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Abstract: Adaptive decision making learns an environment model serving a design of a decision policy. The policy-
generated actions influence both the acquired reward and the future knowledge. The optimal policy properly
balances exploitation with exploration. The inherent dimensionality curse of decision making under incom-
plete knowledge prevents the realisation of the optimal design. This has stimulated repetitive attempts to
reach this balance at least approximately. Usually, either: (a) the exploitative reward is enriched by a part
reflecting the exploration quality and a feasible approximate certainty-equivalent design is made; or (b) an
explorative random noise is added to the purely exploitative actions. This paper avoids the inauspicious (a)
and improves (b) by employing the non-standard fully probabilistic design (FPD) of decision policies, which
naturally generates random actions. Monte-Carlo experiments confirm its achieved quality. The quality stems
from methodological contributions, which include: (i) an improvement of the relation between FPD and stan-
dard Markov decision processes; (ii) a design of an adaptive tuning of an FPD-parameter. The latter also suits
for the tuning of the temperature in both simulated annealing and Boltzmann’s machine.

1 INTRODUCTION

The inspected decision making is close to the tra-
ditional Markov decision process (MDP, (Puterman,
2005)). The next summary of known basic facts al-
lows us to formulate and solve the addressed prob-
lem. In order to focus on the paper’s topic, we re-
strict ourselves to a finite amount of possible agent’s
actions1 at ∈ A = {1, . . . ,k}, k ∈ N, k < ∞. They
are selected in a finite amount of epochs t ∈ T =
{1, . . . , l}, l ∈ N, l < ∞. The agent’s environment re-
sponds to actions by discrete-valued observable states
st ∈ S = {1, . . . ,m}, m ∈ N, m < ∞. A given real re-
ward r = (rt(s̃,a,s), s̃,s ∈ S, a ∈ A)t∈T quantifies the
agent’s preferences. The sequence of transition prob-
abilities

p= (pt(s̃|a,s), s̃,s ∈ S,a ∈ A)t∈T, (1)

models the assumed Markov random environment. A
sequence of probabilities π = (πt(a|s), a ∈ A, s ∈
S)t∈T describes the agent’s optional, randomised and

*This research has been supported by GAČR, grants
GA16-09848S and GA18-15970S.

1Throughout, N denotes set of positive integers.

Markov policy. The MDP-optimal policy πMDP max-
imises the expected cumulative reward

π
MDP ∈ Argmax

π∈ΠΠΠ

Eπ

[
∑
t∈T

rt(st ,at ,st−1)
]
. (2)

The strategy-dependent expectation Eπ is implicitly
conditioned on a known initial state. The optimisation
runs over the set ΠΠΠ of Markov policies

ΠΠΠ =
{(

πt(a|s)≥ 0, ∑
a∈A

πt(a|s) = 1, ∀s ∈ S
)

t∈T

}
.

(3)
Dynamic programming (DP) provides the MDP-
optimal policy consisting of deterministic decision
rules (πt(a|s))t∈T selecting the maximisers aMDP

t (s) in

vt−1(s) = max
a∈A

Eπ[rt(s̃,a,s)+vt(s̃)|a,s], s ∈ S, t ∈ T.
(4)

The functional equation (4) evolves the value func-
tions vt(s), s ∈ S, and provides the used maximis-
ing arguments aMDP

t (s), s ∈ S. It is solved backwards
starting with v|T|(s) = 0, ∀s ∈ S. This standard solu-
tion extends to the case with the incompletely known
environment model parameterised by the transition-
probability values

pt(s̃|a,s,θ) = θ(s̃|a,s), θ ∈ΘΘΘ. (5)

Kárný, M. and Hůla, F.
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The set ΘΘΘ is given the meaning of the parameter θ

ΘΘΘ=
{

θ(s̃|a,s)≥ 0, ∑
s̃∈S

θ(s̃|a,s)= 1, ∀a∈A, ∀s∈S
}
.

(6)

The parametric model (5) belongs to exponen-
tial family (Barndorff-Nielsen, 1978) and possesses
Dirichlet’s distribution Dθ(V0), given by the finite-
dimensional occurrence array

V0 = (V0(s̃|a,s))s̃,s∈S, a∈A, V0(s̃|a,s)> 0,

as its conjugate prior. With the chosen Dθ(V0),
Bayesian learning (Berger, 1985) reproduces Dirich-
let’s form. It reduces to the updating of the occurrence
array

Vt(st |at ,st−1) =Vt−1(st |at ,st−1)+1, initiated by V0,
(7)

where (st ,at ,st−1) is the realised triple. This recur-
sion, together with the predictive probabilities

p(s̃|a,s,V ) =
V (s̃|a,s)

∑s̃∈S V (s̃|a,s)
= θ̂(s̃|a,s), s̃,s∈ S, a∈A,

(8)
provides the Markov transition probability of the in-
formation state (st ,Vt). Thus, the MDP-optimal pol-
icy can formally be computed via DP (4) where s
is replaced by (s,V ). Such an MDP-optimal policy
(πt(a|s,V ))t∈T inevitably optimally balances the ex-
plorative effort, regarding the evolution of st , and the
exploitative effort, regarding the evolution of Vt , cf.
(Feldbaum, 1961). The number of possible informa-
tion states however, blows up exponentially. This pre-
vents the evaluation and storing of the value functions
(vt(s,V ))t∈T.

The common remedy uses of the frozen point es-
timate θ̂ instead of θ in DP. This certainty-equivalent
approximation diminishes the curse of dimensional-
ity (Bellman, 1961). The approximation, however,
gives up the care about the intentional exploration.
It provably diverges from the optimal policy with a
positive probability (Kumar, 1985). This experimen-
tally well-confirmed fact has led to a range of at-
tempts to recover the intentional exploration. The
active exploration is mostly reached by introducing
a random constituent into actions (Črepinšek et al.,
2013; Duff, 2002; Wu et al., 2017). Good results are
often achieved but the proper balance between explo-
ration and exploitation is hard to find. This manifests
itself in, repeatedly admitted, sensitivity to the choice
of parameters determining the noise added to the ex-
ploitative actions.

This paper introduces the proper exploration by
employing the fully probabilistic design of deci-
sion policies (FPD, (Kárný and Guy, 2006; Kárný

and Kroupa, 2012)). FPD is closely related to the
Kullback-Leibler control (Gómez and Kappen, 2012;
Guan et al., 2012; Kappen, 2005). In the paper con-
text, it is important that FPD leads to the randomised,
and thus explorative policy unlike the usual MDP.

Methodologically, the paper relates MDP and
FPD in a better way than the axiomatisation (Kárný
and Kroupa, 2012). It also proposes the adaptation
of an optional FPD-parameter, similar to the temper-
ature in simulated annealing (Tanner, 1993) or Boltz-
mann’s machine (Witten et al., 2017). Practically, it
presents Monte Carlo experiments, which show that
the certainty-equivalent version of FPD is indeed ad-
equately explorative.

Layout: Section 2 recalls basic facts about the in-
gredients of the advocated decision policy. It for-
malises and solves the addressed problem. Section
3 summarises the results of extensive simulations re-
flecting the properties of the proposed policy. Section
4 adds concluding remarks. Appendix contains data
used in simulations so that our results can be repro-
duced.

2 FPD AND ITS RELATION TO
MDP

The environment model p (1) and any fixed policy π

in (3) determine the joint probability cπ of states and
actions (implicitly conditioned on the initial state)

cπ(

behaviour b ∈ B = Xt∈T(SxA)︷ ︸︸ ︷
s|T|,a|T|,s|T|−1,a|T|−1 . . . ,s1,a1) (9)

= ∏
t∈T

pt(st |at ,st−1)πt(at |st−1).

This closed-loop model cπ(b) completely describes
(closed-loop) behaviours b ∈ B (9) consisting of ob-
served and opted variables. Thus, all design ways,
e.g. MDPs with different rewards, leading to the
same cπ are equivalent. This observation (Ullrich,
1964) implies that decision objectives can gener-
ally be expressed via an ideal (desired) closed-loop
model ci(b), b ∈ B. Informally, the ideal assigns
high values to desired behaviours and small values
to undesired behaviours. With the ideal closed-loop
model chosen, the FPD-optimal policy πFPD makes
cπFPD closest to ci. The FPD axiomatisation (Kárný
and Kroupa, 2012) specifies widely-acceptable con-
ditions under which the Kullback-Leibler divergence
D(cπ||ci), (Kullback and Leibler, 1951), is the ade-
quate proximity measure. The FPD-optimal policy
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πFPD is thus

π
FPD ∈ Argmin

π∈ΠΠΠ

D(cπ||ci) (10)

= Argmin
π∈ΠΠΠ

∑
b∈B

cπ(b) ln
(
cπ(b)
ci(b)

)
.

Proposition 1 presented below describes the FPD-
optimal decision rules. The proposition is a direct
counterpart of stochastic DP (Åström, 1970; Bert-
sekas, 2001). It uses the chain-rule factorisation of
ci, which delimits: (a) the ideal environment model
pit(s̃|a,s), which is the ideal counterpart of the tran-
sition probability pt(s̃|a,s), and (b) the ideal decision
rules πi

t(a|s) of the ideal policy.
Proof of Proposition 1 is, for instance, in (Šindelář

et al., 2008). The general FPD with the state estima-
tion, corresponding to the partially observable MDP,
is in (Kárný and Guy, 2006).

Proposition 1 (FPD-Optimal Policy). Decision rules
πFPD

t (a|s), t ∈ T, forming the FPD-optimal policy
(10) result from the following backward recursion,
t = |T|, |T|−1, . . . ,1, initiated by w|T|(s) = 1, ∀s∈ S,

π
FPD
t (a|s) = πi

t(a|s)exp[−ωt(a,s)]

∑
a∈A

π
i
t(a|s)exp[−ωt(a,s)]︸ ︷︷ ︸

wt−1(s)

, s ∈ S,

ωt(a,s) = ∑
s̃∈S

pt(s̃|a,s) ln
( pt(s̃|a,s)
pit(s̃|a,s)wt(s̃)

)
.

(11)

The work (Kárný and Kroupa, 2012) contain-
ing axiomatisation of FPD also proved that: (i) any
Bayesian decision making can be arbitrarily well ap-
proximated by the FPD formulation (10); (ii) there are
FPD tasks having no standard counterpart. In other
words, FPD tasks represent the proper dense exten-
sion of Bayesian decision making. Here, we modify
the constructive way in which this result was shown.
The construction explicitly relates the standard MDP
to the less usual FPD. Importantly, it serves the pur-
pose of this paper. It shows how the MDP-optimal de-
terministic policy is arbitrarily-well approximated by
the naturally explorative, FPD-optimal, randomised
policy. The construction uses the standard notion of
entropy Hπ (Cover and Thomas, 1991) of the closed-
loop model cπ and the given cumulative reward R

Hπ = −∑
b∈B

cπ(b) ln(cπ(b)) (12)

R(b) = ∑
t∈T

rt(st ,at ,st−1), b ∈ B.

Proposition 2 (FPD from MDP). The optimisation
(2) over policies π ∈ ΠΠΠ (3), restricted by the addi-
tional requirement, determined by an optional h > 0,

Hπ ≥ h > HπMDP
, (13)

leads to the FPD-optimal policy (10) with respect to
the ideal closed-loop model2

ci(b) ∝ exp[R(b)/λ]. (14)

The corresponding ideal environment model and the
ideal decision rules are

pit(s̃|a,s) ∝ exp[rt(s̃,a,s)/λ] (15)
π
i
t(a|s) ∝ ∑

s̃∈S
exp[rt(s̃,a,s)/λ].

The optional bound h in (13) determines the scalar
parameter λ = λ(h)> 0 and

lim
h→HπMDP

λ(h) = 0. (16)

Proof. It can be directly verified that any policy,
which replaces some deterministic rules of the pol-
icy πMDP by randomised ones has a higher entropy.
Thus, when maximising the expected accumulated re-
ward (2), under the inequality constraint (13), the con-
straint becomes active. The maximisation, equivalent
to the negative-reward minimisation, reduces to the
unconstrained minimisation of the Kuhn-Tucker func-
tional (Kuhn and Tucker, 1951), given by the multi-
plier λ = λ(h)> 0,

π
FPD ∈ Argmin

π∈ΠΠΠ
∑
b∈B

cπ(b)[−R(b)+λ ln(cπ(b))]

= Argmin
π∈ΠΠΠ

∑
b∈B

cπ(b) ln
(

cπ(b)
exp[R(b)/λ]

)
= Argmin

π∈ΠΠΠ

D(cπ||ci).

The additive form of the cumulative reward (12),
standard conditioning and marginalisation imply the
forms of the ideal factors (15). The limiting property
(16) corresponds with the relaxation of the constraint
(13).

Remarks
X The role of the ideal decision rule (15) differs

from the closely-related Bolzmann’s machine,
which uses the decision rules

πt(a|s) ∝ exp
(
∑
s̃∈S

rt(s̃,a,s)pt(s̃|a,s)/λ
)
, λ > 0.

(17)

2∝ means proportionality.
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X The original, less general, relation of FPD
and MDP (Kárný and Kroupa, 2012)
led to the ideal closed-loop model ciorig

that exploited the environment model p= ∏t∈T pt

ciorig(b)∝ p(b)exp[R(b)/λ]

(14)︷︸︸︷
= p(b)ci(b), b∈B.

(18)

Recovering the explorative nature of the certainty-
equivalent MDP-optimal policy is the main reason
for employing the constraint (13). The following ac-
counting of the influence of the incomplete knowl-
edge on resulting policy brings an additional insight
into the exploration problem. Primarily, it guides the
adaptive choice of λ = λ(h) > 0 parameterising the
ideal closed-loop model (14).

The policy πMDP(θ), which maximises the ex-
pected cumulative reward while using a given param-
eter θ∈ΘΘΘ, consists of the MDP-optimal deterministic
rules

π
MDP
t (a|s,θ) = 1 if a = aMDP

t (s,θ) (19)
π
MDP
t (a|s,θ) = 0 otherwise.

There aMDP
t (s,θ) is the maximising argument in the

tth step of DP (4) modified by the explicit condi-
tioning on θ ∈ ΘΘΘ. The decision rules3 πFPD

t (a|s,V,λ)
of the constructed approximation of the FPD-optimal
policy should approximate the policy πMDP(θ) made
of the rules (19) exploiting also the knowledge of the
parameter θ

π
MDP(θ) = (πMDP

t (at |st−1,θ))t∈T, at ∈ A, st−1 ∈ S.

The approximate policy has the posterior probability
p(θ|s,V ) as the only information about θ ∈ΘΘΘ.

Works (Bernardo, 1979; Kárný and Guy, 2012)
imply that the expected Kullback-Leibler divergence
of πMDP(θ) from πFPD is the adequate proximity mea-
sure to be minimised by

π
FPD = (πFPD

t (at |st−1,Vt−1,λ
FPD
t ))t∈T, at ∈ A

via the adequately chosen λFPD = λFPD(st−1,Vt−1).
This dictates the selection

λ
FPD(st−1,Vt−1) ∈ Argmin

λ>0

∫
ΘΘΘ

∑
a∈A

π
MDP
t (a|st−1,θ)

(20)

× ln
(

πMDP
t (a|st−1,θ)

πFPD
t (a|st−1,Vt−1,λ)

)
p(θ|st−1,Vt−1) dθ.

The optimal actions aMDP
t (s,θ) depend on the param-

eter θ ∈ ΘΘΘ in a quite complex way. This makes us
to solve (20) for greedy (one-stage-ahead) FPD. Im-
portantly, the resulting ideal factors with the frozen

3The dependence on λ is stressed by the condition.

λFPD = λFPD(st−1,Vt−1) (15) are used in the multi-step
policy design. Thus, the dynamic nature of the policy
design is not compromised unlike in the wide-spread
solutions of the exploration problem (Wu et al., 2017).

For choosing λFPD(s,V ), at the observed s = st−1
and given V =Vt−1, let us define, cf. (2), (6),

ΘΘΘa =
{

θ ∈ΘΘΘ : ∑
s̃∈S

rt(s̃,a,s)θ(s̃|a,s) (21)

≥∑
s̃∈S

rt(s̃, ã,s)θ(s̃|ã,s), ∀ã ∈ A
}
, ∀a ∈ A.

On ΘΘΘa, the action a = aMDP(θ) is optimal. For the
FPD-optimal greedy decision rule (11) and the ideal
factors (15), the optimisation (20) reads4 λFPD(s,V )

∈ Argmin
λ>0

∑
a∈A

p(ΘΘΘa|s,V )

[
− r̄(a,s,V )/λ−H(a,s,V )

+ ln
(

∑
ã∈A

exp
(
+ r̄t(ã,s,V )/λ+H(ã,s,V )

))]
r̄t(a,s,V ) = ∑

s̃∈S
rt(s̃,a,s)p(s̃|a,s,V ),

H(a,s,V ) =−∑
s̃∈S

pt(s̃|a,s,V ) ln(pt(s̃|a,s,V )),

p(ΘΘΘa|s,V ) =
∫

ΘΘΘa

p(θ|s,V ) dθ. (22)

Numerical solution of the scalar minimisation (22) is
simple and can be done by any off-the-shelf software.
The evaluation of probabilities p(ΘΘΘa|s,V ) (22) of the
sets ΘΘΘa, a ∈ A (21) is the only more involved step.
Even it can be made by a direct Monte Carlo integra-
tion without excessive demands on its precision.

3 EXPERIMENTS

This part provides a representative sample of made
Monte Carlo studies.

The simulated environment corresponded to MDP
with |S|= 10 possible states and |A|= 5 possible ac-
tions. These options balanced the wish to deal with a
non-trivial example and to perform extensive Monte
Carlo experiments within a reasonable time even in
the experimental Matlab implementation. Numerical
values of the time-invariant simulated environment
model p and of the time-invariant reward r are in Ap-
pendix.

4In experiments, λFPD was also optimised for the origi-
nal ideal closed-loop model (18). Then, λFPD minimises an
appropriate analogy of (22).
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Table 1: The compared policies: CE is the certainty equivalent version of the policy and model means the environment model.

Label Characterisation Reference
DPknownPar MDP, known model (1), (2), (4)
DP MPD, learnt model, CE (2), (4), (7), (8)
FPD FPD, learnt model, CE, former ideal (18)

given λ (11), (18), (7), (8)
FPDAdaptive FPD, learnt model, CE, former ideal (18)

adapting λ (11), (18), (7), (8), (22)
FPDExp FPD, learnt model, CE, proposed ideal (14)

given λ (11), (14), (7), (8)
FPDExpAdaptive FPD, learnt model, CE, proposed ideal (14)

adapting λ (11), (14), (7), (8), (22)
Boltzmann Greedy MDP, the learnt model, CE (7), (8), (17)

Boltzmann’s machine, learnt model, given λ

eps-Greedy Greedy MDP, learnt model, CE, uniform
noise injected with probability ε = 0.3 (Vermorel and Mohri, 2005)

UCB1 Greedy MDP, learnt model, CE, noise (Auer et al., 2002; Tang and et al, 2017)
tuned according an upper confidence bound

The considered number of epochs was |T| =
10 << |ΘΘΘ| ≈ |S|2× |A| = 500. As already said, the
proper balancing of exploration with exploitation is
vital under the conditions of this type.

The compared policies are summarised in Table 1,
which provides their labels, under which they are re-
ferred to in the figures. The table briefly characterises
them and refers to their detailed descriptions.

Policies depending on a fixed λ were judged on
the uniform grid

λ ∈ {0.15,0.20,0.25, . . . ,3.60}. (23)

The policy quality was quantified by the sample
mean (referred to as the average profit) of sampled
cumulative rewards R (12) evaluated for 105 Monte
Carlo runs. Preliminary experiments verified that this
number is more than sufficient to guarantee the repre-
sentability of the results.

Results showing that the exploration is not neces-
sarily helpful are in Figure 1 with abbreviations refer-
ring to labels in Table 1. They were obtained within
the first experiment where the corresponding envi-
ronment model and the reward are described in Ta-
ble 2. The policy DPknownPar, designed under the
complete knowledge, reached the average profit of
72.11. Its variance σ = 51.72 quantifies its volatil-
ity. Straight lines correspond to policies independent
of λ varied on the considered grid (23).

The results in which exploration was significant,
were gained within the second experiment. They are

summarised in Figure 2 with abbreviations again re-
ferring to labels in Table 1. The corresponding en-
vironment model and reward are described in Table
3. The policy DPknownPar, designed under the com-
plete knowledge, reached the average profit of 62.84
and variance σ = 149.78.

Figure 1: The results of the first experiment. The average
profit is the sample mean of cumulative rewards (12) for the
compared policies, Table 1, and different λ values on the
grid (23).

Figure 2: The results of the second experiment. The average
profit is the sample mean of cumulative rewards (12) for
compared policies, Table 1, and different λ values on the
grid (23).
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Discussion starts with stressing that the inspected
small number of epochs |T| respects that the
exploration-exploitation balance is vital in this case.
Otherwise, even a rare adding of random deviations
from exploitive actions, whose non-optimal character
with respect to the exploitation has negligible influ-
ence, guarantees convergence of learning and thus the
policy optimality. This distinguishes our experiments
from usual tests, e.g. (Ouyang et al., 2017), and makes
them relevant.

The experiments dealt with structurally same
static DM. The numerical choice of their parame-
ters was based on the following, qualitatively obvious
fact. The need for exploration (within the considered
short-horizon scenario) depends on the mutual rela-
tion of the prior probability p(θ|V0), see Table 4, and
the parameter θsimulated of the simulated environment
model determining transition probability, see Tables
2, 3. The influence of this relation is enhanced or at-
tenuated by the considered reward r.

The first experiment, reflected in Figure 1, in
which the DP policy is the best one warns that explo-
ration need not be always helpful. Notably, FPD and
Boltzmann’s machine with sufficiently small λ can be
arbitrarily close to its best behaviour. Due to the lack
of exploration significance no other conclusions con-
cerning the quality of the tested policies can be made.
But it calls for an improvement of λ-tuning, which
should converge to zero if the exploration is superflu-
ous.

The second experiment, reflected in Figure 2, is
more informative. The policy based on the newly
proposed relation of FPD with MDP and an adaptive
choice of λ (FPDExpAdaptive) brings the highest im-
provement (about 2%). A similar performance can be
reached for a fixed but properly chosen λ (FPDExp).
The adaptive FPD is worse (FPDAdaptive) but still
outperforms the remaining competitors. The similar-
ity of the results for the λ-dependent FPD and Boltz-
mann’s machine supports the conjecture that the per-
formance of Boltzmann’s machine can be improved
by adapting λ. This may be important in its other ap-
plications.

4 CONCLUDING REMARKS

The paper has arisen from inspecting the conjecture
that the certainty-equivalent version of non-traditional
fully probabilistic design (FPD) of decision policies
properly balances exploitation with exploration. The
achieved results support it. Moreover the paper: (a)
established a better relation of FPD to the wide-spread
Markov decision processes; (b) proposed an adaptive

tuning of the involved parameter, which can be used
in the closely-related simulated annealing and Boltz-
mann’s machine; (c) provided a sample of extensive
experiments, which confirmed that standard explo-
ration techniques are outperformed by the FPD-based
policies.

The future work will concern: (i) an algorithmic
recognition of cases in which exploration is unnec-
essary; (ii) inspection of a tuning mechanism based
on extremum-seeking control; (iii) an efficient im-
plementation of λ-tuning; (iv) application of the pro-
posed ideas to continuous-valued MDP; (v) real-life
problems, especially those in which a short, but non-
unit, decision horizon is vital as in environmental de-
cision making (Springborn, 2014).
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Kárný, M. and Guy, T. (2012). On support of imper-
fect Bayesian participants. In Guy, T. and et al, ed-
itors, Decision Making with Imperfect Decision Mak-
ers, volume 28. Springer, Berlin. Intelligent Systems
Reference Library.
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APPENDIX

This section provides considered rewards and tran-
sition probabilities used in experiments, Section 3.
Static, time-invariant cases are considered. Their
transition probabilities p(s̃|a,s) = p(s̃|a) modelling
the environment and rewards r(s̃,a,s) = r(s̃,a) de-
termining the cumulative reward (12) are the same
∀s ∈ S.

Table 2: The data used in the first experiment. Explicit values of the reward rt(s̃,a,s) = r(s̃,a), on the left-hand side and of
the transition probabilities pt(s̃|a,s) = r(s̃,a) on the right-hand side. They are constant ∀s ∈ S, t ∈ T and |S| = 10, |A| = 5.
Rows and columns correspond to states s̃ ∈ S and actions a ∈ A, respectively.

The reward rt The transition probability p
actions a ∈ A actions a ∈ A

st
at

es
s̃
∈

S

5 7 6 5 10 0.12 0.16 0.12 0.12 0.08
1 6 1 3 6 0.02 0.13 0.08 0.02 0.02
6 2 5 7 9 0.08 0.16 0.06 0.14 0.15
5 6 1 5 4 0.18 0.04 0.08 0.08 0.13
5 2 2 6 6 0.10 0.06 0.18 0.10 0.06
4 8 6 4 5 0.02 0.10 0.16 0.10 0.09
3 9 3 8 5 0.06 0.07 0.08 0.08 0.13
7 5 2 6 8 0.02 0.02 0.02 0.12 0.13
3 9 3 2 6 0.20 0.18 0.16 0.20 0.04
3 1 4 8 10 0.20 0.09 0.06 0.04 0.17
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Table 3: The data used in the second experiment. Explicit values of the reward rt(s̃,a,s) = r(s̃,a), on the left-hand side and of
the transition probabilities pt(s̃|a,s) = r(s̃,a) on the right-hand side. They are constant ∀s ∈ S, t ∈ T and |S| = 10, |A| = 5.
Rows and columns correspond to states s̃ ∈ S and actions a ∈ A, respectively.

The reward rt The transition probability p
actions a ∈ A actions a ∈ A

st
at

es
s̃
∈

S

1 1 1 1 1 0.03 0.05 0.03 0.02 0.08
2 2 2 2 2 0.05 0.07 0.09 0.05 0.05
3 3 3 3 3 0.08 0.12 0.14 0.07 0.08
3 3 3 3 3 0.08 0.07 0.09 0.07 0.05
5 5 5 5 5 0.11 0.17 0.11 0.12 0.11
6 6 6 6 6 0.29 0.31 0.20 0.15 0.30
12 12 12 12 12 0.13 0.07 0.09 0.29 0.16
4 4 4 4 4 0.11 0.05 0.11 0.10 0.08
3 3 3 3 3 0.08 0.07 0.09 0.07 0.05
2 2 2 2 2 0.05 0.02 0.06 0.05 0.03

Table 4: The occurrence array V0 determining the prior probability p(θ|V0) (7) for the first experiment on the left-hand side and
for the second experiment on the right-hand side. The occurrence arrays are constant ∀s ∈ S. Rows and columns correspond
to states s̃ ∈ S, |S|= 10, and actions a ∈ A, |A|= 5.

The first experiment The second experiment
actions a ∈ A actions a ∈ A

st
at

es
s̃
∈

S

0.1 0.1 0.1 0.1 0.1 0.03 0.04 0.02 0.06 0.08
0.1 0.1 0.1 0.1 0.1 0.05 0.06 0.05 0.09 0.05
0.1 0.1 0.1 0.1 0.1 0.08 0.11 0.07 0.09 0.08
0.1 0.1 0.1 0.1 0.1 0.08 0.06 0.07 0.09 0.05
0.1 0.1 0.1 0.1 0.1 0.11 0.15 0.10 0.11 0.11
0.1 0.1 0.1 0.1 0.1 0.29 0.19 0.36 0.26 0.30
0.1 0.1 0.1 0.1 0.1 0.13 0.06 0.12 0.14 0.16
0.1 0.1 0.1 0.1 0.1 0.11 0.11 0.10 0.06 0.08
0.1 0.1 0.1 0.1 0.1 0.08 0.09 0.07 0.06 0.05
0.1 0.1 0.1 0.1 0.1 0.05 0.13 0.05 0.06 0.03
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