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Abstract: In real world data set, there might be missing data due to various reasons. These missing values should be 
handled since most data analysis methods are assuming that data set is complete. Data deletion method can 
be simple alternative, but it is not suitable for data set with many missing values and may be lack of 
representativeness. Furthermore, existing data imputation methods are usually ignoring the importance of 
local space around missing values which may influence quality of imputed values. Based on these 
observations, we suggest an imputation method using Hyper-Rectangle Descriptor (ܦܴܪ) which can focus 
on local space around missing values. We describe how data imputation can be carried out by using ܦܴܪ, 
named ݁ݐݑ݉݅_ܦܴܪ , and validate the performance of proposed imputation method with a numerical 
experiment by comparing to imputation results without ܦܴܪ. Also, as a future work, we depict some ideas 
for further development of our work. 

1 INTRODUCTION 

Some data might be missing during collection due to 
various reasons such as physical or logical errors. 
However, since most of data analysis techniques 
cannot be performed properly with missing data, 
handling missing data is very important in machine 
learning area. As an alternative, one can simply 
exclude data with missing parts and analyze the rest 
of fully collected data, which is called data deletion 
method (McKnight et al., 2007). This approach can 
perform well only if few data points are missing. 
However, in real world data, there can be many 
missing data points, and analysis results obtained 
from using only fully known data cannot represent 
the whole data set. Therefore, we need a data 
imputation method that replaces missing data with 
new values estimated from fully collected data, 
rather than excluding them. In this case, although 
imputed values are estimated from observed data, 
scalability of original data set can be preserved, and 
data analysis can be applied to it that is a complete 
data set. 

Generally, in data imputation process, local 
space around missing data is important since 
behavior of missing data is more likely to follow 
data pattern in local space rather than whole feature 
space. However, although there are many researches 

about missing data imputation, there exist few 
approaches focusing on local space. Some 
imputation methods including ݇-Nearest Neighbors 
(݇-NN) utilizes information of local space. However, 
they have their own limitations such as parameter 
selection and ambiguous standard definition of local 
space.  

Based on these observations, we propose an 
efficient imputation method that can (i) define local 
space around missing data systematically and (ii) 
impute missing values by focusing on that local 
space. Specifically, we suggest ݁ݐݑ݉݅_ܦܴܪ  as a 
missing data imputation method using Hyper-
Rectangle Descriptor (ܦܴܪ ) that was originally 
developed to carry out one-class classification 
(Jeong et al., 2019). The basic idea of ܦܴܪ  is to 
divide feature space into Hyper-Rectangles (H-
RTGLs), formed by geometric rules called intervals, 
and classify instances in H-RTGLs as target class. 
Therefore, H-RTGLs as ܦܴܪ can be considered as a 
certain local space including some instances and can 
be used to overcome one of limitations of existing 
missing data imputation methods. 

The rest of this paper is organized as follows. 
Section 2 describes the literature survey about 
existing missing data imputation methods. We 
suggest details of the suggested ܦܴܪ -based 
imputation method in Section 3. Then, we validate 
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the performance of proposed method by a numerical 
experiment in Section 4. Finally, we conclude our 
work and pose some ideas for future works in 
Section 5. 

2 RELATED WORKS 

There exist many imputation methods to handle 
missing data these days. For example, all missing 
data can be replaced with a single value. One can 
also consider using basic machine learning 
techniques such as regression analysis, ݇ -NN and 
decision tree, and so on.  

Mean or median imputation is a representative 
single value imputation method, which imputes 
missing values using a mean or median of 
observations not missing (Little and Rubin, 2014). 
Such imputation method is easy to implement and 
can perform well if there are few missing values. 
However, imputation with single value such as mean 
or median is not suitable in most cases since it 
cannot reflect variance and distribution of data, and 
imputed values are lack of representativeness. 

By regression, one can obtain a mathematical 
model that describes relationship of input and output 
variables. Data imputation with regression is 
performed as follows: At first, a regression model is 
formed by using a feature with missing value as 
output variable and other features as input variables. 
Then, missing value of the feature can be computed 
by observed values of other features (Brown and 
Kros, 2003). Data imputation methods using 
regression can be categorized according to the 
method to formulate regression model. Regression 
model using Least-Squares (LS) is most common 
and basic (Raghunathan et al., 2001). Based on this, 
calculating LS sequentially or iteratively was also 
considered (Zhang et al., 2008; Shi et al., 2013). 
More complicated regression model such as Support 
Vector Regression (SVR) and nonlinear regression 
were also tackled (Aydilek and Arslan, 2013; Tang 
and Zhao, 2013). Clear disadvantage of regression- 
based imputation methods is that they cannot focus 
on local relationship.  

Data imputation using ݇-NN utilizes information 
about the nearest neighbors of missing data. 
Specifically, ݇ -NN imputation replaces missing 
values as follows. We select ݇ nearest neighbors by 
considering features not in missing data. Then, 
missing value is estimated from features of observed 
nearest neighbors by using means or weighted 
means and so on (Chen and Shao, 2000). Choosing 
nearest neighbors sequentially or iteratively is one of 

the most common variations of ݇ -NN-based 
imputation (Zhang, 2012; Kim et al., 2004). Huang 
and Zhu (2002) proposed imputation method based 
on pseudo-nearest neighbors, expected to follow the 
same Gaussian distribution. Christobel and 
Sivaprakasam (2013) devised class-wise ݇-NN that 
utilizes class information to choose nearest 
neighbors for labelled data set. García-Laencina et 
al., (2009) adopted mutual information as distance 
metrics for choosing nearest neighbor. Jonsson and 
Wohlin (2004) evaluated the performance of various 
݇ -NN-based imputation methods. ݇ -NN-based 
imputation methods could partially utilize local 
relationship. However, there was no implicit 
standard about how to decide  ݇.  

Other methods suggested for missing data 
imputation including decision tree are as follows. To 
impute missing data, decision tree can be generated 
by rules to calculate missing value. C4.5 and CN2 
are representative algorithms to build decision tree 
(Grzymala-Busse and Hu, 2000; Batista and Monard, 
2003). Decision tree is useful to impute missing data 
by intuitive rules, but it may become too complex in 
case of using many features not scalable well. Also, 
it can be over fitted easily. Expectation-
Maximization (EM) algorithm tries to impute 
missing data with new values likely to be missing, 
while maximizing likelihood function (Gold and 
Bentler, 2000). It can find imputation values 
systematically, but its performance depends on 
initial parameter setting. Furthermore, Bertsimas et 
al. (2017) considered missing data imputation as an 
optimization problem and proposed fast first-order 
methods to obtain high quality solutions for it.  

3 SUGGESTION OF NEW 
IMPUTATION METHOD 

3.1 Problem Definition and Solution 
Framework 

We define notation and index necessary for 
describing missing data imputation problem as 
follows. We assume a whole data set ൌ
ሼxଵ, xଶ, … , xሽ , containing ݊ data points. Then, ݅-th 
instance xሺ݅ ൌ 1,2, … , ݊ሻ can be expressed as  x ൌ
ሺݔଵ, ,ଶݔ … , ሻݔ , where ݍ  is the total number of 
features. Also, there is an index set of missing 
entries ࣧ ൌ ሼሺ݇, ݁ሻ|݁ -th feature of ݇ -th instance is 
missingሽ. As a result, the objective of imputation 
problem is to substitute missing entry ݔ, ሺ݇, ݁ሻ ∈
ࣧ by using fully collected data points.  
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Meanwhile, we carry out the imputation of 
missing data by using ܦܴܪ , which is a method 
generating ܦܴܪ  based on interval merging. The 
framework of ݁ݐݑ݉݅_ܦܴܪ tackled in this research 
can be depicted as Figure 1. At first, we obtain 
  from data points except for missing ones andܦܴܪ
fit a linear regression model for each resulted ܦܴܪ. 
Then, we identify ܦܴܪ  expected to include 
missing data and impute missing value from 
regression model fitted into ܦܴܪ. Subsection 3.2 
describes detailed procedure of missing data 
imputation method by using ܦܴܪ. 

 

Figure 1: Framework of imputation USING ܦܴܪ. 

3.2 Detailed Procedure of 
 ࡰࡾࡴ using ࢋ࢚࢛_ࡰࡾࡴ

At first, we generate ܦܴܪ from fully collected data 
points as follows (Jeong et al., 2018). The first step 
to construct ܦܴܪ is to generate intervals for each 
feature ݎ , which is main component of generating 
hyper-rectangle. An interval is calculated from a set 
of projection points of all instances into feature ݎ. 
Specifically, we define the projection point of 
instance x into feature ݎ as  

ݎ ݆ሺxሻ ൌ ,ݔ ∀݅. (1)

By using (1), we can obtain the set of projection 
points ܻ containing ݊ሺ ݊ሻ points as  

ܻ ൌ ൛ݕଵ, ,ଶݕ … , ݕ
ೝൟ, (2)

where ݕ is ݄-th smallest value in ܻ satisfying ݕଵ 
ଶݕ  ⋯  ݕ

ೝ . For each projection point ݕ , we 
define an interval ݈݅ݒݐሺݕሻ as  

ሻݕሺ݈ݒݐ݅ ൌ ቈݕ െ
݈ሺݕሻ

2
, ݕ 

݈ሺݕሻ

2
 , ∀݄, (3)

where ݈ሺݕሻ  is interval length calculated by the 
number of projection points with the same value and 
some parameters. Since intervals ݈݅ݒݐሺݕሻ  are 
generated considering all projection points ݕ, there 
can be overlapped intervals. For example, Figure 2 
is an example of interval generation in two-
dimensional feature space with five instances 
ሼxଵ, xଶ, xଷ, xସ, xହሽ . All instances were projected to 
each feature, and intervals were generated from each 
of projection points.  

 

Figure 2: An example of interval generation for ܦܴܪ. 

While calculating intervals from projection 
points, some intervals may be overlapped. These 
overlapped intervals are merged, which is resulted in 
a set of disjoint intervals containing ݊ disjoint 

intervals as  ܯ ൌ ቄܮܸܶܫଵ , ,ଶܮܸܶܫ … , ܮܸܶܫ
ೝ

ቅ. For 

example, there are overlapped intervals in Figure 2 
such as ݈݅ݒݐଵሺݕଵଵሻ  and ݈݅ݒݐଵሺݕଵଶሻ . After applying 
merging operation to all of these overlapped 
intervals, resulting disjoint intervals in above-
mentioned example were depicted in Figure 3. 

 

Figure 3: Disjoint intervals resulted from merging. 

Next step is to get conjunction of these disjoint 
intervals. Conjunction of intervals can be obtained 
by cartesian product of intervals generated from all 
features. However, some conjunction of intervals 
may not include any instance since intervals are 
generated feature by feature. For example, 
conjunction of ܮܸܶܫଵଵ  and ܮܸܶܫଶ

ଶ  does not include 
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any instance. Thus, interval conjunction should be 
defined by considering instances. Specifically, 
interval conjunction ߨሺxሻ  including instance x  is 
expressed as  

ሺxሻߨ ൌ ଵܮܸܶܫ
௧భ⋀ܮܸܶܫଶ

௧మ⋀…⋀ܮܸܶܫ
௧, ∀݅, (4)

where ݎ ݆ሺxሻ ∈ ܮܸܶܫ
௧ೝ,  From the information .ݎ∀

of disjoint intervals in Figure 3, for example, two 
interval conjunctions can be drawn as Figure 4.  

 

Figure 4: Interval conjunctions obtained from instances. 

Merging-based H-RTGLs, ܪܾܯ, are constructed 
by adjusting volume of each interval conjunction. 
However, some ݏܪܾܯ  may be overlapped even if 
they are formulated from disjoint intervals. We 
recommend Jeong et al., (2018) for revealing 
detailed adjusting procedure or other contents 
including roles of parameters.  

 

 

Figure 5: Two regression models fitted into two ܪܾܯs. 

After such ݏܪܾܯ are formulated, instances can 
be classified by ܦܴܪs. In other words, local spaces 
expected to include each instance with missing 
feature are identified, and imputation of missing data 
can be carried out by considering such relationship. 
We fit into a linear regression model for each ܪܾܯ, 
and the regression model is calculated considering 
only instances belonging to ܪܾܯ. Since there exist 
two ܪܾܯs in above-mentioned example, two linear 
regression models can be fitted into as depicted in 
Figure 5. 

Then, missing data can be imputed by using 
resulted linear regression model. Suppose that there 
are two more instances with missing entries x and 
x , which are not used to formulate ܪܾܯ  due to 
missing entries. In addition, the index set of missing 
entries ࣧ  is given as ࣧ ൌ ሼሺ6,2ሻ, ሺ7,1ሻሽ , which 
means feature 2 of x and feature 1 of x are missing. 
If known values of x  ( ଵݔ ) and x  ( ଶݔ ) are 
belonging to respective ܪܾܯ, imputed values should 
be calculated from the corresponding linear 
regression model. Figure 6 shows the imputation 
procedure for the given example. Missing values of 
instance x(ݔଶ) and instance x(ݔଵ) are imputed 
from the corresponding regression models. If there 
exist two or more candidates of ݏܪܾܯ, one ܪܾܯ is 
randomly selected. The probability of each ܪܾܯ to 
be selected is given by the number of instances 
belonging to ܪܾܯ. If there is no ܪܾܯ to be selected, 
the nearest ܪܾܯ is used instead. In case of two or 
more missing features exits in one instance, 
candidate ܪܾܯ is selected at first, and then random 
value on regression model corresponding to ܪܾܯ is 
chosen as an imputation value. 

  

Figure 6: Imputed values for missing data. 

4 A NUMERICAL EXPERIMENT 

4.1 Experimental Design 

To validate the performance of proposed missing 
data imputation method, we committed a numerical 
experiment by using real world dataset from UCI 
machine learning repository. We considered three 
datasets named Iris, Wine, E.coli. The number of 
instances and features ሺ݊, ሻݍ  in each dataset is 
ሺ150,4ሻ , ሺ173,13ሻ , ሺ284,7ሻ , respectively. Missing 
entries are randomly generated in dataset at Missing 
at Completely Random (MCAR), and we used three 
missing percentage from 10% to 20%. We 
implemented two versions of ݁ݐݑ݉݅_ܦܴܪ  with 
different parameter configurations, represented by 
݁ݐݑ݉݅_ܦܴܪ  and ݁ݐݑ݉݅_ܦܴܪ௦ . The former 
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approach generates ܪܾܯ s from longer intervals, 
which make size of ܪܾܯ to increase. In other words, 
௦݁ݐݑ݉݅_ܦܴܪ  separates whole feature space 
densely with many small ܪܾܯ s. Also, we 
considered regression model fitted without ܦܴܪ as 
control group. To evaluate imputation performance, 
we calculated Mean Absolute Percentage Error 
(MAPE) defined as  

ܧܲܣܯ ൌ 	
100%
݊

ฬ
ܣ െ ܨ
ܣ

ฬ



ୀଵ

, (5)

where ܣ is the actual value, and ܨ is the forecasted 
value.  

4.2 Experimental Results 

Tables 1 to 3 summarize imputation performance of 
 and control group in three datasets. 10 ݁ݐݑ݉݅_ܦܴܪ
iterations were committed with the same missing 
percentage in dataset. 

Table 1: Experimental result from Iris data. 

 
Missing percentage

10% 15% 20%
Avg. MAPE (standard deviation) 

 ݁ݐݑ݉݅_ܦܴܪ
,ߜ) ,8) =(ߩ 0.5) 

9.3 (1.2) 13.9 (1.4) 18.2 (1.3) 

 ௦݁ݐݑ݉݅_ܦܴܪ
,ߜ) ,2) =(ߩ 0.2) 

8.2 (0.9) 11.3 (1.0) 17.4 (1.2) 

Regression 13.2 (1.8) 19.4 (2.5) 26.8 (2.6)

Table 2: Experimental result from Wine data. 

 
Missing percentage

10% 15% 20%
Avg. MAPE (standard deviation) 

 ݁ݐݑ݉݅_ܦܴܪ
,ߜ) ,8) =(ߩ 0.5) 

10.2 (1.3) 13.3 (0.9) 18.7 (2.9) 

 ௦݁ݐݑ݉݅_ܦܴܪ
,ߜ) ,2) =(ߩ 0.2) 

11.9 (0.8) 13.8 (1.4) 20.2 (2.3) 

Regression 16.2 (1.3) 19.3 (2.1) 28.3 (3.2)

Table 3: Experimental result from e.coli data. 

 
Missing percentage

10% 15% 20%
Avg. MAPE (standard deviation) 

 ݁ݐݑ݉݅_ܦܴܪ
,ߜ) ,8) =(ߩ 0.5) 

13.5 (1.6) 17.9 (1.3) 21.4 (1.9) 

 ௦݁ݐݑ݉݅_ܦܴܪ
,ߜ) ,2) =(ߩ 0.2) 

13.7 (1.8) 16.8 (2.1) 20.4 (2.2) 

Regression 15.9 (1.1) 20.3 (2.2) 27.9 (3.1)
 

As a result, imputation performance of 
݁ݐݑ݉݅_ܦܴܪ  was better than simple regression. 
This means that utilizing information of local space 
and local relationship can improve imputation 
performance of missing data. Regarding comparison 

of ݁ݐݑ݉݅_ܦܴܪ  and ݁ݐݑ݉݅_ܦܴܪ௦ , slight 
dominance of  ݁ݐݑ݉݅_ܦܴܪ௦	 was observed in Iris 
dataset, while imputation performance of 
 . was a little bit better in Wine dataset݁ݐݑ݉݅_ܦܴܪ
From these results, we can infer that dominance of 
different ݁ݐݑ݉݅_ܦܴܪ  methods might depend on 
dataset. 

5 CONCLUSIONS 

In this paper, we proposed a new imputation method 
for missing data that can replace missing values by 
focusing local space having high potential to include 
missing data. Especially, ݁ݐݑ݉݅_ܦܴܪ proposed in 
this paper enabled local spaces to be identified 
systematically. ݁ݐݑ݉݅_ܦܴܪ  was implemented by 
segmenting feature space into H-RTGLs and fitting 
regression models, which was a basis for imputation 
of missing values. As a result, missing values could 
be imputed by utilizing information of local space 
by using ݁ݐݑ݉݅_ܦܴܪ .  

Even if performance of ݁ݐݑ݉݅_ܦܴܪ  was 
validated through a numerical experiment, there are 
still plenty of further works to consider. Most of all, 
result of ݁ݐݑ݉݅_ܦܴܪ should be compared to other 
imputation methods rather than simple regression. 
Also, imputation performance may be improved by 
tuning parameters of ܦܴܪ , since generation of 
ܦܴܪ  is sensitive to these parameters. Thus, 
thorough research of parameter tuning can be 
considered. We also plan to apply ݁ݐݑ݉݅_ܦܴܪ for 
large or complex dataset to verify scalability or 
generality of it. Moreover, ܦܴܪ  and imputation 
with regression can be substituted by other methods 
that have the same role. Detailed policies for 
multiple missing attributes in one instance can be 
another future research area. 
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