The ε-approximation of the Label Correcting Modification of the Dijkstra’s Algorithm

František Kolovský1, Jan Ježek1 and Ivana Kolingerová2

1Department of Geomatics, University of West Bohemia, Univerzitní 2732/8, Plzeň, Czech Republic
2Department of Computer Science, University of West Bohemia, Univerzitní 2732/8, Plzeň, Czech Republic

Abstract: This paper is focused on searching the shortest paths for all departure times (profile search). This problem is called a time-dependent shortest path problem (TDSP) and is important for optimization in transportation. Particularly this paper deals with the ε-approximation of TDSP. The proposed algorithm is based on a label correcting modification of Dijkstra’s algorithm (LCA). The main idea of the algorithm is to simplify the arrival function after every relaxation step so that the maximum relative error is maintained. When the maximum relative error is 0.001, the proposed solution saves more than 95% of breakpoints and 80% time compared to the exact version of LCA. A more efficient precomputation step for another time-dependent routing algorithms can be built using the developed algorithm.

1 INTRODUCTION

Computing the arrival function from a source node to all other nodes is important for a lot of transportation applications. More formally, given a directed graph $G = (V, E)$, a source node $s \in V$, we want to know the travel time between the source node s and all other nodes for every departure time (in some literature called a travel time profile). This problem is generally called the time-dependent shortest path problem (TDSP). The main principle is that the arrival time t_u at the node u is used as the argument of the arrival time function f corresponding with the edge that origins at u.

The common approach is to use a piecewise linear function as a realization of the arrival function. Let us have two consecutive edges (e.g. the edges (s, u) and (u, d) in Figure 1a) then the arrival time at the node d is the value of the arrival function f_{ud} in the arrival time $f_{su}(t_d)$ at the node u, where t_d is the departure time at the node s. In the exact case, the combination $f_2(f_1(i))$ of two piecewise linear functions f_1, f_2 with $|f_1|$, $|f_2|$ linear pieces is also a piecewise linear function with up to $|f_1| + |f_2|$ linear pieces (Foschini et al., 2014). It means that the arrival function at the end of the path with n edges can have up to $\sum_{i=1}^{n-1} |f_i|$ linear pieces. For example, the path across the Pilsen city has around 100 edges. If every arrival function on the path has 24 linear pieces, the resulting arrival function has 2400 linear pieces. It can be seen that the computational time and memory requirements strongly increases with the length of the paths.

The problem with an increase in the number of linear pieces can be solved using the ε-approximation of the resulting arrival function. This approach reduces the number of linear pieces and thus reduces memory requirements as well as computation time. Our proposed algorithm is based on the so-called label correcting modification of Dijkstra’s algorithm (Orda and Rom, 1990). The main idea is to perform a simplification of the arrival functions during the computation with a suitable maximum absolute error such that the relative error ε is maintained.

2 DEFINITIONS AND PRELIMINARIES

2.1 Road Network

Let $G = (V, E)$ be a directed graph that represents a road network, where V is a set of nodes and E is a set of edges. Each edge $(u, v) \in E$ has an arrival function (AF) $f : \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ that for the given departure time at u returns the arrival time at v. Alternatively, we can define a travel time function (TTF) that returns the time needed to cross the edge. A relationship between
the TTF g and the corresponding AF f is defined as
$g(t) = f(t) - t$.
It is assumed that every AF f fulfill the FIFO property: $\forall t_1 < t_2$: $f(t_1) \leq f(t_2)$ and the departure time t_d must be smaller then the arrival time t_a (the travel time must be positive). AFs are implemented as piecewise linear functions.

In Figure 1a you can see AFs (f_{su}, f_{sv}, f_{sd}) for every edge in a small example graph with four nodes $V = \{s,u,v,d\}$ and four edges $E = \{(s,u),(s,v),(u,d),(v,d)\}$.

The points of AFs are called breakpoints. The number of breakpoints of AF f can be written as $|f|$. The following operation must be defined for two AFs:

- There are two consecutive edges (s,u) and (u,d) with AFs f_{su}, f_{ud}.
 The operation combination $f_{ud} \ast f_{su} : t \mapsto f_{ud}(f_{su}(t))$ represents AF from s to d. In Figure 1b there are AFs as results of the combination along the paths (s,u,d) (solid red line) and (s,v,d) (solid blue line).

- There are two parallel paths p_1, p_2 from s to d with AFs f_{sd}^1, f_{sd}^2. The operation minimum $\min(f_{sd}^1,f_{sd}^2) : t \mapsto \min\{f_{sd}^1(t),f_{sd}^2(t)\}$ represents the earliest AF from s to d. In Figure 1a $p_1 = (s,u,d)$ and $p_2 = (s,v,d)$. In Figure 1c you can see this earliest AF as a result of the operation minimum (green line).

2.2 Problem Definition

More precisely, TDSP can be defined as minimizing the travel time over the set $P_{s,d}$ of all paths in G from the source node s to the destination node d:

$$f_d = \min\{f_p(t) | p \in P_{s,d}\} \quad (1)$$

where f_d is the function of the earliest arrival time (minimal AF) from s to d and f_p is AF of the path $p \in P_{s,d}$.

This paper deals with one-to-all problem. The input data are the graph G, AF f_{su} for every edge $(u,v) \in G$ and the source node s. The output is the set F of the earliest AFs from the source node s to all other nodes v: $F = \{f_u | u \in V \setminus \{s\}\}$.

2.3 Approximation

In this paper the ε-approximation of AF f is considered as the ε-approximation of TTF $f(t) - \varepsilon g(t) \leq f^*(t) \leq f(t) + \varepsilon g(t)$. So the ε-approximation of the set F is $F^\varepsilon = \{f_u^\varepsilon | u \in V \setminus \{s\}\}$.

Let us present some useful theorems about the approximation that were derived for a use in the proposed algorithm.

Theorem 1. Let g^ε be an ε-approximation of TTF g. Then it holds that

$$g^\varepsilon = \frac{g^\varepsilon}{1 + \varepsilon} \leq g \leq \frac{g^\varepsilon}{1 - \varepsilon} = g$$

Proof. If the function g^ε is substituted by its extreme values $(1 - \varepsilon)g, (1 + \varepsilon)g$, the expression is still valid.

Theorem 2. Let f^ε be an ε-approximation of AF f and $f^\varepsilon_\alpha = f_{au} \ast f^\varepsilon_{uv}$. Let $\alpha \in [0, \frac{\varepsilon}{\varepsilon - 1}]$ be the maximum slope of AF f_{au}, $\max(f,\delta)$ be a function that simplifies the AF f with the maximum absolute error $\delta \geq 0$. Then $f^\varepsilon = \max(f_{uv}, f^\varepsilon_{v}) - \varepsilon g^\varepsilon$ is the ε-approximation of AF f_u.

Proof. The maximum absolute error of f_{uv} is εg_{uv} and the maximum absolute error of the operation $f_{au} \ast f^\varepsilon_{uv}$ is $\varepsilon g^\varepsilon_{uv}$. Then the result of the combination can be simplified with the maximum absolute error:

$$\delta = \varepsilon g_{uv} - \varepsilon g^\varepsilon_{uv} \geq \alpha g^\varepsilon_{uv} - \alpha g^\varepsilon_{uv}$$

Then δ must be ≥ 0.

$$\varepsilon \frac{g^\varepsilon_{uv}}{\varepsilon - 1} \geq \alpha \frac{g^\varepsilon_{uv}}{\varepsilon - 1}$$

Therefore $\delta = \varepsilon g_{uv} - \varepsilon g^\varepsilon_{uv} \geq \alpha g^\varepsilon_{uv} - \alpha g^\varepsilon_{uv}$.

Theorem 2 can be also formulated in a local form for a given departure time.

In Figure 1b there are dotted lines that represent the approximation of AFs. In Figure 1d you can see the ε-approximation $f^\varepsilon_{s,ud}$ of the earliest AF $f_{s,ud}$ from s to d (solid green line) and its upper bound $f^\varepsilon_{s,ud}$ and lower bound $f^\varepsilon_{s,ud}$ (green dashed lines).

2.4 Related Work

There are two groups of methods that compute an approximation of the AF. The first methods use forward and backward probes. The forward probe computes the arrival time at the node d with the given departure time at the node s. The backward probe solves the inverse problem. The arrival time at d is given and we want to know the departure time at s. These probes can be computed using the well-known Dijkstra’s algorithm (Dehne et al., 2012).

These methods recognize two types of breakpoints. The V points represent points that are created as images of the breakpoints that lie on the edge arrival.
Figure 1: Example of calculation of the arrival function from node s to d.

The functions $\{f_{uv}|(u,v) \in E\}$. The X points are created as an intersection of two AF in the minimum operation. It can be proved that the AF between two consecutive V points is concave or a line segment (Foschini et al., 2014) (see Example in Fig. 1c). The algorithms described in (Foschini et al., 2014), (Omran and Sack, 2014) use this concavity. First the V points are computed using one backward probe and two forward probes (more in (Dehne et al., 2012)) and then the approximation of AF between the V points is determined. The main problem of this approach is that the computation of V points requires $3 \sum_{(u,v) \in E} f_{uv}$ probes (Dehne et al., 2012).

The second group of methods uses a label correcting modification of the Dijkstra’s algorithm (LCA) (Algorithm 1). The modifications of the Dijkstra’s algorithm are:

- The node labels are AFs from s.
- The key of the priority queue is the minimum of AF (min f).
- The relaxation of the edge (u,v) is performed using...
The \(f_v = \min(f_v, f_{uv} * f_u) \)

LCA has time complexity \(O(|V| |E|) \) (Orda and Rom, 1990), but a real road network is far from the worst case. This technique is widely used, see e.g., (Geisberger and Sanders, 2010) (Batz et al., 2013) (Geisberger, 2010). First LCA is performed in the exact form and after that the resulting arrival functions \(F \) are simplified and used for further computation (e.g., some query algorithm). Some guarantees about the error of AF are presented in (Geisberger and Sanders, 2010), but these guarantees give only a maximum error dependent on the degree of approximation.

Algorithm 1: LCA in the exact form.

1. \(PQ = \) minimum priority queue where key is \(\min f \)
2. \(\forall u \in V : f_u = \infty \)
3. \(g_v = 0 \)
4. \(PQ.put(f_u) \)
5. while queue is not empty do
6. \(f_v = PQ.get() \)
7. foreach \(v : (u, v) \in E \) do
8. \(\tilde{f}_v = f_{uv} * f_u \) // combination
9. if \(\exists \tilde{f}_v(t) < f_v(t) \) then // compare
10. \(f_v = \min(\tilde{f}_v, f_v) \) // min
11. \(PQ.put(f_v) \)

In Algorithm 1 the initialization is performed in the lines 1-4. All node labels (AFs) are set to infinity in the line 2. The travel time at \(s \) is set to zero (line 3) and the node label at \(s \) \((f_s) \) is added to the priority queue (PQ) (line 4). In the line 6 the algorithm takes the node on the top of PQ and relaxes all edges that lead from this node. The relaxation is represented by the lines 8-11. The line 8 performs the combination of the node label at \(u \) \((f_u) \) and the edge AF \((f_{uv}) \). The condition in the line 9 checks for update. Updates of the label at the node \(v \) are performed in the line 10. The line 11 puts the node \(v \) to the PQ.

The main task is to develop an algorithm which solves TDSP with the given maximum relative error and is effective for a real road network. It follows that we focused on the \(\varepsilon \)-approximation of the LCA.

3 PROPOSED ALGORITHMS

This section describes two algorithms solving the \(\varepsilon \)-approximation of TDSP based on LCA (Algorithm 1).

3.1 \(\varepsilon \)-LCA Algorithm

The basic idea of the first proposed algorithm (\(\varepsilon \)-LCA) is that the simplification of AF is performed after every edge relaxation (the operation combination). The degree of the simplification is directed by Theorem 2.

The \(\varepsilon \)-LCA computes AF with the maximum relative error \(\varepsilon \) assuming that

\[
\forall (u, v) \in E : \alpha_{uv} \in \left[0, \frac{\pi^+}{g_{uv}^+}\right] \tag{2}
\]

where \(\alpha_{uv} \) is the maximum slope of AF \(f_{uv} \). The slope \(\alpha_{uv} \) must be bounded because Theorem 2 is used in the \(\varepsilon \)-LCA and the theorem needs this assumption.

The \(\varepsilon \)-LCA differs from the exact LCA only in the computation of \(f_v \). The AF \(f_{uv} \) in the line 8 in Algorithm 1 is simplified with the maximum absolute error \(\delta \) (according to Theorem 2). So the line 8 is replaced by 2 lines

\[
\delta(t) = \varepsilon((f_{uv} + f_u^\uparrow)(t) - \alpha(t)e_{g_u^\uparrow}(t))
\]

\[
f_{uv} = \text{approx}((f_{uv} + f_u^\uparrow), \delta)
\]

where \(\alpha(t) \) is the maximum slope of \(f_{uv} \) in the interval \([f_u^\uparrow(t), f_u^\uparrow(t)]\). The simplification was performed using Douglas-Peucker algorithm or Imai and Iri algorithm (Imai and Iri, 1986).

The main problem of \(\varepsilon \)-LCA is that if the assumption (2) is not complied, \(\delta < 0 \) and the algorithm cannot ensure the given relative error \(\varepsilon \). This occurs when the maximum slope \(\alpha_{uv} \) is too large. This issue is resolved using the second algorithm that is described in the upcoming section.

3.2 \(\varepsilon \)-LCA-BS Algorithm

The second proposed algorithm (\(\varepsilon \)-LCA-BS) is based on backsearch. It has no limitations for the slope \(\alpha \). The pseudo-code of the \(\varepsilon \)-LCA-BS is in Algorithm 2. The basic idea is that if the algorithm finds an edge \((u, v)\) where \(\alpha \) is too big in some departure time interval \([t_m, t_n]\) (\(\delta < 0 \)), it determines \(f_v \) in \([t_m, t_n]\) again with a higher accuracy (lines 11-15 of the Algorithm 2). The algorithm returns back to the point such that the edge \((u, v)\) can be reached from this point with sufficient precision using the exact LCA.

When the label at the node \(v \) (AF \(f_v \)) is updated (the condition at the line 16 is fulfilled), the edge \((u, v)\) is added to the predecessor list \(\text{pred}(v) \) of the node \(v \) (lines 17-20). The set of predecessors form a graph \(R = (V_R, E_R) \) (red color in Fig. 2). We assume that the graph \(R \) is acyclic. In general, the graph \(R \) may not be acyclic, but in real case it is very unlikely.
We want to find nodes w such that if the exact LCA is performed from these nodes, the AF f_e is an ε-approximation. The nodes w have to satisfy the following inequalities in the interval $[t_m, t_n]$:

$$\max \left\{ \prod_{e \in R} \alpha_e \mid p \in P_{vw} \right\} \leq \min \left(\frac{g^v}{\nu}, g^w \right)$$ \hspace{1cm} (4)$$

where P_{vw} is the set of all paths from v to w in the graph R (the paths must contain the edge (u, v)) and α_e represents the maximum slope of AF f_e corresponding with the edge e. The set W is the set of all nodes w that meet the condition (4) and there is a path $p \in P_{vw}$ that does not contain any other node from the set W (if the graph R is not acyclic).

When the graph R is not acyclic, it is necessary to modify the algorithm for searching the set W. These nodes w can be found using a topological ordering of V_R (Algorithm 3). The node labels α_b correspond to the left side of the inequalities (4). So the algorithm finds maximal paths in R. First the labels are set to negative infinity (the line 2) and the label at v is set to α_{uv} (the line 3). The lines 4-5 ensure a topological ordering. If the condition (4) in the line 6 is fulfilled, b is added to the W. The lines 9-12 ensure updating of the node labels. The part of f_e in the interval $[t_m, t_n]$ is substituted by a more accurate result of the exact LCA with the initial priority queue \mathcal{P} that is created by adding all $f_{w} \in \{f_{w} \mid w \in W \}$ (the lines 13-16).

In Figure 2 there is an example of backsearch. The black color represents the original graph G and the red color represents the acyclic graph R. The edge (u, v) violates the condition 2. Then the algorithm starts backSearch procedure and finds the set W (red nodes) using the graph R.

Algorithm 2: ε-LCA-BS.

1. $\mathcal{P} = $ minimum priority queue where key is $\min f$
2. $\forall u \in V : f^u = \infty$
3. $g^s = 0$
4. $\mathcal{P}.put(f^s)$
5. $\text{pred}(s) = \text{null}$
6. while queue is not empty do
7. $f^v = \mathcal{P}.get()$
8. foreach $v : (u, v) \in E$ do
9. $\delta(t) = \varepsilon((f^v * f^u) + (t) - \alpha(t)g^v)$
10. $\bar{f}_v = \text{approx}(f^v, f^u, \delta^+)$
11. $\delta(t) = \max(\delta(t), 0)$
12. if $\exists t : \delta(t) < 0$ then
13. find all intervals $[t_m, t_n]$ where δ is negative
14. foreach $[t_m, t_n]$ do
15. $h = \text{backSearch}((u, v), [t_m, t_n])$
16. substitute \bar{f}_v by h in interval $[t_m, t_n]$
17. if $\exists t : \bar{f}_v(t) < f^u(t)$ then
18. $\text{pred}(v) = (u, v)$
19. else
20. $\text{pred}(v).add((u, v))$
21. $f_v = \min(f_v, f^u)$
22. $\mathcal{P}.put(f_v)$

Algorithm 3: backSearch.

1. $W = \{\}$ \hspace{1cm} // set of all w
2. $\forall b \in V_R : \alpha_b = -\infty$
3. $\alpha_v = \alpha_{uv}$
4. while $\exists b : b \in V_R \setminus W \land \text{deg}^-(b) = 0$ do
5. $b = $ some node that meets the conditions above
6. if $\alpha_b = \min \left(\frac{g^b}{\nu}, g^b \right)$ then
7. $W = W \cup \{b\}$
8. else
9. foreach $a : (b, a) \in R$ do
10. if $\alpha_b \alpha_{ab} > \alpha_a$ then
11. $\alpha_{ab} = \alpha_{ab} \alpha_{ba}$
12. $V_R = V_R \setminus \{b\}$
13. endforeach
14. $\mathcal{P}.put(f_v)$
15. run LCA on G with initial priority queue \mathcal{P} on interval $[t_m, t_n]$ \hspace{1cm} // algorithm 1
16. return f_v.

When the graph R is not acyclic, it is necessary to modify the algorithm for searching the set W.

If the condition (2) is fulfilled, the ε-LCA-BS is reduced to ε-LCA, because the algorithm then does not perform any backSearch procedure.

4 EXPERIMENTS

The real road network with real speed profiles that were computed from GPS tracks was used for testing. This data represent part of Paris in France (Figure 3).

The algorithms were implemented using Scala programming language (OpenJDK 1.8, Debian 10). The testing was performed on a computer with Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz and with 16 GB RAM. One thread was used only.

Every graph represents different classes of roads. In Table 1 there are numbers of edges for each graph. In Table 3 there are performance results of ε-LCA-BS: the relative time t_r and the relative number of breakpoints bps related to the exact version of LCA.

The results in Table 3 show that the maximum relative error 10^{-4} brings only a small improvement, but this accuracy is too big for a real use. The maximum relative error from 10^{-2} to 10^{-3} seems to be a good compromise between accuracy and performance.

In Table 2 there are absolute values of measured parameters for $\varepsilon = 0.001$.

The ε-LCA-BS was tested only because ε-LCA is a special case of ε-LCA-BS only. The maximum allowed relative error ε was set to $10^{-1}, 10^{-2}, 10^{-3}$ and 10^{-4}.

Four graphs (G1, G2, G3 and G4) were created to show the performance of the developed algorithms. Every edge in the graphs has AF with 24 linear pieces.

Every graph represents different classes of roads. In Table 1 there are numbers of edges for each graph. In Table 3 there are performance results of ε-LCA-BS: the relative time t_r and the relative number of breakpoints bps related to the exact version of LCA. The same results you can see in Figure 4.

The results in Table 3 show that the maximum relative error 10^{-4} brings only a small improvement, but this accuracy is too big for a real use. The maximum relative error from 10^{-2} to 10^{-3} seems to be a good compromise between accuracy and performance.

The results in Table 3 show that the maximum relative error 10^{-4} brings only a small improvement, but this accuracy is too big for a real use. The maximum relative error from 10^{-2} to 10^{-3} seems to be a good compromise between accuracy and performance.

The results in Table 2 show that the maximum relative error 10^{-4} brings only a small improvement, but this accuracy is too big for a real use. The maximum relative error from 10^{-2} to 10^{-3} seems to be a good compromise between accuracy and performance.

The results in Table 3 show that the maximum relative error 10^{-4} brings only a small improvement, but this accuracy is too big for a real use. The maximum relative error from 10^{-2} to 10^{-3} seems to be a good compromise between accuracy and performance.
tions usually have small slopes. When it is certain that input data do not violate the condition (2), the algorithm is more suitable.

5 CONCLUSION

Two algorithms for ε-approximation of TDSP were presented. The algorithms significantly reduce the memory use. When the maximum relative error is a sufficiently large value (in our case 10^{-3}), the algorithms save the computational time too. From this point of view, the algorithms are suitable for precomputing the TTFs for the next use (e.g., time-dependent distance oracles, time-dependent contraction hierarchies).

In a real road network the maximum slopes of AFSs are not too big (Strasser, 2017). So the main disadvantage (too many calls of back search procedure) is not a too big problem. In one-to-one problem case the developed algorithms can be combined with other speed-up techniques that reduce the graph (e.g., time-dependent-sampling (Strasser, 2017)).

In the future work it would be useful to use some heuristics for decision whether it is necessary to perform backSearch. The goal is to remove the cases when the difficult-to-calculated AF (using backSearch) is fully replaced by another AF from another node.

ACKNOWLEDGEMENTS

This work has been supported by the Project SGS-2019-015 (“Využití matematiky a informatiky v geomatice IV”) and by Ministry of Education, Youth and Sports of the Czech Republic, the project PUNTIS (LO1506) under the program NPU I.

REFERENCES

