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Abstract: With the rapid development of advanced driving assistance technologies, from the very beginning of parking

assistance, lane departure warning, forward collision warning, to active distance control cruise, the active
safety protection of vehicles has gained the popularity in recent years. However, there are several important
issues in the image based forward collision warning systems. If the characteristics of vehicles are defined
manually for detection, we need to consider various conditions to set the threshold to fit a variety of the
environment change. Although the state-of-art machine learning methods can provide more accurate results
then ever, the required computation cost is far much higher. In order to find a balance between these two
approaches, we present a detection-tracking technique for forward collision warning. The motion tracking
algorithm is built on top of the convolutional neural networks for vehicle detection. For all processed image
frames, the ratio between detection and tracking is well adjusted to achieve a good performance with an
accuracy/computation trade-off. Th experiments with real-time results are presented with a GPU computing

platform.

1 INTRODUCTION

This paper proposes an idea that effectively enables a
common network to achieve real-time computation on
the hardware that generally has GPUs. With the de-
velopment of Convolutional Neural Networks (CNN)
in recent years, the detection of objects has become
more and more accurate and faster. However, using
these network architectures in real time has a major
problem for computationally inefficient platforms or
embedded boards. In order to deal with such prob-
lems, it is required to use the network to detect every
frame under the platform with poor computing power.
Thus, this becomes a severe issue to be solved.

This work is based on the concept that there is lit-
tle difference between the consecutive image frames.
In an image sequence, we can only detect some other
frames rather than each of them. The detection frame-
work is based on the sparsely detected bounding box,
in order to achieve the real-time performance of the
networks. In addition to the comparison on compu-
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tation speed, we also conduct the experiments using
29,681 images recorded with a dashcam to verify the
reliability of the proposed method. On the platform
using a GPU GTX 950M, the average operation speed
is about 30-55 frames per second, and the accuracy is
76%. The results demonstrate that the technique pro-
posed in this work can be effectively applied to most
common platforms.

2 RELATED WORK

The early research on vehicle detection includes man-
ual detection and using the characteristics of the ve-
hicles (Sun et al., 2006b) . More recently, machine
learning techniques are widely adopted and many ap-
proaches have been proposed. The former methods
are usually to identify the features of the vehicles for
detection purposes, and one popular approach for the
latter case is the convolutional neural network based
methods.
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2.1 Conventional Approaches

The conventional approaches for vehicle detection
commonly adopt the image feature extraction tech-
niques and classification algorithms.

Vertical and Horizontal Edges. The edge has al-
ways been an important feature in computer vi-
sion applications. Srinivasa (Srinivasa, 2002) and
Sun em et al. (Sun et al., 2002) used this char-
acteristic to identify front vehicles. However, the
problem with the edge methods is how to set a
suitable threshold. Different thresholds must be
used for different application scenarios to obtain
the best results. Although the methods can be
improved in an adaptive manner, when the color
of the vehicle body is similar to the surrounding
environment, the edges cannot be detected easily
and correctly.

Shadow. Extracting features directly from the ob-
jects is sometimes not the best solution for ob-
ject detection. The information around the object
might be used effectively. One good example is
the shadow under the vehicle. Based on the ob-
servation, the darkest part of the image has a very
high probability of being located at the bottom of
the vehicle region. According to this characteris-
tic, Tzomakas and von eelen (Tzomakas and von
Seelen, 1998) proposed a way to effectively de-
termine the gray value threshold to detect the ve-
hicle. However, this method is prone to misjudge
the shadow regions in the night scenes.

Tail Light. To deal with the problem of detecting ve-
hicles at night, OMalley et al. (O’Malley et al.,
2008) used tail lights to identify the front vehicle
location. The core idea is that the tail lights are
red and easy to recognize. Since some vehicles
do not have red tail lights or have the lights on,
this does not guarantee that all true positives can
be considered.

Support Vector Machine. Through the characteris-
tics of vehicles, such as the simple features de-
scribed above, we are able to detect the vehicle
location under normal conditions. For more com-
plicated situations, it is difficult to detect the ve-
hicles correctly. Some previous works proposed
to use Haar transform or HOG to extract textures,
and use support vector machines or simple neu-
ral networks for vehicle detection and verification
(Ortega et al., 2013; Sun et al., 2006a). The re-
sults obtained from this approaches are generally
better, but the computation is the key issue. The
operation time is dramatically increased due to the
bounding box extraction using a sliding window.
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It is thus fatal for real-time applications.
2.2 Convolutional Neural Networks

Since the year of 2012, the convolutional neural net-
works used for object detection and classification
have gained a great success. The object detection
research is mainly divided into two categories: one-
stage and two-stage detectors.

Two-Stage Detector. The two-stage detector is the
first development with a significant detection rate
based on the recent deep learning framework. Its
architecture mainly consists of two parts: region
proposal and prediction of the content of the de-
tected bounding box (Girshick et al., 2014; Gir-
shick, 2015; Dai et al., 2016). Most region pro-
posals are designed to be very large in pursuit of
good results, and thus it slows down the comput-
ing speed of the network. In order to mitigate this
issue, Li et al. (Li et al., 2017) refer to the idea
of (Szegedy et al., 2015; Chollet, 2016) to reduce
the amount of calculation while keeping the re-
sults satisfied.

One Stage Detector. Even the two-stage detectors
have very good recognition rates, they are not suit-
able for many application scenarios in terms of the
execution speed. To deal with this problem, Red-
mon and Farhadi divide the input image into an
n x n grid and use them to generate several dif-
ferent sizes of bounding boxes instead of using
the network with region proposal (Redmon and
Farhadi, 2016). In the proposed method, each grid
only predicts one object and the major cost is that
it does not work well for the detection of small
objects. To reduce the cost, Liu er al. propose a
method to forecast at different scales and this is
able to deal with the small size objects fairly well
(Liu et al., 2016).

3 METHOD

In the proposed technique, we first use a machine
learning algorithm to detect the vehicles, and then
SVM is adopted as a verification mechanism to ef-
fectively remove the non-vehicle bounding boxes. Fi-
nally, a tracking algorithm is carried out to reduce the
overall computation time. The real-time system can
be realized by adjusting the detection and tracking
rate. Figure 1 shows the flowchart of the proposed
method.
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Figure 1: The flowchart of the proposed method. It com-
bines the detection, verification and tracking to improve the
overall performance.

3.1 Detection

The network architecture we adopt is YOLOvV2. In
order to detect the location of the vehicle more cor-
rectly, we not only extract the features from the lower
layers, but also modify the category prediction part of
the cost function. Furthermore, the focal loss is added
to improve the overall accuracy.

F
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Figure 2: The result comparison between the original
YOLO and ours. The left images are the original and the
right images are obtained from our modification. After the
improvement, the false positive is removed and the small
object can be detected.

3.1.1 Extraction from Lower Layer

The detection of small objects is the most criticized
part of YOLO. In the existing literature, there are
three approaches to cope with this problems: 1. En-
large the images for the input network. 2. Increase
the number of the grid cell (Behrendt et al., 2017).
3. Extract features from the lower layers (Kong et al.,
2016). The third approach is adopted in this work be-
cause the first two modifications are more computa-
tionally intensive for object detection. The main rea-
son that this method is effective is because the lower
layers pass fewer convolution layers. The character-
istics of the small objects do not cause the features to

disappear due to the convolution layers. In order to
avoid the network prediction part becomes too large,
we only combine the features extracted from the sixth
layer to the back-end for prediction. Figure 3 shows
the original architecture and the one with our modifi-
cation.

3.1.2 Category Prediction Modification

Another problem with YOLO is that many times the
position of the bounding box is correct but the cate-
gory prediction is not. In order to deal with such prob-
lems, we increase the penalty for the category predic-
tion. The following is the original cost function used
by YOLO.
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The first two terms represent the position error of
the prediction and the training set respectively, and the
middle two terms represent how the predicted object
is compared with the training set in the grid cell. The
last item represents whether the predicted object’s cat-
egory is the same as the training set.

In the last part, the objective is to improve the pre-
diction by modifying the penalty function. To avoid
the situation of not converging when training the net-
work due to too many changes, we only double the
result of each calculation.

From such a modification, we find that the im-
provement is fairly limited. Thus, we refer to the
RetinaNet (Lin et al., 2017) and incorporate the fo-
cal loss as part of loss function. The RetinaNet has
put forward new ideas for the low accuracy issue of
one stage detectors. The work points out two major
reasons for poor detection: 1. Extremely uneven data
between the positive and negative samples. 2. The
loss function is easily affected by negative samples. In
order to deal with this situation, they modify the orig-
inal cross entropy, and the results are shown in Figure
4. Such a modification really reduces the overall loss,
and it does have the same effect and improvement in
our experiments.
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Figure 3: The original YOLO network architecture (top) and the one with our modification (bottom).
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Figure 4: The comparison on the focal loss and the cross
entropy (Lin et al., 2017).

3.2 Validation

Even many changes have been made in Section 3.1 to
reduce the false positives, the mis-detection problem
still exists. To reduce the incorrect classification more
effectively, we use HOG+SVM to remove the wrong
bounding boxes. Figure 5 shows an example that the
negative bounding box is removed after we add this
validation stage.

3.3 Tracking

In the existing literature, the tracking methods are
usually used to reinforce the results they have de-
tected, rather than improve the overall computation
time. The front vehicles in a common traffic scene
recorded with 30 frames per second do not change too
much in the images. Thus, it is reasonable that per-
forming object detection for each image frame is not
necessary. In order to make the algorithm achieve the
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Figure 5: The results from HOG+SVM. The right and left
images show the results before and after the verification
mechanism is adopted.

overall real-time operation, we use only a few frames
for detection. The tracking algorithm is applied on
the remaining frames instead of frame-by-frame de-
tection. Eq. (2) indicates how the threshold, f;, is
defined:

30— f4
Jin=—F— ()
" fi—ta
where f; is the detection speed and f; is the tracking

speed.

After the detection and verification are completed,
we track the detected bounding box, switch to de-
tection verification after the f;;, frame, and clear the
tracking bounding box. In this work, our tracking
algorithm is modified from the compressive tracking
(Zhang et al., 2012) with the multi-object tracker.
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Figure 6: The flowchart of our proposed method with the
tracking step.
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Table 1: The comparison of our method and the original
YOLO algorithm on the KITTI dataset. The results are re-
ported with vehicle detection only.

] | Precision | Recall |

YOLOv2 0.55 0.49
Our method 0.64 0.47

4 EXPERIMENTS

Our training set for YOLO is the COCO (Lin et al.,
2014) dataset and the training sets for SVM are KITTI
(Geiger et al., 2012) and GTI (Arréspide et al., 2012).
The testing set is captured by a driving recorder
with the resolution is 1920 x 1080. The computa-
tion and evaluation are carried out on a laptop with
Nvidia GTX950M GPU and Intel i7-6700HQ CPU.
The processing speed for the original YOLO algo-
rithm, YOLO+SVM and YOLO+SVM+Tracking are
12 — 13 fps, 12 fps and 30 — 40 fps, respectively. It
shows that our method is capable of performing real-
time applications

We first test the algorithms on the public datasets.
Table 1 shows the results (precision and recall) of
our method and the original YOLOvV?2 algorithm. We
can see that, after our modification, the precision is
greatly improved even the recall rate is slightly re-
duced. The algorithms are then tested on the COCO
datasets. Table 2 presents the comparison on the
mean average precision (mAP) between the original
YOLOV2 and our technique. It shows that the results
in terms of mAP from our method are lower than the
original one. This is due to the modification is mainly
for precision improvement and the recall rate is some-
how sacrificed (as illustrated in Table 1). We believe
that the precision is more important if the technique
aims to be used for forward vehicle collision detec-
tion. Table 3 shows the precision of the categories of

interests in the COCO dataset.

Finally, we test the algorithms using our own
dataset. Table 4 shows the comparison between our
method and others on far distance vehicles. Through
our modifications, the results of detecting vehicles at
longer distances are more precise. For the recall rate,
the result is much lower than YOLOV3. It shows that
our modification is an effective method for the detec-
tion of long distance vehicles.

Table 5 tabulates the overall comparison between
other methods and ours. It can be seen that, with our
improvement, the precision is higher than the original
YOLOV2 and YOLOV3. The recall rate is the lowest
but very close to YOLOV2, which is considered ac-
ceptable. For the method of “Modification + SVM”,
the recall is the lowest but it has the best precision.
There are two reason of the low recall:

Position/size of the Bounding Box. If the bounding
box contains part of the vehicles, in most case
SVM does not identify them correctly.

Training Set. In our training set, there are almost
no images of vehicles being obscured. Thus, the
bounding box with obscured vehicles will be re-
moved.

S CONCLUSIONS

This paper proposes a solution that effectively imple-
ments the real-time operation of existing neural net-
works on low-computing GPU platforms. Compared
to the commonly used techniques to track the robust
detection results, we use it to speed up the overall
computation time. On the other hand, we modify
the network architecture of YOLOvV2, add the ver-
ification mechanisms to reduce false positives, and
port the Darknet network architecture to Texas Instru-
ments TDA?2 platform running on a CPU. In the fu-
ture, the TIDL development kit working on GPU will
be used to improve the detection speed.
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Table 2: The comparison on the mAP between YOLOV2 and our method.
| YOLOV2 | Our method

Low layer extraction

v

v/

Low layer extraction with foc

al loss

Vv
33.71

mAP(%)

44.78

33.21

Table 3: The precision comparison on several interested categories.

| Original YOLOV2 | Low layer extraction | Low layer extraction and focal loss |

Car 0.61 0.6 0.68
Bus 0.84 0.82 0.86
Truck 0.71 0.67 0.68
Table 4: The comparison of far distance vehicle detection on our dataset.
\ | Original YOLOV2 | Our method | YOLOV3 |
Recall 0.09 0.14 0.41
Precision 0.18 0.38 0.31
Table 5: The overall comparison of different approaches on our dataset.
\ | Original YOLOV2 | Our method | Modification+SVM | YOLOV3 |
Recall 0.42 0.41 0.28 0.65
Precision 0.64 0.69 0.76 0.51
‘g)‘ 04 g‘ 04 E‘ 04
(a) Original YOLOv2 (b) Our method (c) YOLOv3

Figure 7: The comparison of average precision on different methods.
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Figure 8: Incorrect detection from SVM.
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