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Abstract: AlexNet, one of the earliest and successful deep learning networks, has given great performance in image clas-
sification task. There are some fundamental properties for good classification such as: the network preserves
the important information of the input data; the network is able to see differently, points from different classes.
In this work we experimentally verify that these core properties are followed by the AlexNet architecture. We
analyze the effect of linear and nonlinear transformations on input data across the layers. The convolution fil-
ters are modeled as linear transformations. The verified results motivate to draw conclusions on the desirable
properties of transformation matrix that aid in better classification.

1 INTRODUCTION AND
RELATED WORK

Convolutional neural networks (CNNs) have led to
considerable improvements in performance for many
computer vision (LeCun et al., 1989; Krizhevsky
et al., 2012) and natural language processing tasks
(Young et al., 2018). In recent literature there are
many papers (Giryes et al., 2016; Sokolić et al., 2017;
Sokolić et al., 2017; Oyallon, 2017) which provide an
analysis on why deep neural networks (DNNs) are ef-
ficient classifiers. (Kobayashi, 2018; Dosovitskiy and
Brox, 2016) provide an analysis of CNNs by looking
at the visualization of the neuron activations. Statis-
tical models (Xie et al., 2016) have also been used to
derive feature representation based on a simple statis-
tical model.

We choose to analyze the network in a method dif-
ferent from all the above by modeling the filters as a
linear transformation. The effect of nonlinear opera-
tions is analyzed by using measures like Mahalanobis
distance and angular as well as Euclidean separation
between points of different classes.

AlexNet (Krizhevsky et al., 2012) is one of the
oldest successful CNNs that recognizes images of the
ImageNet dataset (Deng et al., 2009). We analyze ex-
perimentally this network with an aim of understand-
ing the mathematical reasons for its success. We use
data from two classes of ImageNet to study the per-
formance of AlexNet.

The contributions of this analysis are as follows:

• We derive the structure of the linear transforma-
tion corresponding to the convolution filters and
analyze its effect on the data using the bounds on
the norm of the linear transformation.

• Using a specific data selection plan we show em-
pirically that the data from the same class shrinks
and separation increases between two different
classes.

2 ANALYSIS

AlexNet employs five convolution layers and three
max pooling layers for extracting features. Further-
more, the three fully connected layers for classifying
images as shown in Fig.1. Each layer makes use of
the rectified linear unit (ReLU) for nonlinear neuron
activation.

In CNNs, feature extraction from the input data
is done by convolution layers while fully connected
layers perform as classifiers. Each convolution layer
generates a feature map that is in 3D tensor format and
fed into the subsequent layer. The feature map from
the last convolution layer is given to fully connected
layers in the form of a flattened vector and a 1000 di-
mensional vector is generated as output of fully con-
nected layer. This is followed by normalization and
then a softmax layer is applied. In the normalized out-
put vector, each dimension refers to the probability of
the image being the element of each image class.
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Figure 1: AlexNet Architecture (Kim et al., 2017).

CNN has more than one linear transformations
and two types of nonlinear transformations (ReLU
and pooling) which are used in repetition. The the
nonlinear transformation confines the data to the pos-
itive orthant of higher dimension.

2.1 Analysis of Linear Transformation

The main operation in CNNs is convolution. The fil-
ters are correlated with the input to get feature maps
and this operation is termed as convolution in the liter-
ature. Since correlation is nothing other than convolu-
tion without flipping the kernel, correlation operation
can also be represented as a matrix vector product.
We refer to this matrix as the linear transformation.
1D and 2D correlation can be represented as shown in
Eq. (1) and Eq. (2), respectively.

y(n) = ∑
k

h(k)x(n+ k), (1)

y(m,n) = ∑
l

∑
k

h(l,k)x(m+ l,n+ k), (2)

where x is the input and y is the output and h is the
kernel. Eq.1 leads to a Toeplitz matrix and Eq.2 leads
to a block Toeplitz matrix. In CNNs notice that the or-
der of convolution is higher and correspondingly one
gets a matrix which is Toeplitz with Toeplitz blocks.

Typically each layer has multiple filters leading to
multiple maps and the Toeplitz matrix corresponding
to each filter is stacked vertically to get the overall
transformation from the input space to output space.
As an example let x ∈ R N1×N2×N3 be an input vec-
tor and y ∈ R M1×M2×M3 be the output vector, where
N3 and M3 are number of channels in input and num-
ber of filters, respectively. Then the transformation
matrix T is such that T ∈ R M1M2M3×N1N2N3 . T is ob-
tained by stacking fk, where 1 ≤ k ≤ M3, as shown
in Fig.2. Each fk is Toeplitz with Toeplitz blocks and

Figure 2: Convolution operation. The input is of size
N1N2N3×1 and there are M3 filters ( f1, ..., fM3 ) which gen-
erate M3 feature maps (m1, ...,mM3 ).

has full rank. The input x is convolved with each filter
generating a feature map mk. Eq.(3) gives the descrip-
tion of convolution operation.

y = T x. (3)

2.1.1 Analysis based on Nature of
Transformation Matrix

The desirable properties for transformation matrix (T )
to aid classification are:

1. The null space of T should be such that the differ-
ence of vectors from two different classes should
not be in the null space of T . This in turn demands
that the difference should not lie in null space of
fk, 1 ≤ k ≤M3, i.e. if xi ∈Ci and x j ∈C j, where
Ci and C j are different classes,

x j− xi /∈N ( fk), 1≤ k ≤ N. (4)

Proof. Let x1,x2 ∈ R N1×N2×N3 be two points and
their difference x = x1− x2, the norm of x is,

‖x‖= ‖x2− x1‖. (5)
x1,x2 are transformed to

y1 = T x1, y2 = T x2. (6)

Analyzing the Linear and Nonlinear Transformations of AlexNet to Gain Insight into Its Performance

861



Table 1: Analysis of norm values at each layer.

Layers Total filters Filters: ‖ T ‖2 < 1 Min Max
1 96 13 0.28 4.16
2 256 2 0.03 4.26
3 384 2 0.96 2.22
4 384 6 0.96 2.12
5 256 0 1.16 2.19

Norm of the difference of y1 and y2 is

‖y2− y1‖= ‖T (x2− x1)‖, (7)
That can be written as:

‖T (x2− x1)‖= (
M3

∑
k=1
‖ fk(x2− x1)‖2)

1
2 ,

x2−x1 /∈N (T ) only if x2−x1 /∈N ( fk) ∀k. This is
important to maintain separation between classes
after the transformation.

2. λmin(T T T ) > 1, λmax(T T T ) > 1, where λmin and
λmax are the minimum and maximum eigenvalues,
respectively of T T T .

Proof. For proper classification, two vectors from
different classes should be separated at least by
‖x2− x1‖. Since

y2− y1 = T (x2− x1),

‖y2− y1‖= ‖T (x2− x1)‖,
= ‖(x2− x1)‖‖T z‖, where‖z‖= 1.

Let λmin and λmax are the minimum and max-
imum eigenvalues, respectively of T T T , then
λmin ≤ ‖T z‖≤ λmax, and hence

λmin‖(x2− x1)‖≤ ‖(y2− y1)‖≤ λmax‖(x2− x1)‖.
(8)

From Eq.(8) it is evident that λmin,λmax > 1 is
ideal. We observe that for all the layers λmin > 0
as shown in Tab. 1 but λmin > 1 only for the last
layer . Note that it is not necessary that when all
full rank fks are vertically stacked the T is full
rank, but we observe from the experiments that it
is full rank.

2.2 Analysis of Nonlinear
Transformation

In this section, we analyze and verify (using AlexNet
and its pre-trained weights) the effect of nonlinear
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Figure 3: Angles between representative points of both the
classes. The first entry in x−axis shows the input value fol-
lowed by five layers of AlexNet. Near min and Near max
are minimum and maximum angle values, respectively from
the near region. Similarly for medium and far regions the
minimum and maximum values are shown.

transformations on the input data. In this direction
there is a work (Giryes et al., 2016), which provides
a study about how the distance and the angle changes
after the transformation within the layers. The anal-
ysis in (Giryes et al., 2016) is based on the networks
with random Gaussian weights and it exploits tools
used in the compressed sensing and dictionary learn-
ing literature. They showed that if the angle between
the inputs is large then the Euclidean distance be-
tween them at the output layer will be large and vice-
versa.

We analyze the effect of nonlinear transformations
on the input data by measuring the following key-
points. The details are given in the experiments sec-
tion.

• Effect of transformation on angles between repre-
sentative points of two classes

• Transformation in Euclidean distance of points
from mean within each class.

• Mahalanobis distance between the mean points of
two classes.

• Minimum and maximum Euclidean distance
among points within class and between class.
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3 EXPERIMENTS

In this section we analyze how the angles and Eu-
clidean distances change within the layers. We focus
on the case of ReLU as the activation function and
max pool as the pooling strategy. In order to verify
the results/observations which conclude that the net-
work is providing a good classification, we consider
the data from two classes namely cat and dog (each
having 1000 images). We use the Mahalanobis dis-
tance to find the distance between classes.

In our experiments we use the AlexNet with its
pre-trained weights and all images from both the
classes are passed through the network. To measure
the distance and angle among each class and between
class data, the best six representative points are being
selected from both the classes.

3.1 Method for Selecting the
Representative Points

The dataset is divided into three different regions
which are named as near mean N, at medium distance
from mean M, far away points from mean F. In order
to divide the regions and to find representative points,
we follow the steps provided in Algo 1.

4 RESULTS AND DISCUSSION

Due to normalization the input data (X ∈ R N1×N2×N3 )
belongs to a manifold/sphere and we apply the ReLU
(ρ) as the activation function. The nonlinear trans-
formation followed by normalization sends the out-
put data (Y ∈R M1×M2×M3 ) to a sphere/manifold (with
unit radius).

4.1 Effect of Transformation on Angles
between Representative Points of
Two Classes

To show the layer-wise influence on the angles be-
tween the data of two classes we plot the angle values
for all representative points. It can be seen from Fig. 3
that the minimum as well as the maximum angles are
much higher than that of the respective input angles.

4.2 Mahalanobis Distance between the
Mean Points of Two Classes

In order to analyze the separation between the two
classes as data passes through the layers, we analyze

Algorithm 1: Selection of representative points.

Require:
Let X and Y be the two classes, X = {x1, ...,xm}
and Y = {y1, ...,yn}.

Ensure:
Six representative points (x1, · · · ,x6) and
(y1, · · · ,y6), respectively from both classes.

1: µ1 =
1
m ∑

m
i=1 xi, µ2 =

1
n ∑

n
i=1 yi.

2: σ1 =
1

m−1 ∑
m
i=1(xi−µ1)

2, σ2 =
1

n−1 ∑
n
i=1(yi−µ2)

2

3: To find near mean (N) representative points,
N1 = {xi ∈ X |‖xi−µ1‖≤ σ1}.
N2 is defined similarly.

4: Select x1,x2 the points with minimum and maxi-
mum distance, respectively from set N1 and sim-
ilarly for N2 as well.

5: To find medium distance from mean (M),
M1 = {xi ∈ X | dmax+dmin

2 − σ1 ≤ ‖xi − µ1‖2≤
dmax+dmin

2 +σ1}, where dmax =maxi‖xi−µ1‖2 and
dmin = mini‖xi−µ1‖2 .
M2 is defined similarly.

6: Select x3,x4 the points with minimum and maxi-
mum distance, respectively from set M1 and sim-
ilarly for M2 as well.

7: To find far away region F,
F1 = {xi ∈ X |‖xi−µ1‖2> dmax−σ1}.
F2 is defined similarly.

8: Select x5,x6 the points with minimum and maxi-
mum distance, respectively from set F1 and simi-
larly for F2 as well.

9: Representative points (y1, · · · ,y6) of other class
are also obtained in the similar manner.

the Mahalanobis distance between means of the two
classes at each layer. To calculate Mahalanobis dis-
tance we need covariance matrix but due to high di-
mension of data, in practice it is hard to compute it.
Hence, we use principal component analysis to reduce
the dimension of the data and take only one direction
with the most significant variation. It is clear from
the Fig.4 that the Mahalanobis distance is increasing,
pointing to the fact that separation between classes is
increasing.

4.3 Transformation of Euclidean
Distance of Representative Points
from Mean

In this section, we analyze the influence of network
in the terms of change in the distance of represen-
tative points with their means for both the classes.
We observe from Fig.5 and Fig.6 that the Euclidean
distance between representative points and their re-
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Figure 4: Mahalanobis distance between mean of classes.
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Figure 5: Euclidean distance of representative points from
mean (class 1). The first entry in x−axis shows the input
value followed by five layers of AlexNet. Near min and
Near max are minimum and maximum distance values, re-
spectively from the near region. Similarly for medium and
far regions the minimum and maximum values are shown.

spective means are getting reduced as points passes
through the subsequent layers. This reflects that the
points from same class are getting clustered together.

4.4 Euclidean Distance between
Representative Points within and
Across Classes

We also analyze how the distance between repre-
sentative points are changing after passing through
each subsequent layer. It is seen from Fig.7, Fig.8
and Fig.9 the distances among points within a class
decrease but distances among points between two
classes also reduce.

Even though distances between points from two
classes is also decreasing we can say that the network
is doing good classification as the other parameters
which we have seen such as the Mahalanobis distance
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Figure 6: Euclidean distance of representative points from
mean (class 2). The first entry in x−axis shows the input
value followed by five layers of AlexNet. Near min and
Near max are minimum and maximum distance values, re-
spectively from the near region. Similarly for medium and
far regions the minimum and maximum values are shown.
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Figure 7: Euclidean distance among representative points
(class 1). The first entry in x−axis shows the input value
followed by five layers of AlexNet. Near min and Near max
are minimum and maximum distance values, respectively
from the near region. Similarly for medium and far regions
the minimum and maximum values are shown.

between the means, singular values of the transfor-
mation matrix for the filters, increase of the angles
between points between two classes indicate that the
two classes are getting apart as they pass through the
layer of the network.

5 CONCLUSION

In this study, we consider the architecture of AlexNet
and its linear and nonlinear transformation operations.
We analyze the required criterion of transformation
matrix for appropriate classification and see that the
conditions are met fully for the last layer and par-
tially for the intermediate layers. We select six rep-
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Figure 8: Euclidean distance among representative points
(class 2). The first entry in x−axis shows the input value
followed by five layers of AlexNet. Near min and Near max
are minimum and maximum distance values, respectively
from the near region. Similarly for medium and far regions
the minimum and maximum values are shown.
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Figure 9: Euclidean distance among representative points
(between classes). The first entry in x−axis shows the in-
put value followed by five layers of AlexNet. Near min and
Near max are minimum and maximum distance values, re-
spectively from the near region. Similarly for medium and
far regions the minimum and maximum values are shown.

resentative points from each class and observe the ef-
fect of nonlinear transformations on the input data by
measuring the change in angle and distance between
these points and we observed that same class data is
bunched together and different class data are well sep-
arated in-spite of the fact that all data points come
closer irrespective of class.
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