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In this paper we present a study of the application of deep neural networks to the problem of pattern matching

in Android malware detection. Over the last few years malware have been proliferating and malware authors
keep developing new techniques to bypass existing detection methods. Machine learning techniques in general
and deep neural networks in particular have been very successful in recent years in a variety of classification
tasks. We study various deep neural networks as potential solutions for pattern matching in malware detection
systems. The effectiveness of the different architectures is compared and judged as a potential replacement for
traditional approaches to malware detection in Android systems.

1 INTRODUCTION

Smartphone use has been rising steadily over the past
few years. Surveys (Deloitte, 2017) show anywhere
from 80 to 82% smartphone penetration in the tested
markets. Of the surveyed users, about a third conduct
regular financial transactions on their smartphones.
The share of consumers using mobile payments in-
creases to about 90% in markets like India and China.
A significant interest in FinTech has led to an even
greater increase in adoption of mobile platforms, not
just for payments but also as a substitute for regular
banking. Globally, in terms of mobile operating sys-
tems, 99% of the market share is owned by Android
and i0S. Since 2015, Android has consistently ma-
naged to hold on to the majority of this market share
ranging from 70 to 85% in different markets.

This popularity has, however, also attracted the at-
tention of malware authors. The number of android
malware samples detected in the marketplaces has ri-
sen from about 500,000 in 2013 to more than 3.5 mil-
lion in 2017 (SophosLabs, 2017). Different types of
malware are currently active in the Android ecosy-
stem including banking bots, ransomwares, adwares,
spywares, etc. The problem is compounded by the
existence of multiple unofficial marketplaces that are
largely unregulated and improperly monitored. As
such, there is a distinct need to provide a reliable sy-
stem to protect these endpoint devices from these mal-
ware.

In this paper, we study the application of various
deep neural network networks to the problem of an-
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droid malware detection. The paper is organized as
follows. We start off by discussing existing approa-
ches to android malware detection. Section 3 discus-
ses the creation of the datasets. Section 4 discusses
the preprocessing of the android application samples
and the neural network models we trained for mal-
ware detection. Section 5 presents the results follo-
wed by the conclusion in section 6.

2 RELATED WORK

There exists a significant body of work on the pro-
blem of detecting malware on mobile devices. Gene-
rally speaking, these approaches can be broadly ca-
tegorized as based on static analysis or dynamic ana-
lysis. In this paper we are primarily concerned with
static analysis.

2.1 Static Analysis based Approaches

Static program analysis refers to the analysis of soft-
ware without actually executing the program. Static
analysis has the advantages of low computation cost
and low RAM consumption . However, methods like
code obfuscation of even byte padding can often be
effective in bypassing these approaches.

These approaches are based primarily on ex-
tracting features by inspecting application manifests
and code disassembly. The most commonly used fea-
tures are permissions and API calls.

657

In Proceedings of the 5th International Conference on Information Systems Security and Privacy (ICISSP 2019), pages 657-663

ISBN: 978-989-758-359-9

Copyright (© 2019 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved



ForSE 2019 - 3rd International Workshop on FORmal methods for Security Engineering

(Jiang and Zhou, 2012) discusses the characteri-
zation of various android malware including their in-
stallation methods, activation mechanisms as well as
the nature of carried malicious payloads.

(Feng et al., 2014) discuss a new semantics-based
approach for identifying a prevalent class of Android
malware that steals private user information. They
incorporate a high-level language for specifying sig-
natures that describe semantic characteristics of mal-
ware families and static analysis for deciding if a gi-
ven application matches a malware signature.

(Wu et al., 2012) discuss a static feature-based
mechanism for detecting Android malware. They
consider static information including permissions, de-
ployment of components, intent messages passing and
API calls for characterizing the Android applications
behavior. Clustering algorithms are deployed to cha-
racterize malware intent.

(Schmidt et al., 2009) perform static analysis on
the android applications to extract function calls.
Function call lists are compared with malware exe-
cutables for classifying them with Prism and Nearest
Neighbor Algorithms. Further they present a colla-
borative malware detection approach to extend these
results.

(Arp et al., 2014) propose a method for detection
of Android malware directly on endpoint devices.
Their system performs a broad static analysis gather-
ing as many features of an application as possible.
The features are embedded in a joint vector space
from which characterizing patterns maybe be identi-
fied.

The works described in this section all use satic
analysis methods to build up a dataset by extracting
features like API calls, installation methods, etc, and
using that dataset to classify or cluster applications.

3 THE DATASETS

The work described in this paper was carried out
using two datasets.

3.1 Dataset 1

This was the first dataset that our models were trained
on. It consists of the results of static analysis perfor-
med on 3500 malware samples from the Drebin Data-
set (Arp et al., 2014) and 2700 benign samples from
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Fdroid(Gultnieks, 2010). We took only unique sam-
ples from Drebin Dataset, in order to remove statisti-
cal bias in the experiment (Irolla and Dey, 2018). The
neural networks were trained on opcode sequence of
application source code, which is the sequence of Java
bytecode operators. It was clear early on that deeper
architectures were overtraining on such a limited da-
taset very quickly. This led us to create the second
dataset.

3.2 Dataset 2

(Allix et al., 2016) present Androzoo, a growing col-
lection of Android applications collected from se-
veral sources, including the official GooglePlay app
market. It currently contains 7,412,461 different
APKs, each of which has been (or will soon be)
analyzed by tens of different AntiVirus products to
know which applications are detected as Malware.
The APKs downloaded from Androzoo were verified
against VirusTotal (Total, 2012) to build a dataset of
150000 malware samples and 150000 benign sam-
ples. Keeping computational constraints in mind, we
restricted ourselves to application samples of size less
than 4MB.

4 DATA PREPARATION AND
NEURAL NETWORKS

This section describes the data preparation and the
neural network models developed.

4.1 Data Preparation

Preprocessing steps involved in machine learning ap-
plied to the security domain are very similar to those
involved in machine learning applied to the Natural
Language Processing (NLP) domain. In fact, the
source code of a program is a language — even if it
is not natural. It has words that assemble themselves
into syntax to form a meaning. In the NLP domain, it
is common to pretrain Deep Learning with a dedica-
ted neural network that learns a numerical representa-
tion of words.

Bytes obtained from the dataset were used as
words to generate document vectors for the samples
using Doc2Vec (Le and Mikolov, 2014).

4.1.1 Doc2Vec

Doc2vec (Le and Mikolov, 2014) is an unsupervi-
sed algorithm to generate vectors for sentences, pa-
ragraphs or documents. Many neural network archi-



tectures require inputs to be fixed-length vectors. The
bag-of-words technique is one approach to this end,
but has some drawbacks. It loses the ordering of the
words and ignores semantics. Paragraph Vector, or
doc2vec, was proposed as an unsupervised approach
to learning fixed-length feature representations from
variable-length texts, such as sentences, paragraphs
or documents.

Every paragraph and every word are mapped to
unique vectors which are averaged or concatenated to
predict the next word in a given context. The para-
graph label acts as a context memory. The paragraph
vector stays consistent across all contexts from the
same paragraph but not across paragraphs. The word
vectors, however, are shared across paragraphs.

This approach was designed to resolve certain we-
aknesses in traditional bag-of-words models. It re-
tains the semantics of the text and does not lose in-
formation about word order. A bag-of-words n-gram
model would create a very-high-dimensional feature
space with poor generalization.

The algorithm itself has two key stages:

1. Training: Compute word vectors W , softmax
weights U, b and paragraph vectors D on already
seen paragraphs

2. Inference: Compute paragraph vectors D for new
paragraphs by adding more columns in D and gra-
dient descending on D while W, U, b are fixed.

Classifier
Average/Concatenate » ¢
- b
Vo V1 Vaz Vn
-~ -~ o~ h
Paragraph
Matrix . L i s

Figure 1: Doc2Vec.

4.1.2 Dataset 1

Dataset 1 consists of the results of static analysis per-
formed on android applications. The bytes from these
files were treated as words and used to generate do-
cument vectors of length 300 for all the samples. The
document vectors served as inputs for the convolutio-
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nal neural networks. The bytes were the inputs for the
long short-term memory networks.

4.1.3 Dataset 2

Dataset 2 consists of multiple android applications,
both malware and benign. Ground truth for trai-
ning was obtained by checking the samples against
VirusTotal (Total, 2012). Android applications are
packaged as APK files. Figure 2 shows the general
structure of an APK file.

—=| AndroidManifestxml META-INF
CERT.RSA
—» META-INF = e
N[ MANIFEST.MF
APK — drawable

layout layout

res
icon.png
—*| drawable

— resources.arsc main.xml

Figure 2: APK File Structure.

For the purposes of the work shown in this paper,
we focus on the classes.dex file. Java source code is
compiled by the Java compiler into .class files. These
files are then processed by the dexer tool in the An-
droid SDK into the .dex (Dalvik Executable) file for-
mat. This eliminates all the redundant information
that is present in the classes. In DEX all the classes of
the application are packed into one file.

We use APKTool (Tumbleson and Wisniewski,
2016) to extract the dex files from the APKs. The
bytes from the extracted dex files was then used to
generate document vectors of length 300 representing
each sample. The document vectors served as inputs
for the convolutional neural networks. The bytes were
the inputs for the long short-term memory networks.

4.2 Deep Neural Networks

Artificial neural networks (ANNSs) are machine lear-
ning systems, vaguely inspired by biological neural
networks. They can broadly be seen as consisting of
four parts:

1. Processing units called neurons, each of which
has a certain activation level at any point in time.

2. Weighted interconnections between the units
which determine the input to subsequent units gi-
ven the activation of previous units.
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3. An activation rule which a new output signal or
activation from the inputs to the units.

4. A learning rule to adjust the weights for a given
input/output pair.

ANNs have been around in various forms since the
1940s (McCulloch and Pitts, 1943). Recently, howe-
ver, the significantly decreasing cost of computational
power has led to a massive revival of interest in neu-
ral networks in general and deep neural networks in
particular.

Deep neural networks, which have shown remar-
kable successes in recent years in a multitude of
fields, are essentially neural networks, distinguished
primarily by their depth. The data passes through
multiple layers of neurons. Each layer trains on a dis-
tinct set of features based on the output of the previous
layer. As we go deeper into the network, the layers
are able to recombine features from previous layers,
leading to increased complexity of features learned.

The models presented in this paper are based on
convolutional neural networks and long short-term
memory networks.

4.2.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a type
of neural network that have shown excellent results
in various classification tasks and image recogni-
tion(Schmidhuber, 2015).

CNNSs are based on the assumption of spatially-
local correlations. This is enforced by maintaining a
local connectivity between neurons of adjacent lay-
ers. Stacking many such layers leads to filters that
can learn more global features. In CNNss there is also
the idea of shared weights. Using the same weights
across multiple hidden units allows for features to be
detected regardless of position. It is also an effective
way of increasing learning efficiency by reducing the
number of free parameters to be learned.

CNNs can be described in terms of 4 primary
functions:

1. Convolution. This step involves the convolution
of the input vectors with a linear filter and adding
a bias term.

Let hﬁ-‘j be the k" feature map at a hidden

layer. Given weights WX and bias b; C can be
computed as follows

hij = (W sx)i; + by (1)
The size of the feature map is affected by three
parameters:

(a) Depth: This refers to the number of filters used
for the convolution.
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(b) Stride: This refers to the number of steps the
filter slides over the input matrix. Larger strides
produce smaller feature maps.

(c) Zero-padding: Zero-padding the input matrix,
or wide convolution (Kalchbrenner et al., 2014)
can allow us to apply the filters to border values
in the input matrix and control the size of the
feature map.

2. Non-linearity. The purpose of the non-linearity
is to account for the non-linearity in most
real-world data. Different types of non-linear
functions are used for various models including
tanh, sigmoid, ReLU, etc. Rectified Linear Units
(ReLU, h(x) = max(0,x)) is an element-wise
operation that replaces all negative values in the
feature map by zeros. In Deep Learning, ReLU
has been shown to outperform sigmoid or tanh
(which is essentially a symmetric sigmoid) in
most cases (Krizhevsky et al., 2012). Half of
the neurons are activated, and sparse activation
is preferred on deep architectures for feature
selection (to recall, it is the network that learns to
detect the best features in Deep Learning) and for
processing time. Moreover, when stacking neuron
layers it creates a vanishing gradient effect with
sigmoid-like transfer function. Gradient values
are multiplied together and as the derivative of
sigmoid-like function tends to zero when their
input tends to their extremum values, the gradient
magnitude diminishes from a layer to one other.
ReLU, having a constant or null derivative, solves
the vanishing gradient problem.

Applying non-linear function fy to C;; from
Eq.1 we get the rectified feature map.

F = fy(h) = fn(Wrsx)ij+b) ()

3. Pooling or Sub-sampling. Max-pooling splits
the input matrix into a set of non-overlapping spa-
ces and, for each such sub-region, outputs the
maximum value. It provides the following advan-
tages:

(a) It reduces the computational load by elimina-
ting non-maximal values.

(b) It gives us a sort of translational invari-
ance(Springenberg et al., 2014). In other
words, by providing robustness to feature po-
sition it allows us to reduce the dimensionality
of intermediate representations.

4. Classification. Here we employ a fully connected
layer, which is a multi layer perceptron with a
softmax activation. The convolutional and pool-
ing layers give us high-level features of the in-
put matrix. The purpose of the fully connected



layer is to classify the input based on these featu-
res. The layer is also a cheap way to learn non-
linear combinations of these features. The output
of the softmax activation is equivalent to a catego-
rical probability distribution and makes sure that
the sum of output probabilities of the fully con-
nected layer is always 1.

We created three models using CNNs.

Model 1. This network, shown in fig.3, con-
sists of three 2D convolutional layers, each followed
by ReLU units and maxpooling. An initial dropout
layer is added to avoid overfitting. The final output is
obtained through a fully connected layer and softmax
activation. The document vectors of length 300 were
reshaped into matrices of dimensions (30,10) and
used as the input. Essentially the network would be
treating it as an input image. Thus the use of 2D
convolutions.

INPUT (30.10)

¥

Dropout

¥

Convolutional 2D

¥

RelU

¥

Max Pooling 2D

v

Convolutional 2D

v

RelU

v

Max Pooling 2D

v

Convolutional 2D

v

RelU

¥

Max Pooling 2D

¥

Fully Connected Layer

¥

Softmax

Figure 3: Model 1.

Model 2. This network has the same architecture as
Model 1, shown in fig.3. However the difference is
that larger document vectors of length 10000 were
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generated and the input was a matrix of dimension
(100,100). The intention was to see if using larger
document vectors would allow the network to learn
better representations and thus be able to classify the
samples better.

Model 3. This model is based on the MalConv
architecture (Raff et al., 2017). This architecture was
developed for malware detection by ingesting PE
files. Here, it has been modified to accept raw bytes
from the dex files extracted from the APKs as the
input sequences. The architecture, shown in fig. 4 is
based on CNNs. Here the problem is treated similar
to a natural language processing problem. The input
bytes are tokenized and an embedding layer learns
a representation for the tokens. Since the input here
is in the form of row vectors instead of 2D images,
we deploy a 1D convolutional layer. The gating layer
determines the fraction of information hat is sent to
subsequent layers.

CE Embedding 1D
Input Byte —»| Tokenization Layer - ShrnaiE
v
Fully Connected Layer «— MaxPooling «—  Gating
Softmax

Figure 4: Model 3 - MalConv.

4.2.2 Long Short-Term Memory Networks

Long-short term memory (LSTM) (Gers et al., 1999)
is a variant of recurrent neural networks (RNNs).
RNNs use recurrent connections within the hidden
layer to create an internal state representing the previ-
ous input values. This allows RNNs to capture tem-
poral context. However, as the time interval expands,
the updated gradient from backpropagation can decay
or explode exponentially, referred to as the vanishing
and exploding gradient problems respectively. This
makes it difficult for RNNs to learn long-term depen-
dencies. LSTM uses constant error carousel (CEC) to
propagate a constant error signal through time, using a
gate structure to prevent backpropagated errors from
vanishing or exploding. The gate structure controls
information flow and memory by tuning the value of
CEC according to current input and previous context.
A gate is essentially a pointwise multiplication opera-
tion and a nonlinear transformation that allows errors
to flow backwards through a longer time range.

Model 4. This model, shown in fig.5, is based on
LSTM cells.
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Figure 5: Model 4 - LSTM Network.

Bytes from the extracted dex files are fed directly
into the network. An initial one-hot encoding of these
bytes is used as a representation and fed into the
LSTM network. The output of the LSTM layers is
flattened and the final output is obtained after a soft-
max layer.

S TRAINING AND RESULTS

Model 1: was trained using NADAM (Dozat, 2016).
This is a variation of ADAM (Kingma and Ba, 2014)
that employs Nesterov momentum instead of classi-
cal momentum. Hyperparameters was optimized over
50 trials. A 9:1 split was maintained for training and
validation.

Model 2: was trained using ADAM (Kingma and Ba,
2014). Hyperparameter optimization was performed
by experi- menting over 50 trials.

Model 3: was trained using ADAM (Kingma and Ba,
2014). Hyperparameter optimization was performed
by experi- menting over 60 trials.

Model 4: was trained using ADAM (Kingma and Ba,
2014) over 1000 steps, with validation checks every
20 steps.

Training time over Dataset 1 was shorter. Ho-
wever, due to less data the models would easily
overfit. Accuracy over the training set would quickly
reach about 98-99% but accuracy over the test set
was limited to about 60-80%.
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Figure 6: Training Accuracy.

Figure 7: Training loss.

Figure 8: Test Accuracy.

Figure 9: Test loss.

Dataset 2 gives much better results considering the in-
creased amount of data available (Table 1). Accuracy
over the training set approaches 1 and over the test
set approaches 95.3%. As expected training time is
significantly increased to about 160-170 minutes.

Table 1: Malware Detection Accuracy.

Dataset 1 | Dataset 2
Model 1 67% 94.4%
Model 2 T0% 95.1%
Model 3 89% 93.7%
Model 4 70% 95.3%

6 CONCLUSIONS

Deep neural networks have shown excellent results
in recent years and they show promise in the field of
malware detection. In their current state of develop-
ment, however, they present certain challenges. They
require immense amounts of data and processing po-
wer to learn the features that make them successful.
When it comes to endpoint device security in An-
droid systems, most smartphones running the OS have
resource limitations. As such, building a real-time
monitoring and malware detection system would cur-
rently not be feasible using deep neural networks on
the endpoint devices. Moreover treating byte code
from the applications as input to the neural networks



makes the networks very sensitive to slight modifi-
cations of the binary. It requires a fixed length in-
put, so any shift of the binary bytes (like adding bloa-
ting code) breaks the detection. Deep neural networks
that learn to detect malware based on static analy-
sis would be subject to the same limitations as tradi-
tional signature-based approaches. Malware authors
have shown a considerable talent for avoiding signa-
ture detection systems. Adversarial neural networks
have been very successful in fooling neural network
based recognition systems (Nguyen et al., 2015).

As such,it would be preferable to have deep neural
networks running on the cloud and analyzing applica-
tion behavior for applications available on the mar-
ketplaces, instead of running on endpoint devices for
real-time detection. Potentially, unsupervised appro-
aches to deep learning could be used to generate re-
presentations. These signatures could then be used
by pattern-mathcing based detection systems on end-
point devices. There is a lot more scope for work in
this field. The study presented here considers only
static analysis or raw byte analysis. However the re-
sults do show promise and potential for application to
dynamic analysis methods.
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