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Abstract: In recent times, large-scale cloud computing based Internet of Things (IoT) systems are facing problems 
such as an increase in network load, delay in response, and invasion of privacy. To solve these problems, 
edge computing technique has been employed in many IoT systems. However, if the cloud function is 
excessively migrated to the edge, the collected data cannot be shared between IoT systems, thus, reducing 
the system's usefulness. We propose a multi-agent based flexible IoT edge computing architecture to 
balance global optimization by a cloud and local optimization by edges and to optimize the role of both the 
cloud and the edge servers in a dynamic manner. In this paper, as an application example, we introduce a 
route search system based on the proposed edge computing system architecture to demonstrate the 
effectiveness of the proposed method. 

1 INTRODUCTION 

Internet of Things (IoT) systems, a new paradigm in 
which many sensors or devices are connected 
directly to the Internet to provide various services 
without human intervention, have been attracting 
attention in recent times (Al-Fuqaha et al., 2015). 
IoT applications are adopted in the industrial, 
household, as well as social sectors. These 
conventional IoT systems are based on cloud-centric 
architecture. Therefore, problems such as an 
increase in network load delayed feedback response, 
and privacy invasion is identified in a large-scale 
IoT system (Abdelshkour, 2015).  

To solve these problems, the concept of edge 
computing (EC) has been introduced to the IoT 
architecture (Lopez et al., 2015). EC is effective in 
solving communication traffic shortage and delayed 
feedback control issues. However, if the cloud 
functions are excessively migrated to the edge, the 
collected data cannot be shared between IoT systems 
and this decreases the system's usefulness (Shiratori 
et al., 2017). Moreover, while EC is effective for 
local optimization in an edge domain, it is not 
effective in realizing global optimization of multiple 
domains. 

Our previous research (Ogino et al., 2017) 
proposed a multi-agent based flexible IoT-EC 

architecture to solve these problems of the 
conventional EC. The proposed IoT architecture 
balances global optimization by a cloud and local 
optimization by edges to optimize the roles of the 
cloud server and the edge servers dynamically using 
multi-agent technology. 

In this paper, we apply the proposed 
architecture to a traffic control system. We 
demonstrate the effectiveness of our proposed 
architecture through traffic simulation. 

2 BACKGROUND OF THIS 
RESEARCH 

2.1 Conventional Cloud-Centric Iot 
Architecture 

Various types of IoT architectures have been 
proposed by standards bodies and researchers (Yang 
et al., 2011). A couple of architectures are based on 
a three-layer IoT architecture, as shown in Figure 
1(a). Another type of architecture is the five-layer 
IoT architecture that extracts common functions 
from the three-layer IoT architecture and adds a 
business layer to it. Figure 1 (b) is one example of a 
five-layer IoT architecture (Al-Fuqaha et al., 2015).  
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In the five-layered IoT architecture, all the data 
is collected and analyzed in the cloud. Furthermore, 
all the actuators in the object layer are controlled by 
the results in the cloud. This approach has some 
demerits (Abdelshkour, 2015). They are as follows. 

1) Under a large IoT system containing several 
sensors, collecting a large amount of data leads 
to communication traffic shortage.  

2) The communication convergence on the 
Internet and the cloud cause control delay. The 
system delay also depends on the frequency of 
the data collection.  

3) Storing all the data in the cloud causes serious 
security issues. 

 

Figure 1: IoT Architecture: a) Three-layer IoT 
Architecture; b) Five-layer IoT Architecture. 

2.2 IoT Edge Computing 

The concept of EC was introduced to the IoT 
architecture to solve the problems highlighted in the 
previous section (Ren et al., 2017). 

EC is a method of performing data processing at 
a place near the data origin or control targets. Figure 
2 shows the IoT architecture with a three-layer EC 
system. In this architecture, data collection, filtering, 
and feedback control functions are implemented on 
edge servers. 

 

Figure 2: IoT-EC. 

2.3 Problems of IoT Edge Computing 

IoT-EC architecture is effective in solving network 
traffic shortage and delay in feedback control. 
However, there are a couple of problems facing IoT-
EC as described below (Shiratori et al., 2017). 

Problem-1) Provisioning of IoT functions depends 
on the resources and network environment of the 
edge servers. We need a method to optimize all IoT 
systems by changing the roles of the cloud and the 
edge part dynamically according to the resources 
and network environment of the edge servers. 

Problem-2) If all the IoT functions are placed at 
the edge servers, all the IoT systems become the 
localized vertical integrated system. This prevents 
global optimization based on the collected data. On 
the contrary, prioritizing global optimization in 
cloud hinders local optimization such as real-time 
control in the edge. In other words, when we 
introduce EC to the IoT system, we need a 
mechanism to balance global optimization in the 
cloud and local optimization at the edges of the 
network. 

3 FLEXIBLE MULTI-AGENT 
BASED IoT EDGE COMPUTING 

There have been consistent research efforts 
(Kitagami et al., 2016; Suganuma et al., 2016; 
Shiratori et al., 2017) that aim to solve the problems 
of IoT-EC described in the previous section. Based 
on the concept presented in the previous research, 
we proposed a flexible IoT-EC architecture (Ogino 
et al., 2017) to solve Problem-2 of IoT-EC. In this 
paper, after discussing the basic concept of flexible 
IoT-EC architecture, we discussed how to apply the 
proposed architecture to a traffic control system.  

3.1 Basic Concept 

Herein, we discuss how total balancing mechanisms 
between cloud and edges work in the proposed 
architecture. 

The balancing optimization functions are divided 
into cloud-side and the edge-side. Each optimization 
subtask can only optimize its side because it does 
not have enough information of another side. There 
is often a tradeoff in the relationship between the 
cloud and the edges especially for actual 
applications. By simply improving the performance 
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of one side, the performance of the other side may 
decrease.  

In our architecture, we propose a balancing 
optimization mechanism with the collaboration of 
both the global and the local subtasks. The goal of 
this mechanism is to achieve total optimization of 
the system, as shown in Figure 3. 

 

Figure 3: Balancing Cloud and Edge Performances. 

3.2 Architecture 

Figure 4 shows the proposed architecture. An 
application is divided into multiple subtasks that are 
assigned as agents to the cloud or edges according to 
their characteristics.  

 

Figure 4: Multi-agent based Architecture of Flexible IoT-
EC. 

Subtasks typically use autonomous distributed 
multi-agency technology. When necessary, agents 
can move from the cloud to the edges, from one 
edge to another, etc.  

When an application is divided into subtasks and 
distributed to the cloud and the edges, it is necessary 
to have a mechanism that allows the entire system to 
work properly. If all information that determines the 
behavior of the entire system is gathered in the cloud, 
then, the optimization and control functions can only 
be executed in the cloud. In many cases, such 
information is dispersed throughout the system and 

it is difficult for a single agent in the cloud to control 
the entire system. When such agents exist both in the 
cloud and on the edges, then, the agents need to 
collaborate so that the system can balance properly 
both in the cloud and at the edges. With the 
mechanisms described above, our proposed system 
can overcome the challenges encountered when 
implementing IoT-EC. 

3.3 Formulation 

To balance the optimization of the total application, 
the cloud and edge subtasks need to communicate 
and agree on the details of the optimization process. 
We will explain this situation with formalization.  

Variables: 
All the parameters that affect the system behavior 
are described as variables ݒሺ1  ݅  ܰሻ.  

The variables ݒ  are classified according to the 
accessible nodes: from the cloud, from the edges, 
and from both. ݒ is a variable used to alter cloud 
behavior only. ݒ is a variable used to alter the edge 
behavior only. ݒ௦ is a shared variable that is used to 
alter both the cloud and the edge systems. ࢉ࢜ = ሾݒଵ, ,ଶݒ ⋯ ࢋ࢜ ሿ ; from cloudݒ = ሾݒଵ, ,ଶݒ ⋯ ࢙࢜ ሿ ; from edgesݒ = ሾݒ௦ଵ, ,௦ଶݒ ⋯  ௦ெሿ ; from both                (1)ݒ
Cost Function: 
We merge various indicators that are used to 
evaluate the system behavior into one evaluation 
function. We call this evaluation function a cost 
function. ܿݐݏሺ࢙࢜, ,࢙࢜ሺݐݏܿ ሻ  ; for cloud ࢉ࢜ ,࢙࢜௧ሺݐݏܿ ሻ  ; for edge ࢋ࢜ ,ࢉ࢜ ሻࢋ࢜ = ,࢙࢜ሺݐݏܿ ሻࢉ࢜ + ݇ ∗   ௗ࢙࢜ሺݐݏܿ ,  ሻ    ; for both cloud and edge     (2)ࢋ࢜

Strictly speaking, ܿݐݏሺ࢙࢜,  ሻ are different for ࢋ࢜
each edge, but we use the same designation ܿݐݏሺ࢙࢜, ,࢙࢜ሺݐݏܿ  .ሻ to make the expression easier to read ࢋ࢜ ሻ ࢉ࢜  and ܿݐݏሺ࢙࢜, ሻ ࢉ࢜  are calculated 
only in the cloud or the edges, respectively. 
Consequently, the total optimization cannot be 
calculated in one place. Thus, we need a mechanism 
to obtain the optimal values step by step through 
communicating between the cloud and the edges. ܿݐݏ௧ሺ࢙࢜, ,ࢉ࢜ ሻࢋ࢜  is the total cost function and the 
total optimization is defined to minimize this cost 
function under all the constraints. k is a parameter 
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for ensuring proper balancing of the processing done 
in the cloud and at the edge. Although, here the total 
cost is assumed to be a linear equation of ܿݐݏሺ࢙࢜, ,࢙࢜ሺݐݏܿ ሻ andࢉ࢜  ሻ, it may be a higherࢋ࢜
order equation depending on the system. 

Optimization: 
Though not all variables can be freely changed, there 
are some constraints (ex. 0 < ݒ < ଵݒ + ଶݒ ). 
Therefore, the system optimization is paraphrased as 
a problem of minimizing the cost function under 
certain constraints described below. 

Global Optimization (Cloud): ݉݅݊ࢉ࢜,࢙࢜ ൫ܿݐݏሺ࢙࢜, ,࢙࢜ሺݏݐ݊݅ܽݎݐݏ݊ܿݎ݁݀݊ݑሻ൯ࢉ࢜  ሻࢉ࢜
Local Optimization (Edge): ݉݅݊ࢋ࢜,࢙࢜൫ܿݐݏሺ࢙࢜, ,࢙࢜ሺݏݐ݊݅ܽݎݐݏ݊ܿݎ݁݀݊ݑሻ൯ࢋ࢜  ሻࢋ࢜
Total Optimization: ݉݅݊ࢋ࢜,ࢉ࢜,࢙࢜൫ܿݐݏ௧ሺ࢙࢜, ,ࢉ࢜ ,࢙࢜௧ሺݏݐ݊݅ܽݎݐݏ݊ܿݎ݁݀݊ݑ ሻ൯ࢋ࢜ ,ࢉ࢜  ሻࢋ࢜

4 SIMULATION IN THE ROUTE 
SELECTION SYSTEM 

This section discusses an evaluation of “Flexible IoT 
edge system” through simulation in the route 
selection system under intelligent transport systems 
(ITS). This simulation confirms whether 
optimization of cloud and edge optimization can be 
improved by the proposed optimization method and 
does not consider communication delay and other 
influences accompanying the IoT system. 

4.1 ITS and Route Selection System 

ITS is a system that receives and transmits 
information between people, roads, and cars. This is 
a large-scale IoT system with clouds that aggregate 
and process information from these edges (Usha and 
Rukmini, 2016; Peraković, Husnjak and Cvitić, 2014). 
In this research, the evaluation was done by applying 
the proposed architecture to a relatively simple route 
selection system. 

The route selection system selects the best route 
from multiple routes. In our simulation, there were 
two routes only. The edge optimization was to 
minimize the travel time to the destination. The 
purpose of cloud optimization is to minimize traffic 
jam and the travel time of individual cars was not 
considered. 

4.2 Traffic Simulation 

4.2.1 Optimal Velocity Model 

In this simulation, car movements were simulated 
using Optimal Velocity (OV) model (Bando et al., 
1995). The idea of OV model is as follows. 
 
• A car will keep the maximum speed with enough 

distance to the next car. 
• A car tries to run with an OV determined by a 

distance to the next car. 
 

The basic equation is as follows, ௗ௫ௗ௧ =   ௗ௩ௗ௧ݒ = ܽሺܸሺݔାଵ − ሻݔ −  ሻ           (3)ݒ

where ݔ represents the position and ݒ the velocities 
for each ܿܽݎ. 

The parameter 'a' is a sensitivity denoting the 
speed of the response. In this simulation, 'a' is a 
random number between 0.5 and 2.0. Each car has 
its own fixed parameter 'aj'. 

The function V(x) denotes the OV determined by 
inter-vehicle distance. Here we take the following 
tanh() type function as V(x). 

 ܸሺݔሻ = × ݀݁݁ݏݔܽ݉ ℎሺ2.0ሻ݊ܽݐ + ℎ݊ܽݐ ቀ4.0 × ݔ − ݔܽܯݐݏ݅݀ݔܽܯݐݏ݅݀ + 2.0ቁ݊ܽݐℎሺ2.0ሻ  

(4) 
where maxspeed is the maximum speed of each path. 
distMax is enough distance with which a car can 
drive at the maxspeed. In the simulation, we set the 
distMax as 100 m.  

4.2.2 Fluctuation 

The main cause of traffic congestion is caused by an 
unintended deceleration at the sag curve (Nishinari, 
2006). So a fluctuation was introduced to make the 
simulation to appear like a real-life situation. In this 
simulation, the speed of the car decreased randomly 
by 20% with 25% probability. 

4.2.3 Inter-vehicular Time 

A car started at an appropriate inter-vehicular time 
from the start point, reached the goal point and 
stopped. We used this inter-vehicular time as a 
parameter to change the density of the cars. When 
distMax was 100 m and maxspeed was 40km/h, i.e.,., 
11.1 m/s, the car can run at maxspeed if the time 
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interval is more than about 9 seconds ( 100݉ ൊ11.1 ݉ ⁄ݏ ൎ  .(ݏ9
When the inter-vehicular time was smaller than 9 

s, the speed of the car decreased and traffic jam 
might happen just after a while from the start point. 
In this situation, keeping the same inter-vehicular 
time and continuing to put in more cars will result in 
a situation whereby the distance between vehicles 
becomes too short. Because this is not realistic, in 
the simulation we conducted, the start of the next car 
was suspended if the inter-vehicle distance was less 
than 2 m. The start of the next car was resumed 
when the distance exceeded 2 m. Therefore, the 
actual inter-vehicle time was not necessarily the 
same as the pre-defined value, but it may be larger 
than that. 

4.2.4 Confirmation of Validity of the 
Simulation 

With the above method, we check to what extent the 
actual traffic jam can be reproduced through this 
simulation. As shown in Figure 5, we draw a graph 
of density and flow rate with random inter-vehicular 
time. This graph is a fundamental diagram for 
examining the state of traffic (Greenshields et al., 
1935), with the x-axis showing the car's density and 
the y-axis showing the car's flow rate. 

 

Figure 5: Traffic Simulation. 

 

Figure 6: Typical fundamental diagram of the relation 
between vehicle density and flow rate for one-month data 
measured at a point on a freeway.  

Figure 6 is an actual one-month data measured 
by the Japan Highway Public Corporation 
(Sugiyama, 2008). 

In a density and flow rate graph, a concentrated 
linear part on the left side shows a state in which 
cars are flowing without congestion. A spread part 
on the right side shows a congestion state. Our 
simulation graph shows both states. Although the 
graph is not exactly the same as the actual graph, we 
evaluate it to be sufficient for our purpose. 

4.3 Traffic Simulation to Confirm the 
Effectiveness of the Proposed 
Method 

With our proposed architecture, the total system 
optimization is integrated into the edge and cloud 
optimizations. In the subsection, we would confirm 
the feasibility of the proposed method. 

4.3.1 Route Selection Simulation 

The map shown in Figure 7 was used to conduct the 
simulation. In this simulation, cars moved from 
point A to point B. There were 2 routes, one is A to 
C to B (route0), the other is A to D to C (route1). 
When a car ran with maximum speed, the travel time 
of route0 was shorter than that of route1. 

 

Figure 7: The Simulation Map. 

Traffic Jam Rate: 
In this simulation, when the speed of one car was 
less than half the maximum speed of the path, we 
labeled the car to be in a traffic jam state. The traffic 
jam rate is defined as a ratio of cars in a traffic jam 
state to all the moving cars. 

Edge Optimization: 
With edge optimization, each car estimated the 
travel time of every route and selects a minimum 
travel time route. Each car could get the average 
speed of each path in the designated route at that 
time and calculated the estimated time when the car 
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arrived the intersection. They could not predict 
future changes. 

Cloud Optimization: 
With cloud optimization, we tried to reduce the 
overall traffic jam rate. We did not consider the 
travel time of individual cars. If every path was not 
going to get congested, we selected the shorter 
arrival time.  

No Optimization: 
For the purpose of comparison, we also simulated 
the results without rerouting, i.e., every car ran 
through route0. 

Parameters: 
The simulation was conducted by changing the start 
inter-vehicular time from 6.0s to 12.0s. 

Because the maximum speed of the path was 
60km/h (16.7 m/s) and 40km/h (11.1 m/s) and 
distMax was 100 m, when all the cars ran at the 
same speed with distMax distance, the inter-vehicle 
time at each speed was 6.0s and 9.0s, respectively. 
When the influence of the fluctuation of the vehicle 
speed was considered, it became 6.3s and 9.5s 
respectively. 

The simulation started with no car in the system. 
The calculation was done after the first car arrived 
the goal point. The simulation continued until 2000 
cars started from the start point. 

4.3.2 Simulation Results 

All the results were shown in Figure 8. The average 
travel time and the average traffic jam rate for each 
cases. Each optimization results are explained 
below. 

 

Figure 8: Simulation Results with 3 Optimizations. 

When there was no optimization, all the cars ran 
through route0. The travel time, in the case where 
there was no traffic jam and the cars could run at the 

maximum speed, was 1010 seconds by taking 
fluctuation into consideration are as follows. 

 
60km/h section: 13km / 60km/h / 0.95  

= 821.1 seconds 
40km/h section: 2km / 40km/h / 0.95 

=189.5seconds 
Total: 821.1 + 189.5 = 1010.6 seconds  

When the inter-vehicular time was under 9 
seconds, the traffic jam states began and the travel 
time increased. This happened in the edge 
optimization case but the traffic jam rate was smaller 
and the travel time was smaller than no optimization 
case. 

In the cloud optimization, the goal of lowering 
the traffic jam rate was realized and as a result, the 
average travel time was kept low. 

Regarding the average travel time, edge 
optimization was better than the no optimization 
case in almost all the cases. Cloud optimization had 
the worst performance when the inter-vehicular time 
was more than 9 s. But when the inter-vehicular time 
was less than 8, it had better numbers than the edge 
optimization and no optimization. 

To investigate this state in more detail, a 
histogram of travel times when the inter-vehicular 
time was 8 s is shown in Figure 9. 

Looking at the histogram of the travel time of 
cars, we can see that the patterns are distinctly 
different in the three results especially in the case of 
cloud optimization where there are 2 peaks in the 
histogram which means that the improved average 
travel time was realized under the sacrifice of some 
cars with long travel time. 

 

Figure 9: Histogram of Travel Time. 
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4.3.3 Simulation Results with Proposed  
IoT-EC Optimization 

Next, we simulate the proposed IoT-EC total 
optimization. As explained in subsection 3.3, with 
the proposed total optimization, we added edge and 
cloud optimizations with appropriate weight. Since 
we do not know the appropriate weight yet, we will 
change the weights and check the change in the 
travel time and the traffic jam rate. 

In this simulation, the total cost is calculated 
using the following equation. 
ሻݒ௧ሺݐݏܿ  = ሺ1 − ሻݐݓݐ ∙ ሻݒሺݐݏܿ + ݐݓݐ ∙ ሻ ሺ0.0ݒሺݐݏܿ  ݐݓݐ  1.0ሻ           (5) 
 

optwt means the optimization weight. When 
optwt is 0.0, this costt(v) becomes the same as the 
cloud cost function costc(v). When optwt is 1.0, this 
costt(v) becomes the edge cost function coste(v). The 
simulation was conducted with inter-vehicle time set 
at 7.0s and 8.0s. Figure 10 shows the results. 

 

Figure 10: Simulation of IoT Edge optimization. 

 

Figure 11: Histogram of drive time with total IoT-EC 
optimization (inter-vehicular time = 7). 

 

Figure 12: Histogram of travel time with total IoT-EC 
optimization (inter-vehicular time = 8). 

Traffic jam rate is the minimum value obtained 
using the cloud optimization (optwt = 0.0). The 
travel time is the minimum value at an optwt value 
ranging from 0.1 to 0.2. 

Figure 11 and Figure 12 show the histogram of 
the travel time. As the optwt increases, we can see 
that the two peaks obtained using the cloud 
optimization shifts to one peak with the edge 
optimization. 

5 DISCUSSIONS 

The purpose of this simulation is to confirm if the 
best system optimization is fulfilled with a 
combination of edge and cloud optimizations. The 
purpose of edge optimization is to reduce travel time 
while the purpose of cloud optimization is to 
decrease the traffic jam rate. Concerning the average 
travel time, a combination of edge and cloud 
optimizations produces the best average travel time 
with a suitable weight value. For the traffic jam rate, 
the best rate was produced using the cloud and the 
combinational optimizations with appropriate weight 
value. 

The edge optimization produced a better 
performance compared to the case where there was 
no optimization. However, with short inter-vehicular 
time, cloud optimization produced a better average 
travel time performance. This suggests that there 
could be a better calculation method for optimizing 
arrival time. 

Cloud optimization produced a better traffic jam 
rate. At the same time, it also produced a better 
travel time with low inter-vehicular time. Looking at 
the details of the cloud optimization, we can observe 
two peaks in the histogram of the travel time. This 
means that the improved average travel time was 
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realized at the expense of some of the cars with long 
travel time. It would be necessary to incorporate the 
measure of fairness into the cost function. 
Alternatively, a method of changing the parameter 
of selection according to the degree of urgency of 
the car is needed. 

In the simulation conducted, we found that by 
choosing appropriate weights, it is possible to find 
optimal values that could not be obtained 
independently by combining edge and cloud 
optimizations. However, the appropriate weights are 
merely a result of the range considered in this 
simulation and, thus, the application range of the 
proposed method needs to be confirmed using a 
wider range of simulations. 

6 SUMMARY 

In this paper, the effectiveness of the IoT edge 
system, which aims to optimize the whole system, 
was examined using a simple route selection system 
by appropriately combining edge and cloud 
optimizations. In the case of a simple route selection 
algorithm, the optimal travel time was realized based 
on the cost function of the proposed optimization 
method. 

Our future work would focus on confirmation of 
the effects of the proposed system in an optimal 
route searching system that is closer to the real 
system. We also plan to extend our research to other 
IoT application domains. 
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