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Abstract: Rapid growing complexity of HPC systems in response to demand for higher computing performance, results
in higher probability of failures. Early detection of failures significantly reduces the damages caused by failure
via impeding their propagation through system. Various anomaly detection mechanism are proposed to detect
failures in their early stages. Insufficient amount of failure samples in addition to privacy concerns extremely
limits the functionality of available anomaly detection approaches. Advances in machine learning techniques,
significantly increased the accuracy of unsupervised anomaly detection methods, addressing the challenge of
insufficient failure samples. However, available approaches are either domain specific, inaccurate, or require
comprehensive knowledge about the underlying system. Furthermore, processing certain monitoring data
such as system logs raises high privacy concerns. In addition, noises in monitoring data severely impact the
correctness of data analysis. This work proposes an unsupervised and privacy-aware approach for detecting
abnormal behaviors in general HPC systems. Preliminary results indicate high potentials of autoencoders
for automatic detection of abnormal behaviors in HPC systems via analyzing anonymized system logs using
fast-trainable noise-resistant models.

1 INTRODUCTION

Complexity of computing systems rapidly increases
via employing additional components, in response to
demand for higher computing performance. Higher
complexity results in higher probability of failure oc-
currence. The first exascale computers are expected
to arrive by 2020 (Service, 2016). However, failures
already became an integral part of high performance
computing (HPC) systems (Dongarra et al., 2011).
Addressing failures is a vital requirement towards ex-
ascale era.

Advances in machine learning techniques, partic-
ularly neural networks, enabled further possibilities
to address failures beside traditional methods such as
failure prevention and failure recovery (El-Sayed and
Schroeder, 2013). Various data generated by com-
puting systems, enables comprehensive monitoring of
the systems behavior. Monitoring data in form of dis-
crete time-series are particularly useful for behavioral
analysis. System logs are discrete time-series which
provide invaluable information about the behavior of
individual components in different layers of comput-
ing systems. The syslog (RCF5424, 2009) daemon
is available on all Linux-based operating systems and
is active by default. All current TOP500 (TOP500,

2018) supercomputers are powered by Linux-based
operating systems. Therefore, for the purpose of
this work, system logs are chosen as the monitoring
data. Although, system logs are substitutable with
any other monitoring data which can be represented
as discrete time-series, informational richness of sys-
tem logs provides accurate insights about the systems
behavior. However, processing and analyzing sys-
tem logs raise privacy concerns due to the existence
of sensitive information such as usernames, IP ad-
dresses, and detailed information about user activities
in log entries. Furthermore, processing the high vol-
ume of system logs generated by thousands of com-
puting nodes in an HPC system requires additional
computing and storage resources.

This work proposes an efficient unsupervised and
privacy-aware approach for detecting abnormal be-
haviors in general HPC systems. To achieve this
goal, all syslog entries are fully anonymized and en-
coded via PaRS anonymization approach (Ghiasvand
and Ciorba, 2018) to guarantee the data privacy and
reduce the data size. Neural networks are used to
process the anonymized syslog entries and generate
models representing normal systems behavior. The
generated models are used to monitor and evaluate
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the behavior of Taurus1, a production HPC cluster.
Preliminary results indicate high potential of machine
learning techniques for automatic detection of abnor-
mal behaviors in HPC systems via anonymized sys-
tem logs. Figure 1 illustrates the workflow of the pro-
posed approach for detecting anomalies and predict-
ing systems behavior.

Collecting 
System logs

Data anonymization
+ Size reduction

via PaRS

Data discretization
+ Noise mitigation

via binning

Event 
classes

Data transformation SentencesImages

Model generation
+ Noise mitigation
via convolution and 

majority voting

Anomaly 
detector

Behavior 
predictor

Anomaly detection Behavior prediction

Figure 1: The workflow of anomaly detection via syslog
analysis.

The remainder of this work is structured as fol-
lows: Related works are reviewed in section 2. The
data preparation and anomaly detection approach is
described in Section 3. Preliminary results are shown
in Section 4, and the paper is concluded and important
future work directions are introduced in Section 5.

2 RELATED WORKS

Existence of system logs on virtually all comput-
ing systems, motivated numerous syslog analysis re-
searches (Girardin and Brodbeck, 1998; Liu et al.,
2018). System logs are invaluable resources of in-
formation for analyzing systems behavior due to their
availability and rich content. In the past decades
various syslog-based anomaly detection mechanisms
were proposed. However, system logs are not the only
monitoring data which are used for detecting anoma-
lies in computing systems. CASPER (Baldoni et al.,
2015) monitors the network activities, TIRESIAS
(Williams et al., 2007) observes CPU, memory, and
context switches, SEAD (Pannu et al., 2012) monitors
the hypervisor, and ALERT (Tan et al., 2010) collects

1https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Com-
pendium/SystemTaurus

various metrics including CPU load, memory usage,
input/output data rate and buffer queue length.

Anomaly detection methods are divided into three
main categories: rule-based, supervised, and unsuper-
vised (Patcha and Park, 2007). Although many rule-
based methods have been proposed, the unstructured
form of syslog messages extremely limits the func-
tionalities and the detection domain of rule-based ap-
proaches. Supervised methods on the other hand re-
quire both normal and abnormal patterns to train a
functional behavioral classifier. Therefore, rule-based
approaches as well as supervised approaches are not
able to detect anomalies which are not seen before.
Furthermore, automatic extraction of rules and pat-
terns for rule-based and supervised approaches re-
spectively, are time consuming and inaccurate (Chan-
dola et al., 2009).

In contrast, unsupervised approaches are able to
automatically extract an accurate behavioral pattern
from the monitoring data. However, most of the un-
supervised approaches and available tools are domain
specific. They are built specifically for a certain do-
main of problems e.g., to detect security threads (Yen
et al., 2013), identify DNS poisoning attacks (Oprea
et al., 2015), or detecting performance bottlenecks
(Roy et al., 2015). More general approaches such
as invariant log mining (Beschastnikh et al., 2012)
and principal component analysis (Jolliffe, 2011) only
consider the chronological order of the events, dis-
carding the temporal correlation among log entries.

Recent advances in machine learning techniques
further improved unsupervised methods of syslog
analysis (Du et al., 2017; Vaarandi et al., 2018; Li
et al., 2018; Aussel et al., 2018). Despite the rapid
improvements in performance and accuracy of un-
supervised syslog analysis approaches via machine
learning, certain challenges remained unsolved. As
the volume of generated system logs on HPC systems
is rapidly increasing, the storage and processing of
syslog entries became challenging. Processing sys-
tem logs which are packed with various personal data,
raises high privacy concerns. Due to the heterogeneity
of various components in modern HPC systems, each
component projects a different behavior which can-
not be accurately modeled via a single general model.
Software and hardware updates, various applications
and the multi-user environment of HPC systems, con-
tinuously change the systems behavior. Therefore, a
static behavioral model of the HPC system is not suf-
ficient to accurately model the dynamic behavior of
modern HPC systems. In addition, system logs are
generated by individual computing nodes, thus, any
failure directly affects syslog entries via introducing
noises, interrupting log generation, or impeding log
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Table 1: Sample of syslog entries with their respective severity level and event class.

Timestamp Source Message Severity Event class
1517266801 T-1020 (siavash) CMD (/usr/bin/check) Information 62440f7d
1517266925 T-1020 (root) CMD (/fast/sbin/start) Information 62440f7d
1517266929 T-1020 Accepted publickey for siavash from 192.68.31.32 Notice ea6f83c9
1517267050 T-1020 pam unix(sshd:session): session opened for user siavash Notice feaec917

collection. Furthermore, even harmless errors may in-
troduce noises in syslog entries.

The proposed approach in this work, analyzes
anonymized and compressed syslog entries to pre-
cisely model the behavior of any general HPC sys-
tem, via a set of dynamic behavioral models extracted
using fast-trainable noise-resistant neural networks.
To the best of our knowledge, this is the first work
to detect anomalies in computing systems using fully
anonymized monitoring data. Transparent noise mit-
igation via utilizing the neighborhood homogeneity
within convolutional neural networks, as well as port-
ing monitoring data into image and text processing
domains are other main contributions of this work.

3 ANOMALY DETECTION

The proposed approach is intended to be applied on
production HPC systems without modifying the HPC
systems configuration. Therefore, it is assumed that
all behavioral analysis are performed out of the HPC
system, and the type and time of the previous failure
occurrences are not recorded. The first assumption
requires guaranteed data privacy, and the later rules
out all supervised and rule-based learning approaches.

The proposed approach collects the monitoring
data (syslog entires), anonymizes and transforms the
data into predefined formats. Three different net-
works process the transformed data to extract models
which represent the common behavior of the comput-
ing nodes. The trained models are used to compare
the divergence of new monitoring data against the ex-
tracted common behavior to detect abnormal behav-
iors. Concurrently the trained models are improved
via further training using new monitoring data. Fol-
lowing subsections describe the proposed approach in
more details.

3.1 Monitoring Data

System logs are used as monitoring data for analyz-
ing computing systems behavior. Each syslog entry
denotes the occurrence of an event. Events vary from
users logging in and out, to temperature changes,
buffer overflows, or kernel panics. Syslog entries
does not represent and store all events happening in

an HPC system. In certain situations such as boot
time, computing systems generate massive amount of
syslog entries. Each syslog entry beside its optional
metadata (e.g., severity, facility) consists of three
main parts: timestamp, source, and message. The
timestamp and source contain structured data while
the message part is unstructured. Timestamp denotes
the time of events occurrence, source identifies the
origin of events, and message describes events prop-
erties.

Taurus HPC cluster consists of 2046 heteroge-
neous computing nodes, divided into 6 groups (is-
lands) based on their hardware architecture. Each is-
land itself is divided into several racks, and each rack
consists of 18 homogeneous computing nodes. Ta-
ble 1 contains four sample syslog entries from Tau-
rus, separated into their timestamp, source, and mes-
sage fields. The severity denotes syslog entries im-
portance (specified by log generator) based on one of
the 8 standard severity levels of debug, information,
notice, warning, error, critical, alert, and emergency
defined in (RCF5424, 2009). The last column in Ta-
ble 1, contains the event class of each entry. The first
and second syslog entires in Table 1 share a similar
event class, thus, represent a similar event which re-
ports: a user executed a command. Event classes are
extracted from the message part of syslog entries via
generalization and anonymization. The anonymiza-
tion process is described in subsection 3.2. Precision
of syslog entries timestamp on Taurus is 1 second.

Figure 2 illustrates the occurrence pattern of 6
common events on a single node of Taurus for a pe-
riod of 32 minutes. Each row represents a certain
event class, and each column represents a period of
60 seconds. Each colored cell indicates at least one
occurrence of the respective event. Darker colors rep-
resent additional occurrences of the respective event
during each time interval.

3.2 Data Anonymization

To guarantee the data privacy, all syslog entries are
fully anonymized via the PaRS anonymization ap-
proach before any behavioral analysis. PaRS removes
sensitive terms2 such as IP addresses, and usernames

2Any string consisting of one or more characters is a
term.
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Event class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

a5803a8a

eac7924f

f1e7eac3

e5a59462

dd740712

66dc2742

Figure 2: Occurrence pattern of 6 event classes on one node,
in 32 minutes. Darker shades of blue indicate more re-
occurrences.

from each syslog entry, substitutes all variable terms
with relevant constants, and encodes the entire en-
try using a collision-resistant hash function such as
SHAKE-128 (Bertoni et al., 2018). The output of
PaRS is time-series consisting of timestamp, origin
(source), and the hash-key of syslog entries. The
metadata remains unchanged.

The final encoding step in PaRS beside guarantee-
ing the full anonymization of syslog entries, signifi-
cantly reduces the data volume. Figure 3 illustrates
the workflow of PaRS anonymization approach (Ghi-
asvand and Ciorba, 2018).

1517266801 T-1020 (siavash) CMD (/usr/bin/check)

System log entry

MessageSourceTimestamp

(siavash) CMD (/usr/bin/check)

Significant
variable term

Insignificant
variable term

Constant
term

global
de-identification

( # U S R 2 # )  C M D  ( # PAT H # )
( # U S R p # )  C M D  ( # P AT H # )
( # U S R _ # )  C M D  ( # P AT H # )

de-identification
according to usage

1517266925 T-1023 (root)      CMD (/fast/sbin/start)

(root) CMD (/fast/sbin/start)

Significant
variable term

Insignificant
variable term

Constant
term

global
de-identification

( # U S R 1 # )  C M D  ( # P AT H # )
( # U S R n # )  C M D  ( # P AT H # )
( # U S R _ # )  C M D  ( # P AT H # )

de-identification
according to usage

E9efd3a5
1e7ed485
62440f7d

2053d15d
608bdaea
62440f7d

Encoding Encoding

#USR1#, #USR2#: Individual de-identification; replacing each username with a new symbol
#USRn#, #USRp#: Group de-identification; replacing usernames according to the user groups
#USR_#, #USR_#: Global de-identification; replacing all usernames with an identical symbol

#1

#2

#1 #2

: Event pattern, the result of global de-identification of all variable terms

Figure 3: Workflow of PaRS anonymization approach (Ghi-
asvand and Ciorba, 2018).

3.3 Data Preparation

System logs are collected and stored by local syslog
daemons on each computing node. Afterwards, sys-
log entries can be either directly forwarded to a cen-
tral syslog storage or actively being collected from
each individual node. The entire procedure of sys-
log generation, transmission, and collection is prone
to errors caused by software and hardware failures.
Same principle applies to all other monitoring data
collected from computing nodes such as power con-
sumption, CPU load, or memory utilization. There-

fore, data preparation is necessary.

3.3.1 Data Discretization

The proposed approach in this work is based on
time-series analysis. Therefore, prior to analysis the
continuous monitoring data collected from comput-
ing systems should be discretized. System logs are
discrete time-series by nature, therefore, further dis-
cretization is not required. However, discrete bin-
ning of syslog entries can be used to reduce the sam-
pling rate of collected system logs and mitigate cer-
tain noises. In this work a one minute time binning is
applied on syslog entires. Each bin contains the accu-
mulated number of events occurred in one minute per
node and per event class.

3.3.2 Noise Mitigation

Noise is an erroneous presence or absence of log en-
tries within the monitoring data. To identify the nor-
mal behavior of computing systems, it is necessary to
remove the random noises. Beside software and hard-
ware failures which may inject random noises into
the monitoring data, other actions such as software
updates, administration activities, and system mainte-
nances can also introduce noises. In addition, most
production HPC systems are used by various groups
of users and for different applications. Therefore, ex-
istence of random noises in monitoring data is highly
plausible due to human errors and application mis-
behaviors. Part of these noises can be removed via
discrete binning of the monitoring data introduced
in subsubsection 3.3.1. However, an extreme discrete
binning can decrease the accuracy of anomaly detec-
tion by decreasing the monitoring data precision.

This work utilizes the neighborhood homogeneity
of HPC systems to mitigate random noises. Comput-
ing nodes in HPC systems are divided into smaller
subsets such as chassis or racks. Majority of these
small subsets consist of homogeneous computing
nodes which share various physical resources such
as power supply, cooling system, and network in-
frastructure. Homogeneous computing nodes which
are physically collocated (adjacent) and share similar
physical resources tend to project similar behaviors.
Therefore, in a homogeneous subset of computing
nodes, common behavior of the majority can be con-
sidered as the normal behavior in that particular sub-
set. The extraction of common node behavior from
noisy syslog entries on Taurus in a subset consisting
of 8 homogeneous computing nodes is shown in Fig-
ure 4. Colored cells mark the occurrences of event
(a5803a8a) on 8 adjacent nodes during 32 minutes.
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Bottom row indicates the normal pattern of event oc-
currences, extracted via majority voting among the 8
computing nodes. Events are placed in each bin ac-
cording to their relative time passed since midnight.
Further time synchronization is not required.

Node ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

Normal 

behavior

Figure 4: Occurrence pattern of one event class (a5803a8a)
on 8 nodes, in 32 minutes. The bottom row shown in green,
holds the result of majority voting on all 8 nodes.

Outliers are valid events which distant from the
norm. Outliers can impede correct analysis of sys-
tems behavior. However, in contrast to noises, outliers
are part of the systems behavior, thus, they should not
be removed. Outliers are not always indicators of an
abnormal behavior. It is worth to emphasize that the
goal of this stage is extracting the pattern of normal
(healthy) system behavior. Therefore, standardizing
the data range (scaling) is sufficient to omit the nega-
tive effect of outliers.

Considering the noise mitigation approach shown
in Figure 4, when the majority of nodes project ab-
normal behavior, the extracted behavior pattern will
be incorrect. However, analyzing Taurus behavior re-
vealed that except global system failures which affect
the majority of computing nodes, utilizing the neigh-
borhood homogeneity and majority voting correctly
extracts the common event patterns. Nevertheless, the
system log entries collected during global system fail-
ures must be excluded from the training data to pre-
vent unexpected results.

3.4 Model Generation

Having insufficient amount of failure samples was
one of the main motivations to use an unsupervised
approach for anomaly detection in this work. On Tau-
rus, except certain failures which are caused by dis-
tributed file system, rest of the failures are not fre-
quent (less than 10 occurrences per year). Due to
insufficient amount of failure samples, automatic ex-
traction of abnormal system behavior patterns lead-
ing to non-frequent failures is not feasible. Therefore,
rather than extracting the pattern of abnormal behav-
iors and detecting similarities between the current be-
havior and abnormal behavior, this work considers the
common system behavior as the normal behavior and
evaluates the divergence of current behavior from the

common behavior.
In this work, three neural networks are used to

extract the common system behavior patterns from
system logs. For the first two networks explained
in subsubsection 3.4.1, syslog entries are transformed
into images and processed via image processing tech-
niques. While the third network explained in subsub-
section 3.4.2, uses a text auto-completion technique
to predict the upcoming events. The usage of each
network is described in section 4.

3.4.1 Image Processing

Many periodic events in HPC systems have static time
intervals. Longest interval between two consecutive
occurrences of a periodic event on Taurus is 60 min-
utes, thus, every periodic syslog entry appears at least
once during an hour. Therefore, the observation win-
dow of one hour was chosen to monitor Taurus be-
havior. To simplify future calculations, the width of
observation window is extended to 64 minutes (26).
However, in each observation the window is shifted
forward by 60 minutes such that the observation win-
dow always starts exactly on the hour. Hereafter, the
data which is captured in an observation window is
referred to as a frame. Shifting the observation win-
dow and capturing data frames for a duration of four
hours are shown in Figure 5.

Observation 1 Frame 1

Frame 4

Frame 3

Frame 2

00:00:00 01:00:00 02:00:00 03:00:00 04:00:00

Observation 2

Observation 3

Observation 4

Figure 5: Capturing data frames from monitoring data.

Each frame is represented as a two dimensional
matrix of Fe, with t columns and n rows. t represents
the time bins of one minute and is equal to the width
of the observation window (64 in this work) and n is
the number of nodes which have been observed. The
value of each cell (vnt ) denotes the number of event
e re-occurrences for all events of the same severity
level within the time bin of t on node n. A sample
frame is shown in Figure 6(a). This frame represents
all events marked as emergency and occurred on 18
adjacent computing nodes (a rack) during a 64-minute
time window. Two nodes (rows) are randomly cho-
sen to be removed from the frame to simplify the fu-
ture calculations (18−2 = 24). To eliminate potential
accuracy penalties caused by random node removals,
two different copies of each frame are generated. For
the second copy, two nodes other than those which
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were removed from the first copy are randomly cho-
sen to be removed. During the learning phase, net-
works are trained on both copies.

For each of the eight syslog severity levels a sep-
arate frame is captured as shown in Figure 6(b).
Frames containing emergency, alert, and critical
events are merged into a single frame. Similarly the
error frame is merged with warning frame, and the
notice frame is merged with information frame. The
debug frame remains unchanged. Furthermore, the
values of each cell is normalized to the range of 0 and
255. The four resulting frames are stored as a three di-
mensional matrix shown in Figure 6(c), representing
a 16 by 64 pixels RGBA PNG image (W3C, 2018).
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Figure 6: Transforming syslog entries to an RGBA im-
age. Value of each cell indicates the number of event re-
occurrences per node and per minute. (a) 2D representation
of syslog entries. (b) Removing extra rows and merging
events with similar severity levels. (c) RGBA representa-
tion of syslog entries.

Two different autoencoders are used to model the
normal behavior of Taurus via image data. Both net-
works are trained via a sequence of 24 RGBA images
in size of 16 by 64 pixels. The first approach is train-
ing a state-less convolutional autoencoder shown in
Figure 7. The expected output of the network is the
same image (frame) as the input.

The second approach is training a long short term
memory (LSTM) autoencoder. The expected out-
put of the network in this approach is the next im-
age (frame) in the input sequence. In another word,
the network should predict the next image of the se-
quence. A similar network as shown in Figure 7
is used, with the convolutional layers substituted by
convolutional LSTMs.

input

output

16x64 8x64 4x64

1x64

16x64 8x64 4x64

Conv.
9x1

Conv.
5x1

Conv.
4x1

UpConv.
4x1

UpConv.
2x1

UpConv.
2x1

Figure 7: The lightweight convolutional autoencoder for ex-
tracting behavioral patterns. Encoding layers perform the
majority voting and noise mitigation. While decoding lay-
ers are fine tuning the results.

3.4.2 Text Auto-completion

The third approach is using a text auto-completer. The
input of network is a sequence of anonymized syslog
entries (event classes) and the expected output is the
upcoming entries. In another word, this network pre-
dicts the future events and completes the sequence.
In this approach, one day of syslog entries is consid-
ered as a text with 24 sentences, and 60 words per
sentence. Each word is the event class of a syslog en-
try. A sequence of 60 words (one word per minute)
forms a sentence, and 24 sentences form a full text
(one day). Multiple occurrences of an identical event
within a minute are ignored, while the occurrence of
concurrent distinct events are accumulated. Empty
minutes are filled with the event class of the previ-
ous event. Figure 8(a) illustrates the transformation
of sample syslog entries shown in Table 1 into an in-
complete sentence of event classes. The network used
in this approach consists of two layers, a dense layer
attached to an LSTM.

Syslog timestamp 1517266801 <no event> 1517266925
1517266929

<no event> 1517267050 -

Time (minute) 23:00 23:01 23:02 23:03 23:04 …

Event classes 62440f7d <no event> 62440f7d
+

ea6f83c9

<no event> feaec917 …

Accumulating 
concurrent events

62440f7d <no event> [1]4CB39346 <no event> feaec917 …

Final sentence 62440f7d 62440f7d 4CB39346 4CB39346 feaec917 …

Copy Copy

62440f7d 62440f7d 4CB39346 4CB39346 feaec917 … 62440f7d 62440f7d 4CB39346 4CB39346 feaec917.
62480f7d 62440f7d 4CB39346 4CB39346 feaec917 … 62440f7d 62440f7d 4CB39346 4CB39346 feaec917.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
62440f7d 62440f7d 4CB39346 4CB39346 feaec917 … 62440f7d 62440f7d 4CB39346 4CB39346 feaec917.
62440f7d 62440f7d 4CB39346 4CB39346 feaec917 … 62440f7d 62440f7d 4CB39346 4CB39346 feaec917.

60 words

2
4

 li
n

es

(a)

(b)

Figure 8: (a) Transforming sample syslog entries from Ta-
ble 1 into an incomplete sentence. (b) 24 hours of syslog
entires represented as 24 sentences with the constant length
of 60 words.

4 PRELIMINARY RESULTS

The three proposed approaches were applied on one
month of system logs from 270 Taurus nodes (15
racks) collected in April 2017. An independent in-
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stance of each network was trained with each rack
data, resulting in 45 trained networks (3 per rack).
The state-less autoencoder generated outputs with
65% accuracy (correct detection of normal behavior
using noisy system logs) after only 10 epochs. This
number raised to about 30 epochs for the LSTM au-
toencoder and 400 epochs for the text auto-completer.
The accuracy improves via additional epochs. How-
ever, to achieve higher accuracy with less epochs,
hyper-parameters must be further tuned.

Based on the preliminary results, the state-less
autoencoder could be efficiently used for de-noising
the monitoring data. The LSTM autoencoder could
be used to quickly model the behavioral pattern of
the HPC system. The text auto-completer needs fur-
ther improvements such as additional noise removal,
since this approach projected high sensitivity to ran-
dom noises.

The required time for the first training of the state-
less autoencoder, LSTM autoencoder, and text auto-
completer networks with 720 samples on an Intel
Xeon E5 took 30, 65, 40 seconds respectively. Small
size of the networks, low volume of the required input
data and fast training curve makes them good candi-
dates for modeling the HPC systems behavior.

To evaluate the current behavior of each comput-
ing node, the nodes syslog entries are monitored us-
ing a 64-minute observation window. The resulting
1x64x4 frame is transformed into a 16x64x4 frame
using up-sampling (row copy). Evaluating the ob-
served frame via any of the three proposed networks
provides a prediction of upcoming events and a value
indicating the divergence of current behavior from the
common behavior. The state-less network is intended
to be used for subsets of the HPC systems with static
behaviors such as nodes which are not accessible by
users and are not under constant maintenances, while
the LSTM is intended to be used for dynamic parts.
The text auto-completer, due to its short response time
is more suitable for larger HPC systems.

5 CONCLUSION AND FUTURE
WORKS

High performance computing systems are rapidly
growing in size and complexity. Failures already be-
came an integral part of HPC systems and the exas-
cale systems are expected to arrive soon. Recent ad-
vances in machine learning techniques dramatically
improved the methods in addressing failures on com-
puting systems. Anomaly detection approaches can
efficiently reduce the negative side effects of fail-
ures via early detection and prediction of upcom-

ing failures. Although the accuracy of pattern de-
tection mechanisms is highly improved using neural
networks; Because of the heterogeneous nature of the
modern computing systems, the behavioral patterns
of these systems cannot be precisely described via a
single global model. Different subsets of HPC sys-
tems, project different behaviors and independently
change during the time. A global model cannot re-
flect the continuous changes in various components
of HPC systems.

This work proposed an approach using autoen-
coders to generate behavioral models for smaller sub-
sets of high performance computing systems. These
small models are more precise in compare to single
global models, faster to train and easier to update.
In addition, the autoencoders are designed to trans-
parently mitigate random noises in monitoring data
via utilizing the neighborhood homogeneity feature of
HPC systems. Transforming the monitoring data into
the RGBA format, enables direct application of var-
ious image processing methods on monitoring data.
Furthermore, the anonymized monitoring data can se-
curely be processed via various text processing meth-
ods without raising privacy concerns.

In this work monitoring data from Taurus HPC
cluster is used solely to exemplify the proposed ap-
proach. The RGBA format is also chosen due its
visualization capabilities. The proposed models can
easily adapt to any other monitoring data via extend-
ing the depth of transformed image from four chan-
nels (RGBA) to an arbitrary number, e.g., for syslog
entries event classes can be used instead of severity
levels.

Fine-tuning the networks hyperparameters, fur-
ther training of the networks via additional monitor-
ing data, and improving the performance of text auto-
completer approach are planned future works. In ad-
dition, the networks will be trained via other monitor-
ing data (beside syslog entries) and their accuracy and
performance will be compared.
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