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Multi-variant model transformations (MVMTs) aim at automatically propagating variability annotations
present in software product lines (SPL) when executing state-of-the-art model transformations. Variability
annotations are boolean expressions used in annotative SPL engineering (SPLE) for expressing in which prod-
ucts model elements are visible. Developing the SPL in a model-driven way requires various model repre-
sentations, e.g., database schemata for data storage or Java models for the code generation. Although model
transformations are the key essence of model-driven software engineering (MDSE) and can be used to gen-
erate these representations from already existing (model) artifacts, they suffer from not being able to handle
the variability annotations. Thus, the developer is forced to annotate target models manually contradicting the
goal of both disciplines, MDSE and SPLE, to increase productivity. Recently, approaches have been proposed
to solve the problem using, e.g., traces, to propagate annotations without changing the transformation itself.
For evaluating the outcome all of the approaches require the transformation to commute w.r.t. the derived
products. Although the criterion is the same, a common framework for testing it does not exist. Therefore,
we contribute a generic framework allowing to evaluate whether the target model of arbitrary (reuse-based)

MVMTs was correctly annotated according to the shared commutativity criterion.

1 INTRODUCTION

Only recently, multi-variant model transformations
(MVMTs) have gained popularity combining two dis-
ciplines: software product line engineering (SPLE)
and model transformations, required in model-driven
software engineering (MDSE) .

SPLE is centered around the paradigms of orga-
nized reuse and variability for increasing productiv-
ity when developing a set of closely related prod-
ucts. A common development process is composed of
two phases: In domain engineering the platform com-
prising the superimposition of the products is devel-
oped. In contrast, in application engineering products
are derived from the platform and prepared for deliv-
ery (Pohl et al., 2005). Feature models (Kang et al.,
1990) are a common means to express the discrimi-
nating factors of the software as features. In annota-
tive approaches (Apel et al., 2009) a superimposition
of the products is developed and the artifacts are asso-
ciated with variability annotations which are boolean
expressions over the features. Below we refer to these
expressions as annotations. By (de-)selecting features
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in a feature configuration final products can be filtered
from the superimposed platform where all elements
the annotation of which cannot be satisfied under the
given feature configuration are removed from the su-
perimposed model.

Model transformations, on the other hand, are the
heart of MDSE (Stahl et al., 2006). The various
realizations allow for transforming a source (input)
model to a target (output) representation. Transfor-
mations are categorized with respect to the supported
transformation modes: model-to-model (M2M) or
model-to-text (M2T) transformations, creating either
a new model representation or text (e.g., source code
from templates), in-place or out-place transforma-
tions (having the source model or a different model as
target, respectively) as well as batch or incremental
and unidirectional or bidirectional transformations.
During the transformation execution many tools per-
sist the information of corresponding source and tar-
get elements in so-called fraces.

In model-driven SPLE (Czarnecki et al., 2005;
Buchmann and Schwigerl, 2012; Heidenreich et al.,
2008) models are the main development artifacts. Ap-
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plying an annotative approach in model-driven SPLE
means that model elements are associated with anno-
tations. In order to automatically convert one type
of model of the product line into another representa-
tion, typically model transformations are used. For
instance, when developing the SPL a UML class di-
agram (OMG, 2017) may capture the structure of the
platform. From the UML representation source code
needs to be created. Despite the fact that model trans-
formations allow to perform this task, they are un-
aware of the annotations attached to the model ele-
ments. Consequently, a state-of-the-art model trans-
formation can create the target model but neglects the
annotations. Annotating the target model manually
is a laborious and error-prone task contradicting the
general purpose of MDSE and SPLE to increase pro-
ductivity. Thus, the task calls for transformations al-
lowing to automatically propagate annotations from
the source to the target representation. Solutions sup-
porting this task are referred to as multi-variant model
transformations.

Recently, different automations to solve the prob-
lem of propagating annotations have been published.
Most of them try to (re)use already existing (single-
variant) transformations and to propagate the annota-
tions orthogonally. The solutions are said to be cor-
rect whenever the same products can be derived from
the annotated target model as would have been created
when deriving the products from the source model
and transforming them afterwards. This required
property is called commutativity. While some ap-
proaches are formally proven to fulfill this correctness
criterion (Westfechtel and Greiner, 2018; Taentzer
et al., 2018; Striiber et al., 2018), others verify the
criterion in their specific use cases (Salay et al., 2014;
Greiner and Westfechtel, 2018; Greiner et al., 2017).
Although all of the approaches have the same correct-
ness criterion in common, there is no general frame-
work to evaluate commutativity, yet. For this reason,
in this paper we contribute a generic evaluation frame-
work allowing, on the one hand, for executing reuse-
based approaches and, on the other hand, to evalu-
ate whether the annotations of the target model are
valid with respect to the filtered products. The frame-
work generalizes the way of how (domain) models
and feature models are represented and how the mod-
els are filtered. Furthermore, since models can be
represented differently, the comparison mechanism is
also generalized for arbitrary model types. In this way
the framework is able, e.g., to evaluate a trace-based
MVMT (creating models as targets) or, quite differ-
ently, approaches producing text instead of models as
output. Moreover, product lines created by different
tools should be testable. Last but not least, the frame-
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work not only provides the answer whether commuta-
tivity is achieved but points out where violations have
taken place. Consequently, it allows to detect misbe-
havior and to correct wrong annotations or to improve
the transformation approach.

In the following section we provide background
information on multi-variant model transformation
and motivate why a generic framework for their eval-
uation is required. In Section 3 the architecture of
the framework is described and one realization is pre-
sented in the following example. Finally, related work
is shortly discussed and a conclusion is drawn.

2 BACKGROUND AND
MOTIVATION

The importance and need for MVMT has already
been motivated in various publications, e.g., (Salay
et al., 2014; Schwigerl et al., 2016; Greiner and
Westfechtel, 2018; Westfechtel and Greiner, 2018;
Taentzer et al., 2018). This section provides details
and categorizes the existing approaches. Based on
the commonalities of the approaches we determine re-
quirements for our framework to support the evalua-
tion of reuse-based approaches. Furthermore, the sec-
tion presents correctness criteria to evaluate the out-
come of the executed MVMT.

2.1 Existing Approaches

Different approaches for automating the annotation of
model elements exist, which can be roughly catego-
rized in black-box and white-box solutions depend-
ing on the fact whether no or all internals (i.e., the
contents of the transformation) are exploited, respec-
tively. All of them, however, have in common that
existing transformations or the existing tool environ-
ments are reused to some extent.

Lifting (Salay et al., 2014) is one approach chang-
ing the semantics of the execution engine and is de-
fined for graph transformations but was also applied
in out-place transformations with a graph-like DSL
(Famelis et al., 2015). However, lifting requires to
know the contents of the transformation specification
and to enumerate all rules. Likewise, another solution
based on higher order transformations in ATL trans-
formations (Sijtema, 2010) is specific to the language
ATL (Jouault et al., 2008) and not generally applica-
ble. While both approaches are based on reusing ex-
isting technology, both work on the contents of each
specification and are, thus, categorized as white-box
solutions.
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In contrast, pure black-box approaches do not in-
tervene in the functionality of the reused transforma-
tion engine. Instead, they exploit the existing technol-
ogy and the created artifacts during the transformation
for propagating the annotations from the source to the
target model orthogonally to the transformation.

Firstly, in (Buchmann and Greiner, 2018) this
behavior is supported by using the provided DSL
MySync allowing to specify corresponding elements
in the source and target models. The single-variant
transformation is executed as it stands and afterwards,
the annotations are propagated to the corresponding
elements as stated in the mappings. This approach
works so far only for metamodels conforming to the
Ecore meta-metamodel. Moreover, it requires the
user to manually specify the corresponding elements
for each new kind of input or output metamodel.

Another approach to achieve the behavior is trace-
based propagation as proposed in (Westfechtel and
Greiner, 2018). A generic trace model serves as in-
terface for different kinds of traces. Annotations of
source elements are applied to their corresponding
target elements as recorded in the trace. It is a generic
approach since it is independent of the applied trans-
formation language and the input and output meta-
model. The approach only requires a trace to be per-
sisted. Therefore, in general it supports numerous
transformation tools, like the ATL/EMFTVM (Wage-
laar et al., 2012), medini QVT (ikv++ technologies,
2018) or QVT-d (Willink, 2017), Bxtend (Buchmann,
2018) and eMoflon (Leblebici et al., 2014).

Please note: Traces vary with respect to the granu-
larity of the persisted information. As stated in (West-
fechtel and Greiner, 2018) at least three categories can
be distinguished: incomplete, generation-complete
and complete traces. The first category only stores
one source and one target element in so called cor-
respondence graphs, being the key element in triple
graph grammars (TGGs) (Schiirr, 1994). In these re-
alizations further dependent elements are determined
from the basic mappings. In contrast, generation-
complete traces persist all source and all target ele-
ments of a rule application whereas complete traces
distinguish the elements of the target model with
respect to the fact whether they have already been
present before applying a rule (context elements) or
they have been created due to applying a rule. De-
pending on the granularity of the trace, the propaga-
tion of annotations may have to be adapted. The au-
thors give a formal proof on commutativity in the case
complete traces are used and the transformation rules
adhere to the underlying computational model.

Quite differently, if the transformation lan-
guage supports aspect-oriented programming (Kicza-

les et al., 1997), a generic aspect could be provided
to transfer the annotations (Greiner and Westfechtel,
2018). The aspect should attach the annotation of the
element triggering its execution to the created target
element. In the cited approach this behavior is imple-
mented for the Xpand language (Klatt, 2007) support-
ing M2T transformations only. Thus, annotations are
integrated as preprocessor directives and products fil-
tered by using a preprocessor. While the approach is
specific to the language Xpand (language-dependent),
it can be categorized as black-box approach since
transformation rules are not analyzed.

2.2 Correctness Criteria

For evaluating the validity of the target models of
the MVMTs, a commutativity criterion has been pos-
tulated, among others, in (Westfechtel and Greiner,
2018; Greiner et al., 2017). This criterion is used for
evaluating the quality of the annotations of the target
model. As seen in Figure 1, it is based on comparing
the outcome on the level of application engineering,
i.e., the products. After executing the MVMT (,,,4),
at first, both, the annotated source model m  and the
annotated target model m,, are filtered by the same
feature configuration fc. The filtered target model
mj should equal the model m} created when trans-
forming the filtered source model m/, with the same
single-variant transformation ¢, used in t,,,. This
property needs to hold for all valid feature configura-
tions. Then, the transformation is said to commute.

m tow =
ﬂ t,, + propagation
fc filter fc
m, ———> m, = | m"
F ty

Figure 1: Commutativity criterion for evaluating the valid-
ity of the target model m; of a multi-variant model trans-
formation t,,, by filtering the superimposed models by all
valid feature configurations fc.

To this end, the validity of the filtered target mod-
els is ensured in the following way: It is assumed the
source model my is valid and correctly annotated such
that each derived product m/, is valid as well. Fur-
thermore, with a valid model m/, as input ¢, creates
a valid target model m;. Since m} should equal mj,
it is ensured that m} is valid. If all filtered products
mj are valid, the superimposed target model m; is
semantically correct, too.
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2.3 Error Measurement

For measuring the quality of the annotations attached
to the target model m;, an absolute error and one
taking the affected model elements into account can
be computed. In total, the error can be measured
by counting the number of feature configurations in
which commutativity is violated and by comparing it
to the number of all valid feature configurations:

Definition 1 (Absolute Error). Let n be the num-
ber of all valid feature configurations and let v be the
number of feature configurations in which a strategy
violates commutativity with v < n. Then, the absolute
error errqps can be computed in the following way:

v
ETrTabs — —
n

This error rate is rather rigorous since it counts
a feature configuration as wrong as soon as there is
one difference between the models m} and m}. For
that reason, the error could be relaxed by consider-
ing the number of differences between m; and m}
and comparing it to the number of elements in the
multi-variant target model m;. Summing these error
rates up and dividing them by the number of valid fea-
ture configurations gives a hint on the overall error in
terms of the affected elements (severity of the error).

Definition 2. Let n be the number of all valid fea-
ture configurations. Let |my| be the cardinality of my,
i.e., the number of annotated elements in the target
model. Let further dif f be the number of differences
between m} and my. Then, the severity error errse,
is calculated as follows:

#dif f,
2 im ()
n

ETrTsey —

Both error rates allow to infer the quality of the
MVMT with respect to fulfilling commutativity.

2.4 Consequences for the
Transformation Framework

As seen in Section 2.1 a wide variety of MVMT re-
alization approaches exists but yet there is no com-
mon means to evaluate the quality of the outcome
with respect to achieving commutativity. Thus, there
is a strong need for a framework evaluating whether
the approaches fulfill commutativity. Such framework
should respect at least the following requirements:

1. R1: Reuse-based Execution. For supporting the
various approaches for generating a multi-variant
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target model, the execution needs to be replace-
able. The framework should provide an inter-
face for triggering already existing transforma-
tions. This interface needs to completely abstract
from the different kind of transformations that are
possible, i.e., in- or out-place, uni- or bidirec-
tional, batch or incremental transformations and
of kinds of input and output models. Alongside,
the propagation of the annotations needs to be re-
garded and interchangeable.

2. R2: Genericity. The following components of
the framework are necessary to be generic allow-
ing an interchange of the different MVMT ap-
proaches but also of the SPLE tools and their spe-
cific capabilities:

e the representations of the input and output mod-
els

o the single-variant transformation
o the kind of the feature model

e the filter working with the feature model, its
configurations and the different kinds of repre-
senting annotations

e the comparison mechanism for the target prod-
ucts m} and m}; as a consequence of having
different kinds of model representations

Consequently, not only different MVMT ap-
proaches can be evaluated but also heterogeneous
SPLE tools may be supported.

3. R3: Availability of Results. The framework is
supposed to provide the results to the user. In the
case commutativity is violated, the errors should
be made available. If the locations of the vio-
lations are visible, the user can fix them or fix
the transformation which was misbehaving. Ad-
ditionally, the error values can be used to compare
the quality of the different approaches.

3 FRAMEWORK

This section describes the evaluation framework for
MVMTs by giving an overview on the framework fol-
lowed by details on its two main components and their
possible realizations.

3.1 Architectural Overview

First of all, as depicted in Figure 2 the framework is
composed of two main parts: The executor (gray box)
performs the multi-variant model transformation. It
receives the multi-variant source model m, and the
reused single-variant transformation ¢, in order to
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'
'

'

] | model

annotations

m,

commuting ?
Fim

differences

evaluation framework

Figure 2: Schematic overview on the realization of the eval-
uation framework.

create the annotated target model m;. The evaluator
(light blue box), the second part, subsequently ver-
ifies whether a commuting model transformation is
achieved with the target model created by the execu-
tor. Next, both parts are illustrated in greater detail.
The most important generic interfaces and classes
are captured in Figure 3. It highlights the relation-
ships between the elements and shows which parts
of the framework are replaceable to evaluate differ-
ent MVMT approaches. Please note: both, the execu-
tor and evaluator are realized orthogonally. For that
reason, it is possible to run the execution or the eval-
uation only.

<<interface>>
0..1 svTransformer

<<interface>>

SVTransformer

:anﬁgurgiblr <<interface>>
~ | FeatureConfigurator
il srcFilter
Ll <<interface>>
,,,,, Filter

<<abstract>> 0.1
Evaluator trgFilter

0.1
comparator

0.1
svTransformer

Figure 3: Simplified overview on the main exchangeable
interfaces and abstract classes of the framework.

3.2 MVMT Execution

The task of the executor is to run the reused single-
variant transformation ¢, and to invoke the respective
mechanism to propagate the annotations to the target
model. Thus, the executor is an interface offering the
two tasks depicted in Figure 2: The transformation
and the propagation. For this reason, the executor ex-
pects an SVTransformer to create the target model.
The propagation needs to be provided according to the
respective approach in the executor realization. Next,
we introduce one realization of the MVMTExecutor
interface for trace-based propagations.

As mentioned above, one possibility for propa-

gating annotations is a trace-based approach. We
provide an implementation of the generic executor
interface using traces for the propagation. It uses
the generic trace model proposed in (Westfechtel and
Greiner, 2018) and thus, requires a replaceable con-
verter to convert an arbitrary trace resource into afore-
mentioned general trace model.

Then, the trace-based MVMT can take place: In
the first step, the provided SVTransformer executes
the reused transformation specification. Based on the
resulting trace model, in the second part of the exe-
cution, annotations of the source are attached to the
target elements. In the case a (generation-)complete
trace was written, the annotations of all source and all
context elements are combined in a conjunction and
attached to all target elements. In the case of incom-
plete traces, only the annotations of 1:1 mappings are
propagated to the single target element, leaving the
target model partially without annotations.

One alternative realization using aspects (Greiner
and Westfechtel, 2018) should be mentioned as well.
It is meant to demonstrate the flexibility of the frame-
work. Instead of the strict two-step procedure de-
scribed above, the execution only consists of a sin-
gle invocation of the workflow executing the single-
variant transformation together with the aspect.

Quite alike, other MVMT approaches, like us-
ing a matching mechanism, like MySync, could be
executed. Besides the multi-variant source model,
only a transformer for the single-variant transforma-
tion needs to be provided and the propagation mecha-
nism needs to be invoked.

3.3 MVMT Evaluation

After the execution of the MVMT, all remaining steps
of the commutativity diagram are supported in the
framework by the evaluator. The evaluation of com-
mutativity consists of different steps which should be
interchangeable. Therefore, all of the parts described
next are generic interfaces.

Feature Configurations. At first, the feature model
must be provided to a generic interface FeatureCon-
figurator. It generates all valid feature configurations
with respect to the mandatory and optional features
or further restrictions stated in the model. The fea-
ture model is a generic parameter of the interface for
supporting different feature model types which com-
monly vary among the SPLE tools. So far, we provide
a realization for generating all feature configurations
for feature models conforming to the syntax of the
Famile tool environment (Buchmann and Schwigerl,
2012) to the framework.
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Filters. Given the feature configuration, the filter
comes into play. The filter receives an annotated
model and the feature configuration. It removes all
elements from the model the annotation of which can-
not be satisfied under the given configuration and per-
sists the resulting single-variant model as one product
of the SPL. In the framework the filter is as well a
generic interface offering this task and, thus, allowing
for providing different concrete realizations of the fil-
ter mechanism. While the filter receives the same fea-
ture configuration during the evaluation, the represen-
tations of the input models (source and target model)
may vary, e.g., when the target model is a text repre-
sentation.

One not regarding filters: In SPLE model filters
can vary with respect to their capabilities to ensure
consistent filtered products. Two kinds of model fil-
ters can be distinguished: a flat filter, always remov-
ing the elements where the annotation evaluates to
false, and a hierarchical filter which takes dependen-
cies inside the model into account and propagates se-
lection states accordingly. For instance, in a spanning
containment tree a hierarchical filter will remove chil-
dren from the product if their parent is not included
in the configuration. Furthermore, filters can vary on
how to handle model elements missing an annotation.
Besides others, one strategy includes such elements in
all configurations regardless of the filter.

Moreover, if the target of the transformation is text
instead of a model filter, typically a corresponding
preprocessor will be needed to remove deselected text
fragments. Then, the feature configuration must be
turned into a preprocessor flag file and the target is a
new source code project.

Comparison. Before finally comparing the two
single-variant target models, the filtered source model
needs to be transformed. Here, the same single-
variant model transformation is used as the one gener-
ating the multi-variant target model. Thereafter, it is
possible to compare both target models m; and m;}’ by
using a comparator. The Comparator is a generic in-
terface allowing for different comparison mechanism,
e.g., for comparing two models or simply two strings,
when the models are represented as text. Accordingly,
the outcome may vary as well, e.g., being a difference
model or a string when comparing text files.

For the comparison of two models our framework
includes an implementation of the generic Compara-
tor interface making use of the EMFCompare frame-
work (Brun and Pierantonio, 2008). The result of
comparing two models is a difference model showing
matching and mismatching elements. Furthermore, it
provides the total number of differences between the
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two models. The framework persists the difference
model for the given feature configuration and uses the
number of differences to compute the absolute and the
severity error. The latter values are finally written to
a file including the overall statistics values.

Evaluator. To this end, the framework provides an
abstract evaluator executing all the single steps in one
method as described in Algorithm 1. At first, for a
given feature model all valid feature configurations
are created and persisted. Then, all products are fil-
tered by the two filters for the multi-variant source
and target model. Then, the source products are trans-
formed by the single-variant transformer. The subse-
quent comparison is executed by an instance of the
Comparator which allows for different kinds of input
models and comparison results as mentioned above.
The resulting comparison data and the computed er-
rors both can be written to files after the evaluation.

On the whole, the required components postulated
in Section 2.4 are fulfilled in the following way:

e R1: Reuse Transformation. For the multi-
variant as well as the single-variant transforma-
tions we provide an interface SVTransformer.
It offers a single method transform allowing to
specify the direction and whether the transforma-
tion should be executed in batch or incremental
mode. The second part of the executor, the propa-
gation, can be defined for each MVMT approach
and can be invoked in the realization of the execu-
tor interface.

e R2: Genericity. First of all, no assumptions on
the kind of in- and output models are made allow-
ing for exchangeable representations. By further
using the following interfaces and parameters the
framework supports the replacement by compo-
nents specific to the respective MVMT approach:

— an interface SVTransformer the realization of
which invokes the respective reused single-
variant transformation

— a generic parameter for the feature model for
allowing different representations

— a generic interface FeatureConfiguratior
where based on the type of feature model all
valid feature configurations can be created

— a generic interface Filter receiving the multi-
variant model (or source code), the feature con-
figuration and the path for the filtered product

— a generic interface Comparator allowing for
changing the comparison method and the re-
spective outcome
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Algorithm 1: Process for evaluating commutativity.

procedure EVALUATE(fm, mg, my)
in fm
inmg,, my

List filteredSrc = srcfilter.filterProducts(fcs, ms)

List filteredTrg = trg filter filterProducts(fcs, m;)

List transfTrg = svTransformer.transform(filteredSrc)
comparator.compareProducts(filteredTrg, transfTrg)

with the corresponding transformed ones

1:
2
3
4:
5: List fes = con figurator .generateAllValidFC(fm)
6.
7
8
9

> feature model as generic parameter

> multi-variant source and target model as generic parameter

> creating all feature configurations

> filter m by all configurations

> filter m; by all configurations

> transform all source products

> Compares the filtered target products

All of the interfaces are provided to the generic
evaluator which finally uses them in the overall
evaluation.

e R3: Availability of Results. The output is written
to files, stating the differences and the measured
error values.

4 EXAMPLE

The goal of the evaluation framework is to verify
whether an MVMT commutes. As mentioned before
different approaches exist to implement MVMTs. In
the following we provide an example in which the
framework is used to verify the correctness of a
trace-based propagation. The example is intended
to demonstrate the behavior and functionality of the
framework and to show how the single parts work.
Due to space and illustration reasons we focus on de-
scribing one real world use case demonstrating the
evaluation framework in action.

4.1 UML2Java Use Case

First of all, our scenario is a trace-based MVMT
transforming an UML class diagram into the
MoDisco Java model (Bruneliere et al., 2010). From
the resulting model MoDisco generates correspond-
ing Java source code. This is a necessary task to be
performed during the model-driven development of a
product line in order to implement its structural parts.

Our test scenario is centered around developing a
Graph product line as described in (Lopez-Herrejon
and Batory, 2001). The feature model — as presented
on the left hand side of Figure 4 — consists of the
mandatory features GraphProductLine, Nodes and
Edges. A Search mechanism is optional to the
Graph being exclusively either BFS or DFS. In ad-
dition, one or more of the proposed Algorithms can

be selected. Nodes can be Colored and edges may be
Weighted or Directed or both.

The corresponding UML class diagram (domain
model) consists of classes and associations in order
to realize the Graph product line. In total, it com-
prises 139 model elements including operations and
properties. The annotated model is depicted in the
tree representation of the Ecore editor on the left of
the MVMT transformation in Figure 4. In the edi-
tor the annotation is placed behind the respective ele-
ment. There are the mandatory classes Graph, Node,
Edges and the optional classes Color, Search, Al-
gorithm and Cycle, each annotated with the cor-
responding features. The class Adjacency is used
when a search mechanism is selected and, thus, an-
notated correspondingly. Regarding the relationships
between the classes, it must be noted that edges and
nodes are connected either with one association in the
case undirected graphs are desired (edgesToNodes)
or with two associations, outEdgesToTarget and in-
EdgesToSource, for recording the target and source
node or the outgoing and incoming edges, respec-
tively. The associations are annotated accordingly.
While the search mechanisms are realized as opera-
tions, the Weighted feature is respected with a prop-
erty in the class Edge. Properties and operations are
hidden in Figure 4 due to space reasons.

The single-variant transformation creating a Java
model from the UML class diagram is a reused BX-
tend transformation as described in (Buchmann and
Greiner, 2016). The transformation creates for each
UML association a class declaration in the Java model
capturing the two association ends as field declara-
tions. For each UML class a Java class declaration
is created and a compilation unit which is necessary
to represent the corresponding Java file that is created
by the MoDisco source code generation. Moreover, a
parameterized type is created for each UML classifier
in order to represent types with multiplicities greater
than one. The Bxtend trace however, records only
main correspondences, i. e., for example the UML
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Figure 4: Transforming an annotated UML class diagram (left) into a multi-variant Java source code model. The annotations
are boolean expressions over the featurs stated in the feature model on the left.

class and the Java class declaration or the UML asso-
ciation and the created class declaration. Additional
created elements are left from the trace.

In our framework we can execute this transforma-
tion by using an executor for trace-based approaches.
The single-variant transformer is a BXtendTrans-
former invoking the respective BXtend transforma-
tion and providing access to its trace. As mentioned
in Section 2.1, traces vary with respect to their con-
tents. BXtend only stores 1:1 mappings in a corre-
spondence graph. For that reason, after executing the
transformation, the trace propagation starts by assign-
ing the annotations of the single source element to the
single target element as stated in the trace. For ex-
ample, a class declaration receives the annotation of
the UML class. However, a certain number of ele-
ments in the target model remains expecting an an-
notation, like the corresponding compilation units or
parameterized types. Their annotations are assigned
by applying the most promising propagation strategy
proposed in (Greiner and Westfechtel, ): In a par-
tially annotated model the annotation of the container
is combined with the one of the contained elements
and assigned. The resulting annotated target model
is depicted in its tree representation on the right side
of Figure 4: The corresponding elements mentioned
in the trace are assigned the correct annotations. The
compilation units and parameterized types receive the
annotation of their container, which is the Java Model
element.

In the subsequent step the evaluator is run. Here,
we employ an implementation where the generic pa-
rameters are set to the kind of feature models and fil-
ter present in the SPL tool Famile (Buchmann and
Schwigerl, 2012). The source and target model are
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considered to be stored in Ecore resources. Finally,
the provided comparator triggers a model comparison
with the EMFCompare framework (Brun and Pieran-
tonio, 2008). While this comparison framework of-
fers a number of strategies for differencing two mod-
els, e. g., by using UUIDs, we invoke the basic mode
of matching properties of the model elements. As
mentioned in Section 3.3 the result of this compari-
son is a difference model along with the number of
differences. Counting the differences the total and the
severity error are computed and finally written to a
statistics file.

Running the evaluation in above scenario, first, a
feature configurator for Famile feature models creates
all valid feature configurations for the Graph feature
model, i. e., 180 configurations. Thereafter, the multi-
variant source and target model and the configurations
are input to a filter invoking the Famile filter. Please
note: We employ the default filter of the Famile tool,
i.e., a hierarchical one which propagates selection
states. Next, the source products are transformed by
the same BXtendTransformer having been used in
the MVMT execution. Finally, the model comparator
tries to find matches between the transformed target
products and the filtered target products. As last step,
the absolute and the severity errors are computed and
persisted to a difference file together with statistic val-
ues for all feature configurations.

Figure 5 presents excerpts of the resulting files in
our scenario. The statistics file (diff.csv) lists in the
first column the number of the feature configuration
and in the second column the number of differences
and states the error rates on the bottom. While the
severity error is already high (44.8%), the absolute
error reveals there is at least one difference in each



Generic Framework for Evaluating Commutativity of Multi-Variant Model Transformations

FYi) TiZ 0539209 [
177 105 8549535 0
178 112 9139822 0
179 105 8954521 0

25744 emr abs = 100.0 e sev = 44 B3455242075934  totalElements = 319.0

snippet of diffs.csv

snippet of repaired Mt

cencyjava : Search
Hacompilation

s Compilation

<ToNodes java : not Directed

»
»

»

»

»

b HsC
»

»

» dgesToTargel java : Directed
»

Compilation Unit InEdgesToSource java : Directed
¥ 4 Compilation Unit NodesToGraph java : GraphProductLine

¥ 4 Compilation
W 4 compilation

dgesToGraph.java : GraphPreductLine

tAdjListToGraph.java : search diffs.csv
4 Compilation Unit ColorToNode java - Color

4% diff.emfcompare

i filteredTarget.xmi
& sourceProduct.xmi
& targetProduct.xmi

< traceSingle.trace

& filteredTarget.xmi
& sourceProduct xmi
& targetProduct.xmi
[ traceSingle.trace
P 510

snippet of recomputed

¥ Primitive Type Long long

48 Compilation Unit EdgesToMNodes java [compilationUnits delete]
B platform:fresource/de.ubt.ai1.mvmt.test.graph.umli2java/eval_bxtend_bat
8 platform:/resource/de.ubt.ail.mvmt.test.graph.umf~ .=

| Tasks [ Properties 22

roperty  Value

Left
origin

Right + Compilation Unit EdgesToModes.java

~ + Parameterized Type java.utiL List<Color=
N hcce

» conf.featureconf Type Access

[& diffemfcompare}}

8 Type Access [type delete]

® Type Access [typeArguments delete] En\:::
Sk T etk e Ssearcn

® Package graph [package unset] oDFs
= + compilatien Unit ColorToNode java il

® Package graph [package unset] & algorithm

# Parameterized Type java util List<Color> [orphal O cycle
# compilation Unit Calor java [compilationUnits d{ O Shartest Path

@ Compilation Unit ColorToNode.java [compilatio] @ Minimum Spanning Tree
. O Transpose

™ FAMILE Dashboard [ Properties 38 [ Problems © Console (2 Hist
Froperty  Value

Left

Origin

","n..,hr |+ Compilation Unit Color java

W
M 4y Compilation
W wcompilation
W
W

 MarkedTosearchiava: searc gvaluate | 7
t cyclesToalgorithm java : Cycle -* 178
179

4 Compilation Unit EdgesToCycle java : Cycle

4 Compilation Unit NodesToAdjacencyjava : Search

0 err abe =00 | e sev=00 loaElements = 319.0

8493741
68967986
8394959

Figure 5: Results of first evaluation run (upper right) and after fixing the obvious errors (lower left).

product.

Having a look at the difference models of the
first two configurations only reveals that the com-
pilation units for the class declarations edgesToN-
odes, inEdgesToSource and outEdgesToTarget
are present in the filtered target product (m}’) but have
no corresponding element in the left model of the
comparison, i. e., in the transformed product (m}).
Likewise, in the second configuration the compilation
unit and the parameterized type for the class Color
are included in the filtered target although the feature
is not selected.

Both errors and similar ones are caused by the
trace-based MVMT transformation that needs to find
annotations for elements not mentioned in the trace.
In the BXtend trace for the UML class, only the cre-
ated class declaration is recorded and all addition-
ally created elements, like the compilation units are
not. Thus, they receive their annotation in a post-
processing step. The annotation is composed of the
annotation of its container and its contained elements.
Since there are no contained elements for compilation
units, the attached annotation is the one of its con-
tainer, the Java model (GraphProductLine), which
is a mandatory feature.

By only looking at the two configurations we can
explain why we have a mismatch in each product in
the example. In our product line there are two ele-
ments that are mutually exclusive. Either an edge con-

nects two nodes without further information, in the
case of an undirected graph or it records the source
and the target node in two separate associations which
are resembled by two classes and corresponding com-
pilation units in the target model. Accordingly, an-
notating the compilation units with the root feature
leads to an error when a directed graph is selected
and the compilation unit for the edgesToNodes class
is included and vice versa in the case of an undi-
rected graph when the two specific compilation units
for recording source and target nodes are part of the
product.

Since the differences are made available, we can
fix the obvious errors manually. In our scenario we
need to change the annotation of the compilation units
and parameterized types corresponding with abstract
type declarations being annotated with an optional
feature, e. g., those of the compilations units of the
class Color or of the association classes edgesToN-
odes and its two partners. In total, a number of 18
elements out of the 319 elements need to receive the
more fine-granular annotation as seen in snippets on
the bottom of Figure 5, e. g, the compilation unit for
the class color is annotated with the feature Color.

With our evaluation framework it is possible to run
the evaluation again without executing the transfor-
mation beforehand. Running the evaluation with the
source and the modified target model, leads to 100%
commutativity where no differences at all are found
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between the transformed and the filtered target prod-
ucts. On the bottom of Figure 5 the resulting differ-
ence file is shown with the computed error rates.

S DISCUSSION

Summing it up, as illustrated by the example our pro-
vided framework allows for evaluating the commuta-
tivity criterion for MVMTs. From above descriptions
the main benefits become obvious: First of all, by
making the differences available, erroneous behavior
in the transformation may be detected. This allows
the MVMT developer to fix errors in the annotated
target model. Furthermore, instead of fixing errors,
the developer can draw conclusions on improving the
propagation approach. Moreover, the limitations of
propagation approaches are detected. The scenario
shows that with above approach automation may be-
come impossible in real-world applications. Nonethe-
less, the example also reveals that errors may be fixed
with a very small amount of effort (only 0.05% of all
annotations need to be changed).

On its downside, when transformations are not
commuting, it may become necessary to correct the
annotations manually as a quick fix. In future work
the task to find the correct annotation for a wrongly
annotated model element could be automated. For ex-
ample, the errors could be analyzed or compared to
the corresponding feature configuration and the ones
where the same model element is not causing a prob-
lem.

Although not demonstrated in the example but
mentioned in the framework overview, most impor-
tantly the framework allows to evaluate the commu-
tativity for different MVMT approaches by provid-
ing replaceable components for the single evaluation
steps: The framework abstracts from the kind of fea-
ture models, the filters and their outcome. The in-
put and output models do not have to conform to the
Ecore metamodel but could also be String or other
representations. Moreover, the comparison is gener-
alized for different model representations and for the
comparison outcome.

One note regarding scalability: Although the
demonstrated example is a real-world transformation,
on instance level it is still relatively small in terms of
the number of annotated model elements and of op-
tional features. In the case of product lines with a
large number of optional features the brute force test
requiring the generation of all feature configurations
may become very expensive. Then, it is questionable
whether all valid feature configuration can still be cre-
ated in a feasible amount of time. However, the mech-
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anism how to create feature configurations is also ex-
changeable and could be adapted, e.g., by using sam-
pling or optimized satisfiability solvers for finding the
valid feature configurations.

6 RELATED WORK

Transforming product lines has gained popularity in
the last few years. Thereby, the term “multi-variant
model transformation” may be interpreted differently:
transformation of multi-variant models, the focus
of our work, and multi-variant transformation of
models, as addressed in (Striiber and Schulz, 2016;
Striiber et al., 2018). In addition, transformations of
product lines (Taentzer et al., 2017), covering both
feature and domain models, goes beyond the scope of
our work in which we evaluate the transformation of
artifacts in a single software product line. Moreover,
the tool presented in (de Lara et al., 2018) allows for
summarizing families of (slightly varying) transfor-
mations into a product line which is not the focus of
our work.

In contrast, our generic evaluation engine allows
for transforming one kind of model representing a
product line into another (also necessary) represen-
tation in the same product line automatically and for
validating the resulting annotated target model. Since
we seek for generic approaches to extend an SVMT to
an MVMT, the framework abstracts from the reused
single-variant transformation, the way of how features
are provided and how the multi-variant models are fil-
tered and finally, of how the target products are com-
pared.

A number of different strategies to transform a
multi-variant source model into a multi-variant tar-
get model have already been discussed in Section 2.1.
To the best of our knowledge, so far there is no
common means to evaluate the quality of the re-
sulting target models. In addition, solutions which
are formally proven (Westfechtel and Greiner, 2018;
Taentzer et al., 2018; Striiber et al., 2018) ensure
the transformation behaves correctly, if the underly-
ing computational model is satisfied. However, if the
computational model is violated, our framework helps
to find out where the transformation fails and why in
order to improve the MVMT solution for supporting
more (general) use cases.

7 CONCLUSION

All in all, this paper introduces a generic evaluation
framework for multi-variant model transformations



Generic Framework for Evaluating Commutativity of Multi-Variant Model Transformations

generating an annotated target model from a given
annotated source model in an SPLE scenario. It al-
lows for reusing arbitrary single-variant transforma-
tions and defining the propagation of annotations in
its execution component. The following evaluation
abstracts from all remaining evaluation steps. It is
possible to interchange the kind of feature model and
thus, how all feature configurations are determined, as
well as how the products are filtered and finally com-
pared.

To the best of our knowledge, it is the first realiza-
tion not specifically trimmed for evaluating one ap-
proach but abstracting from different possibilities to
create the target model. In this way it offers the pos-
sibility to evaluate different reuse-based MVMT pro-
posals. Furthermore, by making violations to com-
mutativity available to the user, the user is able to fix
erroneous parts in the resulting model or to improve
the transformation approach.

In the future the framework can be used to conduct
large case studies on different MVMT approaches
based on varying (real-world) transformation scenar-
i0s. The findings may provide deeper insights in the
strengths and weaknesses of the single solutions and
allow to find optimizations.
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