node. Finally, in a third
step, the algorithm tries to visit as many nodes as pos-
sible with the remaining budget (without returning to
a depot node). This is done by running the Held-Karp
algorithm (Held and Karp, 1962), which is an exact
solution to the TSP. Initially, the algorithm is run for
all remaining nodes of interest, let m. If no solution
is found for m, the algorithm is run for m− 1, and if
no solution is found, then it is run for m− 2 etc. If a
solution is found for m ≥ 2, the path returned by the
Held-Karp algorithm is adopted. For m = 1, the algo-
rithm simply picks the cheapest path to any node of
interest, and marks the node as visited if the budget
suffices to reach that node.

We also consider a simpler variant of the above al-
gorithm, which uses static/fixed edge costs and depot
node gains, equal to the mean of the random distribu-
tions, cmean and gmean. We refer to this as TS-static
since it essentially solves the standard TSP, while tak-
ing into account the energy budget of the vehicle.

As yet another reference, we use an ant colony
optimization (ACO) technique (Jones, 2005). This
is a probabilistic approach for solving path finding
problems, and has been used expensively in previous

works that study vehicle routing problems and travel-
ing salesman problems. More specifically, a number
n of ants are generated for m generations and each ant
has a specific budget. Each ant follows at first a ran-
domly chosen route. In our case the ants leave the
pheromone trail of their path if they visit all of the
nodes of interest or their budget is exhausted but they
have achieved the best coverage. The pheromone trail
increases the probability of an ant of a future gener-
ation to choose that specific path. When an ant stops
traveling, either because it has exhausted its budget or
because it has visited all of the nodes of interest, it
submits its coverage. The algorithm returns the path
that achieves the maximum coverage. Note that ACO
basically solves the same problem as TS-static, using
an approximation heuristic. Several other algorithms
have been proposed for different variants of the VRP,
which could also be adapted to tackle the problem
we study here in order to serve as additional refer-
ences to assess the performance of the proposed algo-
rithm. Such a comprehensive comparison is beyond
the scope of this paper.

Finally, we experiment with a simpler version of
MaxBudget, which performs the path planning step in
normal mode only. As a consequence, the estimates
for the edge costs and depot node gains are always the
mean values of the respective distributions. If no fea-
sible path is found, the algorithm terminates, instead
of switching to the optimistic planning mode.

5.2 Setup and Key Parameters

The topology of the graph used in our experiments is
a 10×10 grid, for a total of 100 nodes. Each node is
connected to its horizontal and vertical neighbors via
edges in both directions. The diameter d of the graph
is 18 hops. The grid topology is quite representative
for a terrain where the vehicle can move with a lot of
freedom practically in any direction.

We set the depot nodes to 2% of the total number
of nodes (there are 2 depot nodes). The depot nodes
are chosen randomly, and remain the same throughout
all experiments, at the positions (2,5) and (8,6) in the
grid. In all experiments, the vehicle starts its journey
from the node at the bottom-left corner of the grid (at
the position (0,0). Figure 3 illustrates the setup.

We perform experiments for different sets of
nodes Vx ⊂ N that need to be visited by the vehi-
cle, where x = |Vx|

|N | . We consider four different cases:
x= 5%,10%,20% and 30%. For each Vx case, we test
the algorithms on three concrete sets, Vxk ,1 ≤ k ≤ 3.
These are constructed in a random way, however we
make sure that V5k ⊂ V10k ⊂ V20k ⊂ V30k in order to
have continuity across the different experiments.

Dynamic Vehicle Routing under Uncertain Travel Costs and Refueling Opportunities

59

Figure 3: Graph topology used in the experiments. The two
depot nodes are green. The start node is light blue.

With no loss of generality, we set the maximum
budget limit Bmax = 1000. We also set the initial bud-
get of the vehicle b = Bmax = 1000.

For the gain of depot nodes, we adopt a sym-
metrical double-truncated normal distribution with
gmean = 3

4 ×Bmax. The rationale behind this choice
is that when the vehicle reaches a depot node with
marginally exhausted budget, on average we want it
to be able to restore its budget to a significant degree
(75% of Bmax). The lower and upper bounds are set to
gmin = gmean− gmean

3 and gmax = gmean+ gmean

3 , respec-
tively. In all experiments, we use the same random
distribution for all depot nodes..

The edge costs also follow such a random distribu-
tion with cmin = cmean− cmean

2 and cmax = cmean+ cmean

2 .
In each experiment all edges follow the same cost dis-
tribution, but this varies across experiments. More
specifically, we let cmean = Bmax

a , where a is the av-
erage number of hops that can be performed by the
vehicle with a maximum initial budget, to which we
refer as the autonomy of the vehicle. We investigate
different degrees of autonomy, set as a function of
the graph diameter: high autonomy d, medium-high
5
6 × d, medium-low 2

3 × d and low 1
2 × d. Higher au-

tonomy enables the vehicle to travel further and visit
a larger number of nodes before visiting a depot node
to regain some energy.

For each of the above autonomy degrees, we pro-
duce 100 different edge cost and node gain scenarios.
The values for the cost of each edge and the gain of
each depot node are produced offline, and are stored
in a file from where they are retrieved at runtime.
Note that the cost of an edge changes each time the
edge is crossed; in the scenario file, 50 different val-
ues are stored for each edge, which are retrieved in a
round-robin fashion each time the vehicle crosses that
particular edge. The same applies to the gain for the
depot nodes. The edge costs and node gains of a sce-
nario are a priori known only to the oracle algorithm.

5.3 Results

For each configuration (combination of Vx and a) we
perform different 300 runs (100 scenarios for each
Vx1 ,Vx2 ,Vx3). We report the average coverage for
each algorithm. In order for the ant-colony optimiza-
tion method (ACO) to produce good results, in each
run we use 10 ants and 200 generations of ants. For
the thresholds used in the Check() function of the
MaxBudget algorithm, we set T hresholdnorm = 10%
and T hresholdopt = 4%. These values have been es-
tablished via separate experiments, not reported here
for brevity. Figure 4 shows the results.

It can be seen that MaxBudget consistently
outperforms TS-static. The difference is larger
for mid-range autonomy degrees, in particular for
medium-low where the overall average improvement
is roughly 35% and 44% over V10, V20, V30, and be-
comes smaller for high but also for low autonomy.
This can be explained as follows. On the one hand,
when the autonomy is high, non-optimal decisions
are more tolerable because the vehicle can perform
a larger number of hops without refueling at a de-
pot node. On the other hand, when the autonomy is
low, it becomes much harder to find feasible paths,
so the planning decisions of MaxBudget are not good
enough to achieve a high coverage. For the mid-range
autonomy degrees, MaxBudget achieves increasingly
better coverage than TS-static as the number of target
nodes increases. This is because MaxBudget plans
“ahead”, not only to visit the next node of interest,
but also to keep the available energy budget of the ve-
hicle as high as possible when the target is reached,
so that this can be exploited for the next visit. Note
that ACO always performs worse than TS-static. This
is expected as ACO is an approximation of TS-static.

MaxBudget performs close to the oracle for high
and medium-high autonomy. But it cannot match the
oracle for lower degrees of autonomy, where the cov-
erage of MaxBudget drops on average to about 87%
and 67% to that of the oracle, for medium-low and
low autonomy, respectively. Notably, even the oracle
cannot achieve full coverage when the autonomy is
low, in which case it is impossible to visit all nodes of
interest. This also explains why the performance gap
between MaxBudget and TS-static shrinks abruptly in
all low autonomy scenarios, as discussed above.

The simpler version of MaxBudget performs very
close to the full-fledged version of the algorithm. The
fallback to optimistic planning only brings a small
benefit for lower degrees of autonomy, 2.5% on av-
erage for medium-low, and 3.1% for low. In these
cases, optimism occasionally pays-off, allowing the
vehicle to explore paths that would otherwise be re-

VEHITS 2019 - 5th International Conference on Vehicle Technology and Intelligent Transport Systems

60

(a) 5 target nodes (V5) (b) 10 target nodes (V10)

(c) 20 target nodes (V20) (d) 30 target nodes (V30)

Figure 4: Coverage as a function of the number of nodes to visit and the autonomy of the vehicle.

jected, leading to a few more target node visits. When
the autonomy is relatively high, optimistic planning
does not seem to have any impact.

6 CONCLUSION

We have formulated a variant of the vehicle routing
problem, where both the travel cost and the energy
gain opportunities are stochastic. This is different
than other VRP variants that have been studied in the
literature. Also, we have proposed a heuristic algo-
rithm that can be used to guide an autonomous vehi-
cle in order to visit the nodes of interest; of course, the
same algorithm can be used as a guidance tool for a
human operator. The algorithm is designed for a gen-
eral system model, and can be applied in different ap-
plication scenarios. We have compared our algorithm
with other algorithms, showing that it achieves good
results, especially for system configurations where it
is indeed feasible to visit all nodes of interest.

In the future, we wish to investigate different vari-

ants of the proposed algorithm in order to improve the
coverage but also to reduce the runtime complexity
(time wise and memory wise). The latter is important
in case it is desirable to run the algorithm directly on
the UV, which will typically have an embedded com-
puting platform with limited memory and processing
capacity. Furthermore, we wish to experiment with
different graph topologies in combination with more
informed values for the edge costs, the node gains and
the budget constraint, based on concrete application
scenarios. It is also interesting to consider how differ-
ent existing algorithms could be adapted to tackle the
variant of the VRP we study in this paper, and to see
how well they perform compared to our algorithm.

ACKNOWLEDGMENTS

This research has been co–financed by the Euro-
pean Union and Greek national funds through the
Operational Program Competitiveness, Entrepreneur-
ship and Innovation, under the call RESEARCH -

Dynamic Vehicle Routing under Uncertain Travel Costs and Refueling Opportunities

61

CREATE - INNOVATE, project PV-Auto-Scout, code
T1EDK-02435.

REFERENCES

Alonso, F., Alvarez, M. J., and Beasley, J. E. (2008). A
tabu search algorithm for the periodic vehicle routing
problem with multiple vehicle trips and accessibility
restrictions. Journal of the Operational Research So-
ciety, 59(7):963–976.

Angelelli, E. and Speranza, M. G. (2002). The periodic ve-
hicle routing problem with intermediate facilities. Eu-
ropean journal of Operational research, 137(2):233–
247.

Artmeier, A., Haselmayr, J., Leucker, M., and Sachen-
bacher, M. (2010). The optimal routing problem in
the context of battery-powered electric vehicles. In
CPAIOR Workshop on Constraint Reasoning and Op-
timization for Computational Sustainability (CROCS).

Bellman, R. (1958). On a routing problem. Quarterly of
applied mathematics, 16(1):87–90.

Bent, R. W. and Van Hentenryck, P. (2004). Scenario-
based planning for partially dynamic vehicle rout-
ing with stochastic customers. Operations Research,
52(6):977–987.

Bertsimas, D. J. (1992). A vehicle routing problem with
stochastic demand. Operations Research, 40(3):574–
585.

Cordeau, J.-F., Gendreau, M., and Laporte, G. (1997). A
tabu search heuristic for periodic and multi-depot ve-
hicle routing problems. Networks: An International
Journal, 30(2):105–119.

Ehmke, J. F., Campbell, A. M., and Urban, T. L. (2015).
Ensuring service levels in routing problems with time
windows and stochastic travel times. European Jour-
nal of Operational Research, 240(2):539–550.

Erera, A. L., Morales, J. C., and Savelsbergh, M. (2010).
The vehicle routing problem with stochastic demand
and duration constraints. Transportation Science,
44(4):474–492.

Escobar, J. W., Linfati, R., Toth, P., and Baldoquin, M. G.
(2014). A hybrid granular tabu search algorithm for
the multi-depot vehicle routing problem. Journal of
heuristics, 20(5):483–509.

Ford Jr, L. R. (1956). Network flow theory. Technical re-
port, Rand Corp Santa Monica Ca.

Gaudioso, M. and Paletta, G. (1992). A heuristic for the
periodic vehicle routing problem. Transportation Sci-
ence, 26(2):86–92.

Gendreau, M., Laporte, G., and Séguin, R. (1995). An
exact algorithm for the vehicle routing problem with
stochastic demands and customers. Transportation
science, 29(2):143–155.

Gendreau, M., Laporte, G., and Séguin, R. (1996). A tabu
search heuristic for the vehicle routing problem with
stochastic demands and customers. Operations Re-
search, 44(3):469–477.

Held, M. and Karp, R. M. (1962). A dynamic program-
ming approach to sequencing problems. Journal of
the Society for Industrial and Applied Mathematics,
10(1):196–210.

Jones, K. O. (2005). Ant colony optimization, by marco
dorgio and thomas stützle, a bradford book, the mit
press, 2004, xiii+ 305 pp. with index, isbn: 0-262-
04219-3, 475 references at the end.(hardback£ 25.95)-
. Robotica, 23(6):815–815.

Juan, A., Faulin, J., Grasman, S., Riera, D., Marull, J., and
Mendez, C. (2011). Using safety stocks and simula-
tion to solve the vehicle routing problem with stochas-
tic demands. Transportation Research Part C: Emerg-
ing Technologies, 19(5):751–765.

Kenyon, A. S. and Morton, D. P. (2003). Stochastic vehi-
cle routing with random travel times. Transportation
Science, 37(1):69–82.

Laporte, G., Louveaux, F., and Mercure, H. (1992). The
vehicle routing problem with stochastic travel times.
Transportation science, 26(3):161–170.

Laporte, G., Louveaux, F. V., and Van Hamme, L. (2002).
An integer l-shaped algorithm for the capacitated ve-
hicle routing problem with stochastic demands. Oper-
ations Research, 50(3):415–423.

Las Fargeas, J., Hyun, B., Kabamba, P., and Girard, A.
(2012). Persistent visitation with fuel constraints.
Procedia-Social and Behavioral Sciences, 54:1037–
1046.

Marinaki, M. and Marinakis, Y. (2016). A glowworm
swarm optimization algorithm for the vehicle rout-
ing problem with stochastic demands. Expert Systems
with Applications, 46:145–163.

Marinakis, Y., Iordanidou, G.-R., and Marinaki, M. (2013).
Particle swarm optimization for the vehicle routing
problem with stochastic demands. Applied Soft Com-
puting, 13(4):1693–1704.

Mendoza, J. E., Rousseau, L.-M., and Villegas, J. G. (2016).
A hybrid metaheuristic for the vehicle routing prob-
lem with stochastic demand and duration constraints.
Journal of Heuristics, 22(4):539–566.

Mersheeva, V. (2015). UAV Routing Problem for Area Mon-
itoring in a Disaster Situation. PhD thesis.

Miranda, D. M. and Conceição, S. V. (2016). The vehicle
routing problem with hard time windows and stochas-
tic travel and service time. Expert Systems with Appli-
cations, 64:104–116.

Rahimi-Vahed, A., Crainic, T. G., Gendreau, M., and Rei,
W. (2013). A path relinking algorithm for a multi-
depot periodic vehicle routing problem. Journal of
heuristics, 19(3):497–524.

Rei, W., Gendreau, M., and Soriano, P. (2010). A hy-
brid monte carlo local branching algorithm for the sin-
gle vehicle routing problem with stochastic demands.
Transportation Science, 44(1):136–146.

Sachenbacher, M., Leucker, M., Artmeier, A., and Hasel-
mayr, J. (2011). Efficient energy-optimal routing for
electric vehicles. In AAAI, pages 1402–1407.

Secomandi, N. (2001). A rollout policy for the vehicle rout-
ing problem with stochastic demands. Operations Re-
search, 49(5):796–802.

VEHITS 2019 - 5th International Conference on Vehicle Technology and Intelligent Transport Systems

62

Taş, D., Dellaert, N., Van Woensel, T., and De Kok, T.
(2013). Vehicle routing problem with stochastic travel
times including soft time windows and service costs.
Computers & Operations Research, 40(1):214–224.

Taş, D., Gendreau, M., Dellaert, N., Van Woensel, T., and
De Kok, A. (2014). Vehicle routing with soft time
windows and stochastic travel times: A column gen-
eration and branch-and-price solution approach. Eu-
ropean Journal of Operational Research, 236(3):789–
799.

Van Woensel, T., Kerbache, L., Peremans, H., and Van-
daele, N. (2003). A vehicle routing problem with
stochastic travel times. In Fourth Aegean Interna-
tional Conference on Analysis of Manufacturing Sys-
tems location, Samos, Greece.

Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N., and
Rei, W. (2012). A hybrid genetic algorithm for multi-
depot and periodic vehicle routing problems. Opera-
tions Research, 60(3):611–624.

Dynamic Vehicle Routing under Uncertain Travel Costs and Refueling Opportunities

63

