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Abstract: Outlier detection in Wireless Sensor Networks is a crucial aspect in IoT, since cheap sensors tend to be 

seriously exposed to errors and inaccuracies. Hence, there is the need of a solution to improve the quality of 

the data without increasing the cost of the sensors. In Big Data paradigms, it is difficult to exploit the temporal 

correlation of sensors since Big Data architectures and technologies do not process data in order. In this paper, 

a complete study of multi-variable based outlier detection is carried out. Firstly, three known unsupervised 

algorithms are analysed (Elliptic Envelope, Isolation Forest and Local Outlier Factor) and are tested in a big 

data architecture. Secondly, an ensemble outlier detector (EOD) is created with the outputs of these algorithms 

and it is compared, in a Lab environment, with previous results for different parameters of contamination of 

the training set. The analysis of the results show that for correlated variables, multi-variable EOD has a very 

good detection rate with a very low false alarm rate. Finally, the EOD is used in a real world scenario in the 

city of Barcelona and the results are analysed using spectral-decomposition techniques which indicate that 

EOD has a good performance in a real case. 

1 INTRODUCTION 

The decrease in the cost of sensors in these last years 

is one of the reasons that has promoted the adoption 

of the Internet of Things (IoT) paradigm in many 

sectors and domains. From Smart Cities to Industry 

4.0, IHealth or Autonomous Guided Vehicles 

(AGVs), to name just a few, the inclusion of low price 

sensors has allowed companies to improve their 

competitiveness and create new business models.  

Hence, sensors are on the basis of the value’s 

pyramid of nearly any company willing to digitalize 

and improve their products and processes. However, 

sensors do not add value by themselves. The data that 

they produce is the one that, once analysed and/or 

visualized, can provide value to the users. Data with 

low quality (i.e. with many errors) is difficult to be 

analysed and it may lead to incorrect assumptions or 

decisions. Moreover, in Big Data environments it is 

impossible to find and neutralize these errors 

manually.  

Consequences of bad data quality can cause major 

impacts on applications, for example, bad 

measurements on Intensive Care Unit (ICU) patients, 

an error in an automated manufacturing chain or a 

mismeasurement in a modern smart city, where 

public policies are decided depending on the data 

reported by the sensors (e.g. banning the use of 

pollutant cars when the levels of pollution are 

considered dangerous).  

In general, we can conclude that any sensor is as 

good as the data that it provides. It has been shown 

empirically that sensors (especially cheap ones) are 

seriously affected by several sources or errors such as 

noise, inaccuracies and impression, hardware 

problems, and low voltage to name just a few 

(Elnahawy and Natch, 2003). In many applications, 

using high quality sensors that reduce errors may not 

be an option due to their high cost. However, it is 

possible to apply software based outlier detection 

techniques to the collected data in order to identify 

erroneous samples and improve the quality of the 

resulting data. 

There have been many research efforts in outlier 

detection in the field of Wireless Sensor Networks 

(WSNs) where limited resources, frequent physical 

failures and exposition to attacks are the main factors 

to consider. 

In (Shikha Shukla et al. 2014), authors perform a 

complete survey of the different techniques of outlier 
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detection in WSNs, classifying them between 

Statistical-Based approaches, Nearest Neighbour 

approaches, Cluster-Based approaches, 

Classification-Based approaches and Spectral 

Decomposition-Based approaches. 

Cluster-based approaches in IoT have several 

advantages over the rest of techniques. Firstly, even 

if supervised systems (mainly Classification-based 

approaches) are commonly used for calibration of 

sensors (Spinelle et al., 2015) and (Pena et al., 2003), 

it is difficult to create supervised systems in a real 

world IoT scenario, because they do not adapt to new 

conditions (e.g. a change of location of the sensor) 

easily. Secondly, statistical approaches suffer from 

the adaption to real time and to the Big Data paradigm 

associated with IoT. Thirdly, unsupervised systems 

can be combined with spectral decomposition-based 

approaches since these are focused on variable 

reduction (usually for visualization, even if there has 

been research on spectral decomposition-based 

outlier detection using PCA techniques (Ghorbel et 

al., 2015) and (Zheng et al., 2018). Finally, 

unsupervised cluster-based systems do not need to 

know the number of clusters in advance. 

In general, unsupervised clustering techniques 

have the advantage that they model the “usual” 

behaviour of the system and then, they detect any 

anomaly out of this behaviour. This is exactly the 

problem to be solved by outlier detection in sensor 

networks. Moreover, one may note that outlier 

detection techniques can be combined with 

supervised learning techniques in a way that these 

anomalies can be classified in different classes 

(different types of anomalies or events).  

Most of the work related to outlier detection in 

WSN have been focused on exploiting the temporal 

(time sequenced) and spatial (location) correlation of 

the different sensors measurements (Zheng et al., 

2018) and (Yang et al., 2008) with distributed 

approaches focusing also on multi-variable as a 

secondary correlation (Barakkath Nisha et al., 2014). 

All these techniques are usually evaluated using a 

clean dataset where outliers are added artificially, 

since a labelled dataset is needed to evaluate an 

algorithm and it is difficult to obtain such dataset 

from real measurements.   

In the paradigm of Big Data introduced by the 

MapReduce (Dean and Ghemawat, 2008) technique 

implemented in the most known technologies in the 

field like Hadoop (Shvachko et al., 2010) or Spark 

(Zaharia et al., 2016), data is not processed in 

temporal order. Instead of that, chunks of data are 

distributed to several nodes and MapReduce tasks are 

launched in parallel. Hence, it is difficult to base an 

outlier analysis in time correlations using a Big Data 

approach.   

Moreover, according to our knowledge, there is 

no study that evaluates the multi-variable correlation 

separately from the temporal and spatial correlations. 

This would be useful in order to show the 

characteristics of outlier detection for each one of 

these correlations (temporal, spatial, multi-variable) 

separately. 

Finally, in real world IoT scenarios, most of the 

variables are correlated, like the temperature and 

vibration of a machine in a manufacturing line or the 

different pollutant agents in a smart city 

Hence, in this paper we aim to exploit and 

evaluate the multi-variable correlation in outlier 

detection. Firstly, to detect these outliers we use a set 

of three well-known unsupervised algorithms, 

namely Elliptic envelope, Isolation Forest and Local 

Outlier Factor (Section 2). With their outputs, we 

build an Ensemble Outlier Detector (EOD) based on 

a majority voting system.  

Secondly, we perform this analysis using the well-

known and broadly used Intel Berkeley dataset (Intel 

Berkeley Research Lab, 2004) (Section 3). We 

evaluate this system using the standard evaluation 

techniques based on Detection Rate (DR) and False 

Alarm Rate (FAR) with artificially generated outliers 

composed of local and global outliers. 

Thirdly, we evaluate the proposed model in a real 

case scenario in the city of Barcelona, within the 

scope of the GrowSmarter project (Growsmarter 

project, 2019), using the data provided by a cluster of 

sensors of 16 variables installed in bikes that move 

around the city (Section 4). 

Finally, we present future evolutions of the EOD 

and we expose the conclusions (Section 5).  

2 ENSEMBLE OUTLIER 

DETECTOR 

Ensemble methods are widely used to increase the 

accuracy of the predictions when different criteria 

need to be applied for decision making using data-

driven systems. For example, Skyline is a popular 

open source project which uses ensemble methods for 

outlier detection in time-series data (Stanway, 2013). 

This work takes advantage of very well-known 

unsupervised techniques for outlier detection in order 

to get a unique robust classification. 

In the presented Ensemble Outlier Detector, the 

first implemented technique is Elliptic Envelope (EE) 

(Rousseeuw and Van Driessen, 1999), which is based 
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on the minimum covariance determinant (MCD) as a 

robust estimator for a given multivariate space. It 

generates an elliptical space around the centre of mass 

of the data using the covariance matrix of the features. 

Given these decision boundaries, any point outside 

the space is tagged as an abnormal point.  

The second unsupervised algorithm is Isolation 

Forest (IF) (Liu et al., 2008), a method that uses 

multiple random trees to find the conditions that 

isolate abnormal values. Based on the assumption that 

an outlier can be easily isolated from the other data 

points, it generates multiple random conditions that 

split the data between greater and smaller values. The 

shorter the number of conditions needed to isolate a 

sample are, the higher is the probability of that 

specific sample to be an outlier. 

The last one is the Local Outlier Factor (LOF) 

(Breunig et al., 2000). It is a density-based outlier 

detection method that uses k-nearest neighbour’s 

algorithm (KNN) to find local outliers. Using relative 

density of a sample against its neighbours, the 

algorithm is able to find abnormal points. In contrast 

to proximity-based clustering, LOF is able to detect 

local outliers inside the data distribution. 

Finally, the proposed method is an Ensemble 

Outlier Detector (EOD). This system takes advantage 

of the three different techniques (EE, IF and LOF) to 

have a robust binary classification indicating if a 

sample is an outlier or not. Our outlier detector model 

is described as follows. Firstly, the training is done in 

each of the three algorithms using a representative 

subset of the sensor data. Secondly, the sensor records 

are introduced in the model and classified by each of 

the three algorithms. Finally, the EOD determines the 

final classification. The vote system delivers whether 

or not the sample is an outlier and isolates all the 

abnormal values from the normal values. 

A record is detected as an outlier depending on 

how many times the internal algorithms classified it 

as an abnormal value. Taking into account that an 

outlier classification from one algorithm means a 

positive vote (+1) and a normal from one algorithm 

classification means abstention (0), the vote system 

applied on a sample point p through the three internal 

algorithms of the EOD is defined as: 
 

{
 LOF(p) + EE(p) + IF(p)  ≥ 2 ∶ Class = Outlier

 LOF(p) + EE(p) + IF(p) < 2: Class = Nornal
 (1) 

3 RESULTS 

In this section the outlier detection will be executed 

and evaluated using the Intel Berkeley database (Intel 

Berkeley Research Lab, 2004). The dataset comprises 

samples from fifty-one sensors distributed across a 

controlled laboratory during the timeframe between 

February 28th and April 5th, 2004. There are 2.3M 

samples overall with each sensor sampling every 

thirty-one seconds. For each sensor we have its 

coordinates (location in the room), and for each 

sample we have the timestamp, the temperature (in 

Cº), the humidity (relative from 0% to 100%), the 

light (in LUX) and the voltage (in Volts).  

In order to evaluate the performance of the 

algorithms and for simplicity, we consider only the 

temperature and the humidity for two reasons.  

Firstly, because we know that there exist a correlation 

between them and our method is precisely based on 

multi-variable correlation. Hence, it only makes sense 

with correlated variables. Secondly, because it is 

much easier to show the data graphically in two 

dimensions without the need to use spectral-

decomposition techniques. Later on, we will be able 

to compare our results over this dataset with the 

results in the real scenario graphically (Section 4), 

since without labelled datasets we will be unable to 

provide more accurate metrics.  

Over the selected subset of data of the Intel 

dataset, synthetic outliers are created. This is a 

commonly used procedure for comparing outlier 

detection techniques in WSN (Ghorbel et al., 2015), 

(Zheng et al., 2018) and (Yang et al., 2008).  
 

 

Figure 1: Evaluation diagram. 

In Figure 1 the main workflow of the evaluation 

method is shown. The first step is to select a suitable 

subset of sensors to build our training space. Five 

node sensors are chosen as a representative subset of 

the whole sensor deployment, specifically S1, S18, 
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S25, S40 and S52. From these five sensors, a time 

period of 3 working days is selected as being a 

representative set of samples, specifically from 

2015/03/04 until 2015/03/06. At this stage, the train 

subset can be studied to make sure that there are not 

abnormal values. Once we know that all the values 

are reliable, the next step is to mix synthetic outliers 

using random SciPy NumPy library (Jones et al. 

2018). The percentage of synthetic outliers over the 

training dataset is called the contamination c and it is 

an important parameter for algorithm training. 

A synthetic outlier O is created as random value 

inside a Gaussian distribution with a constant value 

deviated a 30% from the minimum or the maximum 

measure of a variable var with mean 𝜇 and variance 

𝜎. The formula is randomly selected for every new O 

to make sure that outliers are created above the 

maximum and below the minimum of the data 

distribution. See formula details below: 
 

𝑂 = min(𝑣𝑎𝑟) −
min(𝑣𝑎𝑟 ) ∗ 70

100
+ 𝑟𝑎𝑛𝑑. 𝑛𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎) (2) 

 

𝑂 = max(𝑣𝑎𝑟) +
max(𝑣𝑎𝑟 ) ∗ 30

100
− 𝑟𝑎𝑛𝑑. 𝑛𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎) (3) 

 

 

Figure 2: Train set time series of sensor 1 for temperature 

(top) and humidity (down) with 5% of outliers. 

 
Figure 3: Train (left) and test (right) data correlation for 

c=5%. 

 

In Figure 2, the data of one sensor over the three 

training days is shown graphically for both, 

temperature and humidity. The crosses are the 

synthetic outliers. The correlation of both variables 

with the outliers is shown in Figure 3, where it can be 

seen that the outliers are generated trying not to be too 

obvious for the algorithms and containing both, local 

outliers (outlier in one variable) and global outliers 

(outliers in both variables). 

The classification output (predictions) of our 

EOD will be compared to the real class input (labels) 

in order to generate the confusion matrix (Table 1).  

Table 1: Confusion Matrix. 

 Predicted Outlier Predicted Normal 

Real 

Outlier 
True Positive (TP) False Negative (FN) 

Real 

Normal 
False Positive (FP) True Negative (TN) 

 

Finally, some calculations will be done on top of 

the confusion matrix to discuss the results. To do so, 

very well-known metrics as False Alarm Rate (FAR), 

Detection Rate (DR) and accuracy (ACC) will be 

useful. In addition, other interesting metrics will be 

computed to give a better understanding of the results. 

In these experiments, F1-score will be a good 

indicator of the compromise between DR and 

precision. 
 
The detection rate is: 
 

DR = 100 ∗ 
TP

TP + FN
  (4) 

  
The false alarm rate is: 
 

FAR = 100 ∗  
FP

FP + TN
  (5) 

 

The accuracy is: 
 

ACC = 100 ∗ 
TP+TN

total number of samples
  (6) 

 

Finally, the F1-score is: 
  

F1score = 100 ∗  2 ∗
Precision ∗ DR

Precision + DR
  (7) 

  

With 

Precision = 100 ∗
TP

TP + FP
  (8) 

 

Outlier detection techniques are expected to have 

high DR while maintaining low FAR. ACC is 

required to be high as it shows the successful 

Ensembled Outlier Detection using Multi-Variable Correlation in WSN through Unsupervised Learning Techniques

41



 

predictions in front of to the total number of samples. 

Similarly, a high f1-score means a good trade-off 

between correct predictions and misclassifications. 

Furthermore, ROC curves are used to evaluate the 

compromise between DR and FAR.  

Knowing the contamination ratio of our train data, 

the system can be fitted using the contaminated train 

set and the contamination ratio. After the training step 

is done, the system is ready to classify new data that 

it had never seen before. In the same way that we did 

with the training set, we will consider the next day 

(2015/03/07) as a clean test set to impute synthetic 

outliers on it. The chosen outlier ratio in the testing 

set is the 5% of the data. Finally, the system will 

detect if a sample is or is not an outlier and this 

prediction will be compared to the original label. To 

do all these computations we have implemented our 

algorithms using Python and launching them using 

Spark (through the PySpark library). Our method is 

completely in line with the Big Data paradigm and its 

100% parallelizable using MapReduce techniques. 

We propose five experiments to evaluate the 

efficiency of the different algorithms. The 

contamination on train goes from 1% to 5% in steps 

on 1 %. The objective is to evaluate the effect of the 

training contamination parameter applied to same test 

set. The results are shown in Figure 4, where the DR 

of the different methods is presented for the five 

different experiments. Firstly, LOF performance is 

good for low contamination training rate while IF has 

very poor DR. Secondly, the performance of LOF 

slightly decreases as the contamination in training 

increases.  Finally, except for LOF, the trend suggests 

that DR increases with the contamination on the train 

data. This effect is due to the need of the algorithms 

to create robust decision spaces while training; 

something that cannot be achieved with a very low 

contamination. 

In Figure 5, the trade-offs between the resulting 

DR and FAR for the five experiments are shown. 

Each point represents a different contaminated 

training set (with the numbers indicating the 

contamination ratio). As we have seen before, LOF is 

able to obtain very good DR for low contaminated 

train sets, but the FAR it’s also very high compared 

to the other methods. In contrast, the FAR of EE 

remains zero for low contaminated experiments. 

Although IF has its better performance for 

contamination equal 4%, its DR and FAR are still 

poor in comparison to the other methods. In 

summary, EE, LOF and IF have their best 

performances for c =  4%. 

According to these metrics, we can conclude that 

EE is the algorithm with better results. The main 

reason is that the simplicity of the analysed dataset (2 

variables) and the distribution of these two variables 

(Figure 3) fit perfectly in the elliptic shape of EE. In 

contrast IF performs the worst by difference for the 

same reason, since having only two variables does not 

allow IF to isolate easily the outliers in the forest that 

it creates. Finally, LoF is between both results, being 

able to achieve a good accuracy but with a high FAR. 

 

Figure 4: DR evolution over the increase of the train 

contamination percentage. 

 

Figure 5: DR - FAR trade-off shown by the three algorithms 

for the five tests. 

From these results, we can extract two main 

conclusions. Firstly, that the scenario chosen benefits 

EE while it detriments both IF and LoF. IF needs 

more variables to increase its performance while LoF 

needs also a more complex scenario to be able to 

leverage its capabilities in finding local outliers. We 

think that with a more complex scenario like the one 

proposed in the real case (Section 4) the performance 

of the three algorithms would be closer. Secondly, we 

conclude that our constructed EOD works very well 

even in this scenario with heterogeneous results, with 

EOD being very close to EE in performance. We 

think that with a more balanced scenario, the EOD 

can easily be the best in terms of performance. 

In order to have a better understanding of the 

behaviour of our EOD, a deeper analysis on results is 

5 
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needed. For the sake of clarity, a static train 

contamination is needed. The next experiments are 

done with a 5 % contaminated training and test 

datasets. 

 

Figure 6: Venn diagram of the outliers detected by each one 

of the three algorithms. 

The first question to answer is how the algorithms are 

contributing to the EOD. In Figure 6, the Venn 

diagram shows the intersection between the outliers 

detected by each one of the algorithms. Due to the 

EOD nature, only the outliers detected by two out of 

the three algorithms are considered. For example, the 

261 outliers in the IF area, are not considered outliers 

by the EOD. In this scenario a total of 719 outliers 

were detected by at least one of the algorithms with 

376 of them being outliers according to the EOD, 

which is the 52%. Actually, this helps understanding 

the resilience of EOD to the high FAR shown by the 

IF in the proposed scenario.  

In Figure 7, we show the point cloud diagram of 

temperature and humidity of the testing set and the 

detections done by the EOD. This diagram shows 

how the points that aren’t detected (100% - accuracy) 

are the ones that are very close to the centre of mass 

of the data distribution. This result is the expected 

one, since outliers close to the usual behaviour of the 

data are more difficult to detect. 

Figure 8 shows a detailed analysis of EOD. Note 

that apart from reaching up to 81.8% of DR with a 

FAR of only 2.24%, it has also a very good accuracy 

(98.9%) and a f1-score of 87.8%. These are notable 

results in the sense that we detect almost all the 

outliers misclassifying only a 2% of normal points. 

We have also seen that it is possible to increase 

the DR of the EOD by increasing the contamination 

of the training set at the cost of increasing the FAR. 

In Figure 10, we show how EOD can achieve a 94.4% 

of DR. Every point in the chart represents an 

experiment with an increased contamination, from 

5% until 10% in steps of 1%.  

 

Figure 7: Point cloud diagram showing the outliers detected 

by EOD in the 2-variable space (temperature and humidity). 

 

Figure 8: Metrics of the EOD. 

 

Figure 9: DR and FAR for experiments with a 

contamination of the training set from 5% to 10% in steps 

of 1%. 

4 EVALUATION IN A REAL CASE 

The Ensemble Outlier Detector has been showcased 

in a real case in the city of Barcelona within the scope 

of the project GrowSmarter. It will also be applied in 

6 cities of Europe within the scope of the project 

MUV. In this section we explain these real 

applications. 
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4.1 Growsmarter 

Growsmarter (Growsmarter project, 2019) is an 

H2020 lighthouse project that proposes 12 smart city 

measures focused on energy, infrastructure and 

mobility to improve the sustainability and efficiency 

of European cities. One of these measures includes 

the implementation of a last mile microdistribution 

service for freight based on the usage of electrical 

tricycles to deliver the parcels in the city.  This 

measure will take advantage of having the tricycles 

moving around dense areas by installing a multi-

sensing wireless device that will monitor several 

parameters, such as temperature, luminosity, 

humidity, noise level, air pollution, and also the 

position at which these measurements are taken, so 

that it will be possible to map these parameters and 

monitor their variability during the duration of the 

pilot.  The Moving Sensing device deployed by 

i2CAT (Figure 10) is able to support multiple 

communication interfaces (GPRS, WLAN or 

LPWAN) to transmit the measured data to the project 

platform. Furthermore, the device has edge 

computing capabilities; so that different algorithms 

and functionalities can be implemented and run on the 

device to optimize data sampling and processing.   

Figure 11 shows the detail of the installation of the 

sensor in one of the tricycles. The supply voltage is 

provided, in this case, by the same battery used for the 

electrical vehicles; so that users do not need to take 

care of replacing and recharging an additional battery 

for the prototype. 

This monitoring solution will serve to:  

• Explore the feasibility of tracking 

environmental parameters in a city in a mobile 

scenario with low-cost sensors to complement 

the information from the static environmental 

and pollution stations installed in specific places 

in the city 

• Evaluate the environmental impact of the 

microdistribution of freight solution through the 

comparison of the pollution in the delivery area 

with the one in its edges. 

• Provide real-time tracking information about the 

path followed by the tricycles, which can be 

helpful to optimize delivery routes and, thus, 

improve the service and make it more 

competitive for the last-mile operator.  

 

 

 

Figure 10: Moving Sense prototype. 

 

Figure 11: Detail of the installation in one of the tricycles. 

In order to increase the reliability of massive data 

produced by those sensors a cleaning system is 

required. As the sensors are on moving bikes, the data 

is prone to errors and sudden shifts due to external 

agents on the city or abrupt movements of the bike.  

This problem can be faced with the EOD and will be 

the first real use case to apply it.  

The data generated from every single bicycle will 

be considered as a sensor node that sends the 

information to the Cloud. The acquired data are stored 

on a No-SQL database to deal with the semi 

structured format and inconsistences on the data. 

Every sensor node contains different sensors 

monitoring the quality of the air around the city. 

Every node is composed by 6 different sensors with a 

sample rate of 2 minutes, see Table 2 for details. On 

this work one sensor node within 2017/08/13 and 

2017/12/13 is chosen to show the EOD results. 

In this use case, we are facing a high dimensional 

problem without any kind of labelling neither 

possibility to obtain it. This is actually the real 

situation in most IoT deployments. With this in mind, 

dimensional reduction (spectral-decomposition) 

techniques will be good solution to show our data 

distribution and evaluate the final classification. 
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Table 2: Sensor on sensor node. 

Sensor model Variable 

SHARP GP2Y1010AU0F PM 

SGX 

MICS2614 
O3 

SGX  

MICS6814 

NO2, CO,CO2, O3, CH4, 

NH3, H2, CH3H8 and 

C4H10 

CLE-0421-400 SO2 

Sparkfun  

SEN-12642 
Acoustic pressure 

DHT22 Temperature and 

Humidity 

 

PCA and T-SNE will be used to evaluate the EOD 

because they allow the visualization of the data and 

the detected outliers. PCA (Tipping and Bishop, 

1999) is a lineal dimension reduction technique that 

computes the Eigen vectors of a high dimensional 

space and keeps the most relevant vectors to generate 

a new low dimensional data space. T-SNE (van der 

Maaten and Hinton, 2008).  is a non-lineal dimension 

reduction method that is able to maintain the original 

distances between records. T-SNE will be crucial for 

checking the kind of outlier detected. The global 

outliers will usually share a cluster on the T-SNE 

space while the local outliers will correspond to 

isolated points on the reduced space. 

Using these two techniques, we will be able to 

reduce the dimensionality up to a 2D space where we 

will visualize the new distribution and consider the 

outliers as the records with higher distance to the 

centre of mass of the data, in the case of PCA, and as 

abnormal clusters, for the T-SNE.  

In order to compare the labelled Intel dataset 

results and the Growsmarter real use case, the PCA 

and the T-SNE are also applied to the Intel data. Intel 

data is already a 2 dimensional space, since only 

temperature and humidity are considered. Hence, the 

resulting dimensionality will be 2D again. In Figure 

12 the transformations are applied to the Intel test data 

with synthetic outliers. In the PCA, outliers are far 

from the centre of mass and are located on 

depopulated areas. T-SNE manage to group the 

majority of outliers in two different clusters and the 

reminder outlier records corresponds to isolated 

points. These graphics give a better understanding of 

what the outliers should look using these techniques. 

 

 

Figure 12: PCA (top) and T-SNE (down) on Intel Test Data. 

 

Figure 13: PCA (left) and TSNE (right) on original data: 

 

Figure 14: Zoom in PCA and data density. 

Similarly in Figure 13, the resulting 2D space for 

the Growsmarter data is shown. In order to give a 

clear visualization on where we expect to find the 

outliers, a zoom in is performed in Figure 14. In this 
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way we provide a green highlighted rectangle 

containing the higher density areas on the data.   

Taking the original 16-dimensionality data space, 

we can train our EOD using all the data. As we do not 

have any kind of label, a common issue on real data, 

there are no reasons to split on train and test set. An 

important parameter to take into account is the 

contamination ratio. Depending on how we “relay” 

on our sensor data or depending on how many 

abnormal values we want to detect, we have to adjust 

the contamination. The shown experiment is carried 

out with a contamination of 4% which has been 

empirically shown to give the better results. 

 

 

Figure 15: PCA and T-SNE with detected outliers 

represented in colours according to its clustering in the T-

SNE. 

The detected outliers are shown in Figure 15 using 

different colours. All coloured points are detected 

outliers using the EOD while the grey points are the 

normal data. Then, we assign one colour to every 

outlier cluster created by the T-SNE. Hence, we are 

able to locate these clusters also in the PCA. It is clear 

how the low density clusters and isolated points are 

detected as outliers on PCA. Also the outliers on T-

SNE are grouped on clusters or are isolated records 

on the space.  

Although we are not able to have accurate metrics 

due to the lack of labels, the EOD managed to 

detected the low density areas of a 16 variable space 

and detect the abnormal points isolated from the 

others with a full unsupervised approach. 

Moreover in Figure 16, we can see how the three 

algorithms contributed to the final EOD decision. 

Note that in this case, EOD detects outliers in the left 

part of the PCA which EE cannot detect. 

In Figure 17 we can see the Venn diagram of the 

Growsmarter scenario. In this case, a total of 528 

outliers are detected by at least one of the algorithms 

with 334 of them being outliers according to the 

EOD, which is the 63%. 

 

 
Figure 16: PCA and T-SNE for the three algorithms: 

Elliptic Envelope (top), Isolation Forest (middle) and Local 

Outlier Factor (down) in the Growsmarter case. 

 

 

Figure 17: Venn diagram of the Growsmarter case. All 

outliers detected by at least two of the algorithms are 

considered outliers by the EOD. 
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4.2 MUV 

This work has also been considered as the main 

technology for a proof-of-concept in the project 

Mobility Urban Values (MUV) (MUV project, 2019), 

where different monitoring stations are installed in 6 

different European cities. These stations monitor not 

only weather and pollution aspects but also include 

noise and traffic sensing (including cars, bicycles and 

pedestrians).  

For weather and pollution the requirements and 

the environment will be very similar to the one 

presented in GrowSmarter. The main differences are 

the static location of the stations, some slight changes 

in the sensors requirements and the implementation in 

6 cities which should be running the service 

continuously. 

However, the new sources of data (noise and 

traffic), imply a high challenge for EOD for three 

reasons. Firstly, these are new sources which are 

highly correlated but that have a completely different 

nature than the ones analysed in Growsmarter. 

Secondly, the amount of data generated will be much 

higher, since these sensors have a real-time sampling 

rate. Finally, the noise sensor includes continuous 

signal processing. 

5 CONCLUSIONS 

In this paper we have presented a construction of an 

Ensemble Outlier Detector based on a majority voting 

system using three different unsupervised learning 

techniques, namely elliptic envelope (EE), isolation 

forest (IF) and local outlier factor (LOF) based on 

multi-variable correlation.  

These three algorithms are evaluated using the 

Intel Berkeley dataset, focusing only in the 

temperature and humidity variables. The results of the 

analysis using this dataset with synthetically added 

outliers is extensively discussed. Then, we have 

tested the system in a real case scenario as part of the 

project Growsmarter, using bikes with sensors that 

move around the city of Barcelona. The results are 

shown graphically because of the difficulty to obtain 

appropriate labelled datasets to perform a more 

accurate analysis. Using spectral-decomposition 

techniques, we are able to compare the results of the 

EOD in the real scenario with the results obtained in 

the Lab experiment. Our analysis concludes that the 

behaviour is very similar and we can expect similar 

results in terms of accuracy, detection and false alarm 

rates in the real scenario with the ones that we have 

obtained in the Lab case.  

The overall result indicates that, for correlated 

variables, the analysis performed using unsupervised 

techniques is highly accurate. Furthermore, it permits 

the use of Big Data approaches like Map Reduce, 

since we do not focus on the temporal correlation of 

the variables, hence we can analyse the samples 

independently and without any order. This is a major 

advance towards outlier detection in Big Data 

systems. 

The main stopper to an appropriate comparison of 

different outlier detection techniques based on 

different correlations in a real scenario is the need to 

obtain real labelled datasets. A possibility is to install 

a monitoring device close to a highly-accurate 

measuring station and use the results to label the 

device’s samples. However, if we talk about Smart-

Cities, measuring stations are usually installed in the 

roofs of high buildings precisely to avoid sensor noise 

produced close to the street. The resulting dataset can 

be used to calibrate the sensors but is not useful to 

evaluate the results of an outlier detection system 

when the monitoring device is placed in the street in 

its usual day-to-day scenario. 

Another discovered advance is the resilience of 

the EOD to different scenarios. While in simple 

scenarios like the Intel Berkley dataset, Local Outlier 

Factor and specially, Isolation Forest, give bad and 

very divergent results, the EOD is able to stay close 

to the good results given by EE. In complex scenarios 

like the 16-dimensionality where the three algorithms 

converge more, LOF and IF give better results and the 

EOD is adapting even better and providing very good 

overall detection. 

A major advance in outlier detection in Big Data 

systems would be the creation of a real and large 

labelled dataset with multiple correlated and non-

correlated variables. This dataset would set a baseline 

where different approaches can be compared not only 

in terms of accuracy, detection rate and false alarm 

rate, but also in terms of performance and adaption to 

big data scenarios. 

A complete comparison of different algorithms 

and different correlations could help to create much 

better systems that can effectively work in real IoT 

deployments. 
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