
Towards Integration between OPC UA and OCF

Salvatore Cavalieri, Salvatore Mulè, Marco Giuseppe Salafia and Marco Stefano Scroppo
University of Catania, Department of Electrical Electronic and Computer Engineering (DIEEI),

Viale A. Doria 6, 95125 Catania, Italy

Keywords: OPC UA, OCF, Industry 4.0, IoT, Information Model, Integration, Interoperability.

Abstract: The paper deals with Industry 4.0 presenting a solution to improve interoperability between industrial

applications and IoT ecosystems. In particular, the proposal aims to reach interoperability between OPC UA

and the emerging Open Connectivity Foundation (OCF), through a mapping between the relevant information

models. A novel OPC UA information model will be presented as extension of the standard one, in order to

allow the mapping of whatever information produced by an OCF device into the information model of an

OPC UA server. The paper fills the existing lack of integration between OPC UA and the OCF specifications,

as no other solution is present in literature at the moment.

1 INTRODUCTION

Industry 4.0 features the application of modern

Information & Communication Technology (ICT)

concepts, such as Internet of Things (IoT) (Guarda, et

al., 2017), in industrial contexts to create more

flexible and innovative products and services leading

to new business models and added value (Liao, et al.,

2017)(Da Xu, et al., 2018).

One of the main features of the recent industrial

revolution is the need to achieve full integration of the

industrial applications with the IoT. In this new

vision, a traditional SCADA (Supervisory Control

and Data Acquisition) system may collect and analyse

information coming from IoT devices, for example.

Both industrial and IoT contexts feature the

presence of several communication systems and the

convergence to a unique communication system

seems, at the moment, only a dream.

Among the current communication systems

enabling the exchange of information between

industrial applications, the international standard

OPC UA, IEC 62541, (Mahnke, et al., 2009) plays an

important role. This is confirmed by the inclusion of

this standard into reference architectures recently

defined in the context of the Industry 4.0, e.g., the

“Reference Architecture Model for Industry 4.0 -

RAMI 4.0” (VDI/VDE, 2015) and the Industrial

Internet Reference Architecture (IIRA) defined by the

Industrial Internet Consortium (IIC) (Industrial

Internet Consortium, 2017).

Existence of several communication solutions is

also present in the context of the Internet of Things.

Among them, there is that defined by the Open

Connectivity Foundation (OCF) (Open Connectivity

Foundation Website, 2018). At this moment, OCF

specifications are under ISO/IEC standardisation by

ISO/IEC JTC1 Information Technology committee

(i.e. ISO/IEC DIS 30118).

Integration of industrial applications with the IoT

may be achieved through the integration of

communication systems existing in the two different

environments. For example, during these last years

several solutions dealing with the integration of OPC

UA and IoT appeared, due to important role played

by OPC UA inside the current Industry 4.0 reference

models, as pointed out before. Among them,

(Izaguirre, et al., 2011) describes a solution for

enabling interoperability between OPC UA and

DPWS; (Derhamy, et al., 2017) proposes an OPC UA

translator between OPC UA and HTTP, CoAP and

MQTT.

In this paper, the authors propose another solution

towards integration of OPC UA and IoT ecosystems.

Among the current communication systems existing

in the IoT, OCF has been chosen, as it seems a

promising solution to standardise the exchange of

information into the IoT.

Integration between OPC UA and OCF here

proposed, is realised through a mapping between the

relevant information models. Through this mapping,

information maintained by an OPC UA Server may

be used to populate an OCF device, allowing it to

Cavalieri, S., Mulè, S., Salafia, M. and Scroppo, M.
Towards Integration between OPC UA and OCF.
DOI: 10.5220/0007672205550562
In Proceedings of the 21st International Conference on Enterprise Information Systems (ICEIS 2019), pages 555-562
ISBN: 978-989-758-372-8
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

555

expose this information to whatever OCF devices in

the OCF ecosystem. Vice versa, information

maintained by an OCF device may be published by an

OPC UA Server making this information available to

whatever OPC UA–based applications. Mapping

from OPC UA to OCF information models has been

presented by the authors in previous works (Cavalieri,

et al., 2018). In this paper, the mapping from OCF to

OPC UA is presented in great details, for the first

time. For this reason, the proposal here presented

represents an enhancement of the previous works,

targeting the full integration between OPC UA and

OCF.

No other solutions of integration between OPC

UA and OCF are present in the current literature, with

the exception of the authors’ papers cited before. For

this reason, the authors believe that the contribution

of the paper is remarkable as it allows the industrial

applications based on the international standard OPC

UA to interwork with the emerging IoT ecosystem

based on the OCF specifications.

2 OPC UA

The aim of this section is to give an overview about

two important features of the OPC UA international

standard: OPC UA AddressSpace and OPC UA

Device Model.

2.1 OPC UA AddressSpace

In OPC UA, the set of information that a server makes

available to OPC UA-based applications is named

AddressSpace. In particular an AddressSpace

contains OPC UA Nodes used to represent any kind

of information (Mahnke, et al.,

2009)(OPCFoundation, 2015).

Each OPC UA Node belongs to a class named

NodeClass, derived from the Base NodeClass, which

defines several attributes. Among them, there are:

BrowseName (used as a non-localised human-

readable name when browsing the AddressSpace),

DisplayName (containing the name of the OPC UA

Node to be displayed to the user) and Description

(explaining the meaning of the Node in a localised

text).

Among the available NodeClasses, there is the

Variable NodeClass, modelling values of the system.

Two types of Variables are defined: Properties

(containing metadata) and DataVariables

(representing the data of an OPC UA Object). Both of

them holds an attribute named Value, containing the

data. Another NodeClass is the Method, modelling

callable functions that initiate actions within an OPC

UA Server. Object NodeClass represents real-world

entities like system components, hardware and

software components, or even a whole system. An

OPC UA Object is a container for other OPC UA

Objects, DataVariables and Methods. As the Object

Node does not provide for a value, therefore an OPC

UA DataVariable Node is used to represent the data

of an Object.

OPC UA defines particular NodeClasses defining

types. Some of them are called Concrete, for which

instances can be realised. Other types are Abstracts,

for which instances may exist only for the relevant

subtypes. Among NodeClasses defining types there is

the ObjectType NodeClass, which holds type

definition for OPC UA Objects. Objects are instances

of ObjectTypes in the sense that they inherit the

Nodes beneath the ObjectTypes defining them. OPC

UA defines the BaseObjectType which all the

ObjectTypes must be extended from. OPC UA

already defines several standard ObjectTypes derived

from BaseObjectType. Among them there is the

FolderType whose aim is to model hierarchy among

OPC UA Nodes. Instances of FolderType ObjectType

are used to organise the AddressSpace into a

hierarchy of OPC UA Nodes. VariableType is another

NodeClass used to provide type definition for

Variables. OPC UA defines the BaseVariableType

which all the VariableTypes must be extended from.

Among the standard VariableTypes derived from

BaseVariableType, there are the

BaseDataVariableType and the PropertyType. The

former is used to define a DataVariable Node, whilst

the latter defines a Property Node.

Particular relationships may be defined between

OPC UA Nodes; they are called References. The

ReferenceType NodeClass used to define different

types of References. They may be classified in two

different main categories: Hierarchical and

NonHierarchical.

Among the Hierarchical References there is the

HasComponent Reference used to specify that an

OPC UA Object contains another OPC UA Object,

OPC UA DataVariable or OPC UA Method specified

as target of the Reference. Another Hierarchical

Reference is Organizes which allows to organise

several OPC UA Nodes under a folder (i.e. a

FolderType Object). The last Hierarchical Reference

cited in the paper is the Abstract Aggregates, which

indicates that the target Node belongs to the source

Node.

Among the NonHierarchical References there is

the HasTypeDefinition, which is used to bind an OPC

UA Object or Variable to its ObjectType or

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

556

VariableType, respectively. Another

NonHiererchical Reference is the HasSubtype which

expresses a subtype relationship between types.

HasModellingRule Reference is a

NonHierarchical Reference used to describe how

instances of OPC UA types should be created. The

source of this Reference is an InstanceDeclaration

which may be a Variable, Object or Method. The

InstanceDeclaration must be the target Node of a

Hierarchical Reference from a Node defying an OPC

UA type. HasModellingRule has a ModellingRule

Object as target Node.

A ModellingRule Object specifies what happens

to the InstanceDeclaration with respect to instances of

the OPC UA type to which it is linked by the

Hierarchical Reference. A Mandatory ModellingRule

for a specific InstanceDeclaration specifies that

instances of the OPC UA type must have a

counterpart of that InstanceDeclaration. An Optional

ModellingRule, instead, specifies that instances of the

OPC UA type may have a counterpart of that

InstanceDeclaration, but it is not required. Mandatory

and Optional ModellingRules require that the

counterpart of the InstanceDeclaration has the same

BrowseName of the InstanceDeclaration. Other two

ModellingRule Objects exist named

MandatoryPlaceholder and OptionalPlaceholder; in

this case, the counterparts of InstanceDeclaration may

be more than one, regardless of the BrowseName of

the InstanceDeclaration.

OPC UA specifications define graphical symbols

to represent Nodes and References; some of them are

shown by Table 1 and 2, respectively.

Table 1: Graphical notation of some OPC UA Nodes.

OPC UA Node Standard graphical

notation

ObjectType

Object

DataVariable/Property

VariableType

Method

ReferenceType

In the standard graphical notation, a

ModellingRule Object and relevant

HasModellingRule Reference are represented inside

the source InstanceDeclaration Node only by the kind

of the ModellingRule Object in square brackets (i.e.

[Mandatory], [Optional], [OptionalPlaceholder],

[MandatoryPlaceholder]). Furthermore, the

BrowseName of InstanceDeclarations having the

OptionalPlaceholder and MandatoryPlaceholder

ModellingRule are enclosed within angle brackets.

Table 2: Graphical notation of some OPC UA References.

OPC UA Reference Standard graphical

notation

HasTypeDefinition

Organizes

HasComponent

HasSubType

2.2 OPC UA Device Model

OPC UA specification (OPCFoundation, 2015) is

aimed to define the information model associated

with devices in automation systems, in order to

enhance their integration. The specification defines

three models which build upon each other. At the

lowest level there is the Device Model which aims to

provide a unified view of devices irrespective of the

underlying device protocols. Several OPC UA Nodes

have been defined into the OPC UA Device Model,

all derived from the OPC UA BaseObjectType.

TopologyElementType is the base ObjectType

defining the basic information components for all

configurable elements in a device topology. All

elements in a device topology may have Parameters

and Methods. Parameters are modelled with OPC UA

DataVariable Nodes. TopologyElement Object has

two components named ParameterSet and

MethodSet, which are Objects containing a flat list of

Parameters and Methods, respectively.

FunctionalGroups can be used to organise the

Parameters and Methods to reflect the structure of the

TopologyElement; a TopologyElement may have an

arbitrary number of FunctionalGroups. A special

FunctionalGroup called Identification shall be used to

organise Parameters for identification of a

TopologyElement. The same Parameter or Method

might be referenced from more than one

FunctionalGroups.

The DeviceType ObjectType provides a general

type definition for any Device. Devices - in addition

to Parameters and Methods - may support sub-

devices.

ConfigurableObjectType is used to expose and

configure components, according to the following

principles. An Object of ConfigurableObjectType

shall contain a folder called SupportedTypes that

references the list of types available for configuring

components using Organizes References. The

Towards Integration between OPC UA and OCF

557

instances of the available types shall be components

of the configurable object (through HasComponent

References).

3 OCF RESOURCE MODEL

The OCF Resource Model is based on the concepts of

Device and Resource. According to the OCF Core

Specification (Open Connectivity Foundation, 2018),

a Device models a logical entity (e.g., corresponding

to a real device like a controller) whilst a Resource is

the representation of a component of a Device (e.g., a

sensor integrated in a controller).

An OCF Resource is an instance of one or more

OCF Resource Types. Each Resource Type defines a

set of properties exposed by the Resource,

representing its state. In addition, a Resource declare

a set of OCF Interfaces. Each Interface specifies how

is possible to interact with the Resource itself. A

Resource is addressed using URI and contains

properties defined as key-value pairs.

OCF specification defines a basic Resource Type

for all OCF Resources named “oic.core”. This

Resource Type defines several common properties

whose must be present in a Resource; some of these

properties are “id”, “n” and “rt”, which define a

unique identifier for the resource in the context of a

Device, the name of the resource and the resource

types, respectively.

OCF specifications state that a Resource can be

related to another Resource through OCF Link. A

Link consists of a set of parameters that define a

context URI, a target URI, a relationship from the

context URI to the target URI and metadata about the

target URI.

In order to enable the functional interaction

between OCF Client and OCF Server, OCF mandates

a list of core Resources that must be supported and

exposed by a Device. Specifically, OCF defines three

well-known Resources in an OCF Device, one

representing the platform, another one representing

the device and one providing an entry point to the

Resources exposed by the Device (i.e. providing a list

of OCF Links to the OCF Resources exposed). These

core Resources are addressed using the URIs “/oic/p”,

“/oic/d” and “/oic/res” and belong to the Resource

Types “oic.wk.p”, “oic.wk.d” and “oic.wk.res”,

respectively.

It is worth noting that the properties of the

Resource representing the Device are defined by the

“oic.wk.d” Resource Type. Furthermore, alongside

this Resource Type, a Device Type may be specified.

A Device Type is used to mandate the list of

minimum OCF Resources that must be exposed by

the Device itself.

An OCF Device can represent a device made up

by subdevices. In this case, an OCF Device can

expose Resources representing the subdevices. A

Resource of this kind belong to a Device Type and

shall at minimum expose the mandatory Resource

Properties defined by “oic.wk.d” Resource Type.

4 PROPOSAL OF INTEGRATION

The aim of this paper is the proposal of a solution

which enables integration of OCF and OPC UA

communication systems. In particular, the solution

aims to allow a generic application based on OPC UA

communication system to access each information

produced by a generic OCF device. This aim is

realised through a mapping of each information

produced by OCF device into a corresponding

information maintained inside the AddressSpace of

an OPC UA Server. In this way, an OPC UA-based

application may access the OPC UA Server to

retrieve the information coming from OCF system.

As said in the Introduction, the mapping in the

opposite direction (i.e. from OPC UA to OCF) has

been proposed and presented in previous publications

of the same authors. It is worth noting that the

solution here proposed requires a mapping from OCF

Resource Model to the OPC UA AddressSpace, to

allow the representation of each element featuring the

OCF Resource Model into a correspondent element

belonging to the OPC UA AddressSpace.

It is very important to point out that this has been

realised through an extension of the OPC UA

Information Model, as the authors discovered that the

native one was not able to represent the entire set of

elements featuring the OCF Resource Model. In the

paper, the novel Information Model will be

introduced with the name OCF OPC UA Information

Model. It is built on top of the standard OPC UA

Device Model, described in the previous section.

4.1 OCF OPC UA Information Model

The proposed OCF OPC UA Information Model

offers several novel OPC UA ObjectTypes, called

OCF ObjectTypes and described in the remainder of

this section. They are: OCFResourceType,

OCFResourceInstanceType and OCFDeviceType.

4.1.1 OCFResourceType ObjectType

The OCFResourceType ObjectType has been defined

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

558

into the OPC UA AddressSpace with the aim to

represent an OCF Resource Type. OCFResourceType

is Abstract; this means that an ObjectType extending

it shall be created for each OCF Resource Type to be

represented.

Figure 1 shows the structure of the

OCFResourceType.

Figure 1: OCFResourceType.

As it can be seen, it is a subtype of

TopologyElementType ObjectType and, for this

reason, it inherits each component of this last type.

Among them, there is the ParameterSet Object,

which is defined as an InstanceDeclaration with a

Mandatory ModellingRule Object, as shown by the

figure. It has been assumed that all the properties

defined by the OCF Resource Type to be represented,

are mapped as Parameters and grouped by the

ParameterSet Object, using OPC UA DataVariable

Nodes. Figure 1 shows the InstanceDeclaration

relevant to these Parameters; the ModellingRule

Object associated to the InstanceDeclaration shall be

Mandatory or Optional according on whether the

property in the Resource Type specification is

mandatory or not, respectively.

For example, let us consider the OCF Resource

Type called “oic.r.light.brightness” featuring only

one mandatory property of integer type, named

“brightness”. This OCF Resource Type is mapped in

OPC UA using a subtype of the OCFResourceType

ObjectType called, in this example,

Light.BrightenessType. Figure 2 shows in details this

ObjectType. As it can be seen, the ParameterSet

Object contains a Parameter aimed to represent the

“brightness” property defined by the

“oic.r.light.brightness” OCF Resource Type. This

Parameter is realised by the InstanceDeclaration

brightness featuring a Mandatory ModellingRule

Object; the ModellingRule Object associated to the

InstanceDeclaration is Mandatory as the “brightness”

property is mandatory, as said before.

Figure 2: Light.BrightnessType ObjectType.

An OCF Resource features the properties relevant

to its OCF Resource Types. In order to represent the

actual values of these properties for a specific OCF

Resource, an instance of each OCF Resource Type is

needed. Figure 3 shows an example of instance of the

Light.BrightnessType ObjectType, called

Bulb_LightBrightness. As shown, the Value attribute

of the brighteness DataVariable Node contains the

actual value of the “brightness” property related to the

OCF Resource to be represented; in this example, it

has been assumed that the actual value was 80, as

shown by Figure 3.

Figure 3: Instance of Light.BrightnessType.

4.1.2 OCFResourceInstanceType

ObjectType

The aim of this subsection is to point out how an OCF

Resource is modelled into OPC UA AddressSpace.

As an OCF Resource can be an instance of one or

more OCF Resource Types, the obvious mapping

would be consisting of defining an OPC UA

ObjectType subtype of OCFResourceType for each

of its OCF Resource Type and create a unique OPC

UA Object instance of all these ObjectTypes,

modelling the OCF Resource. Unfortunately, this

solution cannot be realised as in OPC UA multiple

inheritance is forbidden. For this reason, a different

solution has been defined.

The solution adopted in this proposal is the

definition of a Concrete OPC UA ObjectType, called

OCFResourceInstanceType. For each OCF Resource,

Light.BrightnessType

Bulb_LightBrightness

BaseObjectType
ParameterSet

BaseDataVariableType
brightness
Value = 80

 ObjectType ObjectType

Object

Variable

HasComponent

HasComponent

HasSubtype

BaseObjectType

ParameterSet
[Mandatory]

OCFResourceType

TopologyElementType

BaseDataVariableType

<ResourceProperties>
[MandatoryPlaceholder]

ObjectType

TopologyElementType
TopologyElementType

HasSubtype

ObjectType

OCFResourceType
HasSubtype

Object

HasComponent

HasComponent

ObjectType

Variable
BaseDataVariableType

brightness
[Mandatory]

Light.BrightnessType

BaseObjectType

ParameterSet
[Mandatory]

Towards Integration between OPC UA and OCF

559

an instance of OCFResourceInstanceType is created

to model the OCF Resource. This instance must be

able to realise two aggregations, as explained in the

following.

The first aggregation involves all the

OCFResourceType subtypes modelling the OCF

Resource Types relevant to the OCF Resource. In this

way, information of the full set of OCF Resource

Types from which the OCF Resource inherits, can be

maintained in OPC UA.

In the previous subsection, it has been pointed out

that the actual values of the properties relevant to an

OCF Resource may be represented using instances of

each OCFResourceType subtype modelling the OCF

Resource Types from which the OCF Resource

inherits (see the example shown in Figure 3). For this

reason, an aggregation of all these instances is also

needed to represent the actual values of the entire set

of properties of an OCF Resource.

The required two aggregations just pointed out,

are realised using the Configurable Component

pattern defined in (OPCFoundation, 2013) and the

ConfigurableObjectType described in Section 2. The

instance of OCFResourceInstanceType created for

each OCF Resource, contains (through a

HasComponent Reference) an OPC UA Object of

ConfigurableObjectType ObjectType, named Aspects

in this paper. In turn, Aspects contains an instance of

each OCFResourceType subtypes modelling the OCF

Resource Types from which the OCF Resource

inherits. Finally, due to the features of the

ConfigurableObjectType ObjectType, Aspects owns

a folder named SupportedTypes; it is used to organise

the subtypes of OCFResourceTypes allowed as

component of the Aspects Object. Figure 4 shows the

details of the OCFResourceInstanceType

ObjectType.

The figure points out that an instance of this

ObjectType is made up by several components. One

of them is the Aspects Object. Aspects has a folder

named SupportedTypes as component; it is used to

organise the subtypes of OCFResourceTypes relevant

to the OCF Resource to be represented. Another

component of OCFResourceInstanceType is

ParameterSet Object, inherited from

TopologyElementType. All the Parameters of every

component of Aspects will be grouped by the

ParameterSet Object. This grouping allows to easily

access to all the OCF properties featured by the OCF

Resource.

Figure 4: Details of OCFResourceInstanceType ObjectType.

ParameterSet groups also other Parameters,

among which Figure 4 shows URI (that is mandatory

and is used to map the URI of the OCF Resource

represented) and ID (that is optional and is used to

map the “id” common property of the OCF Resource

state). Since URI and ID identify the OCF Resource,

they shall be grouped by the FunctionalGroup called

Identification, as explained in Section 2.

4.1.3 OCFDeviceType ObjectType

OCFDeviceType ObjectType is an Abstract

ObjectType subtype of OPC UA DeviceType. A

subtype of OCFDeviceType ObjectType shall be

created for each OCF Device Type to be represented

into the OPC UA AddressSpace; an instance of such

subtype maps an OCF Device and the information it

gathers. OCFDeviceType is graphically described by

Figure 5.

As explained in Section 3, an OCF Device must

expose OCF Resources and, optionally, subdevices. It

has been assumed that mapping of the relationships

between an OCF Device and its Resources is

achieved through the use of an ad-hoc defined OPC

UA ReferenceType, named HasResource.

Relationship with the subdevices is modelled by

another ad-hoc defined Reference called

HasSubDevices. HasSubDevice is subtype of

HasResource which in turn is subtype of

HasComponent ReferenceType.

Organizes

Variabl

e

BaseDataVariableType

ID

[Optional]

FolderType

SupportedTypes

[Mandatory]

Folder

ObjectType

TopologyElementType

HasSubtype

Variable

ObjectType

Variable
Object

Object

Object

Organizes

BaseDataVariableType

<ResourceProperties>

[MandatoryPlaceholder]

OCFResourceInstanceType

ConfigurableObjectType

Aspects
[Mandatory]

OCFResourceType

<Aspect>

[MandatoryPlaceholder]

FunctionalGroupType

Identification

[Mandatory]

BaseObjectType

ParameterSet

[Mandatory]

BaseDataVariableType

URI

[Mandatory]

Object

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

560

Figure 5: OCFDeviceType ObjectType.

As shown by Figure 5, OCFDeviceType is the source

of a HasResource Reference targeting the

InstanceDeclaration named <Resource>. It features a

MandatoryPlaceholder ModellingRule Object. This

InstanceDeclaration is needed in order to

represent OCF Resources contained in an OCF

Device.

OCFDeviceType is also the source of a

HasSubDevice Reference targeting an

InstanceDeclaration named <SubDevice>; as shown,

it is linked to an OptionalPlaceholder ModellingRule

Object. InstanceDeclaration is an Object of an ad-hoc

defined ObjectType, named SubDeviceInstanceType;

it allows to model subdevices of the OCF Device.

Among the Resources exposed by an OCF

Device, the three ones addressed by the URIs

“/oic/p”, “/oic/res” and “/oic/d” are mandatory, as

said in Section 3.

The OCF Resource addressed by “/oic/p” is

mapped as an instance of

OCFResourceInstanceType, named Platform; this

explains the presence in Figure 5 of the

InstanceDeclaration name Platform to which a

Mandatory ModellingRule Object is associated.

Platform Object is made up by components able to

map the properties of the OCF Resource addressed by

“/oic/p”.

The OCF Resource addressed by “/oic/res”

provides the list of OCF Links pointing the OCF

Resources exposed by an OCF Device. It has been

assumed to avoid the use of an OPC UA Node to

represent the OCF Resource addressed by “/oic/res”

and to map only the OCF Resources linked. These

Resources are mapped by the InstanceDeclaration

named <Resource> in Figure 5, as said before.

OCF Resource addressed by the URI “/oic/d” is

used to provide information about the relevant OCF

Device through its properties (defined by “oic.wk.d”

Resource Type). Also in this case, mapping by means

of an OPC UA Node has been avoided. Instead, the

properties of this OCF Resource are mapped by both

OPC UA Properties (inherited by OPC UA

DeviceType) and OPC UA Node Attributes of the

instance of an OCFDeviceType subtype.

5 EXAMPLE OF INTEGRATION

The aim of this Section is to provide an example of

the mapping from OCF Resource Model to OPC UA

AddressSpace, using the OCF ObjectTypes presented

in the previous section. For the sake of simplicity, the

example will focus only on the mapping of an OCF

Resource into OPC UA Nodes.

Let us consider an OCF Resource addressed by

the URI “/a/bulb” and let us assume that this it is an

instance of two OCF Resource Types called

“oic.r.switch.binary” and “oic.r.light.brightness”.

The former features a mandatory boolean property

named “value” indicating whether the bulb is on or

off. The latter has been already described before; as

said, it features only one mandatory property of

integer type, named “brightness”. Both the integer

“value” and the boolean “brightness” properties are

part of the state of the OCF Resource. It has been

assumed that their actual values are 80 and true,

respectively.

The OCF Resource addressed by the URI

“/a/bulb”, is mapped to the OPC UA AddressSpace

by the instance of OPC UA Object of

OCFResourceInstanceType type, named Bulb as

shown by the Figure 6. According to the definition of

the type shown by Figure 4, the instance has three

components: Aspects, ParameterSet and

Identification.

Aspects has three components shown by Figure 6.

The SupportedTypes is a folder which organises

Switch.BinaryType and Light.BrightnessType

modelling the two OCF Resource Types

“oic.r.switch.binary” and “oic.r.light.brightness”.

The other two components of Aspects are

Bulb_SwitchBinary and Bulb_LightBrightness,

which are instances of Switch.BinaryType and

Light.BrightnessType, respectively. For each of

them, the actual values of the properties are shown

(i.e. value and brightness).

Another component of the Bulb Object is the

ParameterSet Object. It is used to allow a direct

access to the two actual values of the properties of

Bulb_SwitchBinary and Bulb_LightBrightness

Objects (i.e. value and brightness), and to the

HasSubtype

ObjectType

DeviceType

Object

Object

ObjectType

Object

HasResource

HasResource

OCFDeviceType

OCFResourceInstanceType
<Resource>

[MandatoryPlaceholder]

SubDeviceInstanceType
<SubDevice>

[OptionalPlaceholder]

OCFResourceInstanceType
Platform

[Mandatory]

HasSubDevice

Towards Integration between OPC UA and OCF

561

mandatory URI Variable (containing the URI address

of the OCF Resource).

The last component of the Bulb Object is the

Indentification; it is a folder organising only the URI

Variable, as it is assumed that the ID Variable has not

been implemented.

Figure 6: Example of Mapping of an OCF Resource.

6 CONCLUSIONS

In this paper, a novel OPC UA information model

able to map elements of the OCF Resource Model

into the OPC UA AddressSpace has been proposed.

A GitHub repository has been realised by the authors

at the address https://github.com/OPCUAUniCT,

containing the definition of the entire novel OPC UA

information model here presented.

ACKNOWLEDGEMENTS

The research has been partially funded with the

“Research of Ateneo di Catania-Plan for Research

2016/2018”.

REFERENCES

Cavalieri, S., Salafia, M.G., Scroppo, M.S., 2018. Mapping

OPC UA AddressSpace to OCF Resource Model. In

Proceedings of the 1st International Conference on

Industrial Cyber-Physical Systems, San Petersburg

(Russia), pp. 135–140.

Cavalieri, S., Scroppo, M.S., 2018. A proposal to make

OCF and OPC UA interoperable. In Proceedings of

19th IEEE International Conference on Industrial

Technology, pp. 1551 – 1556.

Da Xu, L., Xu, E.L., Li, L., 2018. Industry 4.0: state of the

art and future trends. International Journal of

Production Research, 56(8), pp. 2941-2962, 2018.

Derhamy, H., Rönnholm, J., Delsing, J., 2017. Protocol

interoperability of OPC UA in service oriented

architectures. In Proceedings of 15th IEEE

International Conference on Industrial Informatics, pp.

44-50, 2017.

Guarda, T., Leon, M., Augusto, M. F., Haz, L., de la Cruz,

M., Orozco, W., Alvarez, J., 2017. Internet of Things

Challenges. In Proceedings of 12th Iberian Conference

on Information Systems and Technologies, pp. 628-631.

Industrial Internet Consortium, 2017. The Industrial

Internet of Things Volume G1: Reference Architecture

(Version 1.80).

Izaguirre, M. J. A. G., Lobov, A., Lastra, J. L. M., 2011.

OPC-UA and DPWS interoperability for factory floor

monitoring using complex event processing. In 9th

IEEE International Conference on Industrial

Informatics, pp. 205–211, July 2011.

Liao, Y., Deschamps, F., Loures, E.F.R., Ramos, L.F.P.,

2017. Past, present and future of Industry 4.0 - a

systematic literature review and research agenda

proposal. International Journal of Production

Research, 55(12), pp. 3609-3629, 2017.

Mahnke, W., Leitner, S.H., Damm, M., 2009. OPC Unified

Architecture. Springer Verlag, ISBN 978-3-540-

68899-0, 2009.

OPCFoundation, 2013. OPC UA for Device Companion

Specification, release 1.01, 2013.

OPCFoundation, 2015. OPC UA Part 3: Address Space

Model Specification, release 1.03, 2015.

Open Connectivity Foundation Website, 2018.

https://openconnectivity.org/

Open Connectivity Foundation, 2018. Core Specification.

https://openconnectivity.org/specs/OCF_Core_Specifi

cation_v1.3.1.pdf, version 1.3.1.

VDI/VDE, 2015. Status Report-Reference Architecture

Model Industrie 4.0 (RAMI4.0). Technical Report.

Retrieved from https://www.zvei.org/en/press-

media/publications/gma-status-report-reference-

archtitecture-model-industrie-40-rami-40/

OCFResourceType

Light.Brightnes

BaseObjectType

ParameterSet
[Mandatory]

OCFResourceInstanceType

Bulb

BaseObjectType

ParameterSet
[Mandatory]

BaseDataVariableType

value

[Mandatory]

Bulb_SwitchBinary Bulb_LightBrightness

ConfigurableObjectType

Aspects

FolderType

SupportedTypes

BaseObjectType

ParameterSet
BaseObjectType

ParameterSet

BaseDataVariableType

brightness

[Mandatory]

BaseDataVariableType

value

Value = “true”

BaseDataVariableType

brightness

Value = 80

BaseObjectType

ParameterSet

FunctionalGroupType

Identification

BaseDataVariableType

URI

Value = “/a/bulb”

Light.BrightnessType Switch.BinaryType

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

562

