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Abstract: Optical coherence tomography (OCT) yields high-resolution images of the retina. Reliable identification of
the retinal layers is necessary for the extraction of clinically useful information used for tracking the progress
of medication and diagnosis of various ocular diseases. Many automatic methods have been proposed to aid
with the analysis of retinal layers, mainly, due to the complexity of retinal structures, the cumbersomeness of
manual segmentation and variation from one specialist to the other. However, a common drawback suffered by
existing methods is the challenge of dealing with image artefacts and inhomogeneity in pathological structures.
In this paper, we embed prior knowledge of the retinal architecture derived from the gradient information, into
the level set method to segment seven (7) layers of the retina. Mainly, we start by establishing the region
of interest (ROI).The gradient edges obtained from the ROI are used to initialise curves for the layers, and
the layer topology is used in constraining the evolution process towards the actual layer boundaries based on
image forces. Experimental results show our method obtains curves that are close to the manual layers labelled

by experts.

1 INTRODUCTION

Optical coherence tomography first introduced by
(Huang et al., 1991) is a noninvasive imaging tech-
nique that provides cross-sectional images of the
retina with an acquisition speed of approximately
25,000 A-scans per second, and an axial image reso-
lution of approximately 5-7um (Raftopoulos and Trip,
2012; Jaffe, 2012; Adhi and Duker, 2013). In cur-
rent ophthalmology, identifying various layers of the
retina on OCT has become a vital tool for diagnos-
ing and tracking the progress of medication of various
visual impairments (Adhi and Duker, 2013). Since
the manual segmentation is not only tedious but also
subjected to intra- and inter-grader variance (Yazdan-
panah et al., 2011), many automatic methods have
been proposed to assist with the segmentation pro-
cess(Sun et al., 2016). Current research in retinal
OCT segmentation focuses on improving various as-
pects ranging from computational time, the number of
layers segmented, use of prior knowledge and compu-
tational complexity to mention a few. In general, seg-
mentation is partitioning based on some image char-
acteristics. How these characteristics are defined de-
termines the computation burden of the algorithm.
In some cases, this computational burden is reduced
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through dynamic programming (Chiu et al., 2010) or
topology modification (Liu et al., 2018). The number
of questions (conditions) an algorithm has to check or
satisfy is usually the most crucial factor.

Particularly, Markov ~ Boundary = Model
(Koozekanani et al., 2001), later extended by
(Boyer et al., 2006), geodesic distance (Duan et al.,
2017), level sets (Wang et al., 2015; Novosel et al.,
2013), graph-based methods (Chiu et al., 2010;
Garvin, 2008; Dodo et al., 2017; Dodo et al., 2018),
and machine learning (Lang et al., 2013) have been
used in the segmentation of retinal OCT images.
Although the level sets method has automatic topo-
logical handling, the steps can be computationally
expensive (Shi and Karl, 2005), while adding
complex constraints in the segmentation method
usually increases the complexity of an algorithm.
In this work, we incorporate simple yet efficient
topological constraints to the evolution process
of the level set method, to improve accuracy and
reduce computational complexity for OCT image
segmentation.

The method we propose is based on the fol-
lowing considerations: 1. The image gradients are
used to initialise curves in order to handle under-
segmentation and over-segmentation of the image; 2.
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The evolution of a curve is explicitly based on layer
arrangements and implicitly based on OCT topology.
This means for each image the initial contours are
specific to the image under investigation, while the
forces in the normal direction and the topology con-
strains guide the contours towards layer boundaries.

Our method segments an OCT image into 7 seg-
ments, relating to: Nerve Fibre Layer (NFL); Gan-
glion Cell Layer + Inner Plexiform Layer + In-
ner Nuclear Layer (GCL+IPL+INL); Outer Plexiform
Layer (OPL); Outer Nuclear Layer to Inner Segment
(ONL+IS), Outer Segment (OS) and Retinal Pigment
Epithelium (RPE). Locations of these layers on an
OCT image are shown in Figure 1. The rest of the
paper is organised as follows. Section 2 discusses the
proposed method in details. Experimental results and
discussions are treated in Section 3. Finally, conclu-
sions are drawn in Section 4.

2 PROPOSED METHOD

This section describes our approach of segmenting
retinal OCT images. A schematic representation of
the method is illustrated in Figure 2, and details of
each step are elaborated in the subsequent subsec-
tions.

2.1 Pre-processing

The pre-processing steps are illustrated in Figure 3.
Each OCT B-scan image [ is first enhanced with a
Gaussian filter to reduce the image noise. The lay-
ers targeted in our study lies within the total retinal
thickness (TRT), which starts from the Internal Limit-
ing Membrane(ILM) to the posterior boundary of the
Retinal pigment epithelium (RPE), i.e. the boundary
between the retinal nerve fibre layer and the vitreous,
and the boundary between the RPE and the choroid
regions respectively. It is commonly accepted that the
NFL, IS-OS and RPE exhibits high reflectivity in an
OCT image (Chiu et al., 2010; Lu et al., 2011; Tian
et al., 2015), based on experiments the ILM and RPE
exibits the highest transitions from dark-bright and
bright-dark, respectively (Dodo et al., 2018). Based
on this understanding of the retinal structure, the ILM
and RPE are identified using the shortest path (Dijk-
stra, 1959), by searching for the highest transitions on
two separate adjacency matrices(Chiu et al., 2010).
Using the ILM and RPE points the image is
cropped to Ieyoppeq> such that only the Region of in-
terest (ROI) with useful layer information is remain-
ing. This helps in dealing with layer-like structures
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outside the ROI and the computational cost associ-
ated with handling image background in segmenta-
tion. The pre-processing is vital in our segmentation
process because only the actual layer properties im-
pact the evolution of the curve. The next operation on
the image is to generate a mask I,z of the cropped
image, and then multiply it by the original image I.
The examples of resulting images from this step are
shown in figure 3, column 4, and expressed by the
equation below:

Ipracessed = bnask * 1 (D

The process in this subsection is essential because
only the layer structures are obtained when the gradi-
ent of the image is acquired. One of the significant
roles of the pre-processing is to eliminate the need for
handling background as depicted in figure 4 and fur-
ther discussed in the next few subsections 2.2 and 2.3.
From Figure 4 (a) the background and image noise
will affect the segmentation processes (because the
area highlighted in red will be initialised), and for this
reason we establish the ROI only based on part of the
image that contains useful information Figure 4 (b).
The estabilishment of the ROI also complements the
thresholding and refinement processes in the layer ini-
tialisation stage. We use the size of the cropped image
to reduce computational time further and to eliminate
the need for storing idle points.

2.2 Boundary Initialisation

To initialise contours we obtain the vertical gradient
Vi rocessea Of the processed image and threshold it by
a constant 7', in our case 7 = 0.0018. The value of
T should ideally be low, to avoid getting more com-
ponents in the GCL - IPL regions which will nega-
tively impact the segmentation results. We obtain the
edges of the thresholded gradient 7G image 5(a), and
then refine it in two simple steps: first, by area open-
ing ((Vincent, 1994), where any component less than
P pixels (P = 30pixels) is deleted to remove small
objects from the image (most especially the GCL to
IPL regions); second, we extrapolate incomplete layer
lines to span the image horizontally. This is carried
out by linking broken lines to the closet neighbouring
points, where each line starts from the first column
and ends at the last column of the image, such that
only complete layers are initialised, figure 5(b). The
initialisation and evolution of complete layer lines ex-
clusively is an essential factor, which further ensures
accurate segmentation, i.e. no merging or splitting of
boundaries is allowed, which prevents under- or over-
segmentation. Without losing context, the refinement
step can be ignored, if the layers from the GCL to INL
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Vitreous

NFL

GCL + IPL + INL
OPL

Figure 1: Location of Nerve Fibre Layer (NFL); Ganglion Cell Layer + Inner Plexiform Layer + Inner Nuclear Layer
(GCLAIPL+INL); Outer Plexiform Layer (OPL); Outer Nuclear Layer to Inner Segment (ONL+IS), Outer Segment (OS),
Retinal Pigment Epithelium (RPE) and the total retinal thickness, on an OCT image.

Input Image
v
Enhance / ; Mask * intensity
Fig. 3, col 1 Identify ILM & RPE Generate mask from ILM-RPE
Fig. 3, Col 2 Fig. 3, Col 3 Fig. 3, Col 4
A 4
Get gradient (/G) Threshold Use TG to Propagate
of cropped image gradient (TG) of initialise contours based on image
filled mask forces
\
Output Segments
Figure 2: Schematic representation of the proposed level set approach.
are targets of the method. However, this will require that the number of identified regions in the final out-
a condition for handling the splitting and merging of put cannot exceed the number of the initial curves.
boundaries or an alternate measure to correctly iden- An important point to note is that, if 7" is reduced,
tify which layers are segmented. Moving further, the then P is to be increased, mainly because the size of
edges of the refined image serve as initial curves such the small objects in 5 (b) will increase with a smaller
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Column 2

Row 3

Column 3 Column 4

Figure 3: Preprocessing steps showing: Column 1 - Enhanced images; Column 2 - identified ILM (red) and RPE (Green);
Column 3 - image masks /,45; and Column 4 - Cropped images I¢,opped- Row 1 - Nasal region; Row 2 - Foveal Region; and

Row 3- Temporal Region.

Figure 4: Gradient of full image ( Figure - 3 Column 1, Row 1) with background noise and layer-like structures in red (a), and
thresholded gradient of preprocessed (Figure 3 - Column 4, Row 1) image TG with ROI only (b).

T. Each boundary curve C,, is therefore represented
by a collection of C(x,y) on the image.

2.3 Segmentation of OCT

Next, each initial boundary curve Cp is evolved de-
pending on a speed field F based on the following
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differential equation (Shi and Karl, 2005) :

dc, -
&b _FN 2
7 2

Where N is the normal of the curve pointing out-
ward. The speed field F' is made of an external speed
derived from the image data and a characteristic speed



(a)

based on C,. We associate F and the ensuing evolu-
tion with a gradient descent solution to solve the min-
imisation problem based on a Mumford-shah model
evolution perspective (Tsai et al., 2001). This means
the curve Cp, will evolve until it gets to a local minima
Cpmin of the energy, i.e. static point of the dynamic
equation (2). Adapting from (Shi and Karl, 2005), we
represent a layer boundary uniquely through two lists
of inside L;, and outside L,,, points of Cp. Which are
defined as:

Louw = {2/0(x) > 0 and 3y € N(x) : §(y) < 0}
Lin = {x|0(x) < 0 and Iy € N(x): 0(y) > 0}

where N(x) is a distinct neighbourhood of x, in the
level set function ¢ at pixel x. Based on this definition,
a positive force switches a point from L;, to L, and a
negative force switches a point from L, to L;,. Each
point (x,y) in level set function is defined in relation
to the curve C,, as follows (Shi and Karl, 2005):

3, if x,y is outside Cp, and X,y & Ly
q) — la %f)@y 6 %‘l)uf‘; - (3)
—3, ifx,yisinside Cp and x,y & L;,;

5 ifx7y€Lin-

Based on the definition of ¢ in equation (3), it
is undemanding to recognise the location of a point
(x,y) on the image in relation to Cp. In our formu-
lation, we use a 2D list to represent initial bound-
ary points, and to save the positions of final bound-
ary points for straightforward mapping in generating
the final image output. Alternatively, a 1-D list can
be used to save the boundaries point at position 0, as
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(b)

Figure 5: Edges before refinement (a), and refined edges used for contour initialisation (b).

suggested in (Liu et al., 2018). A boundary position
(x,y) of ¢, can either expand or shrink based on:

Expand(x,y): Cp(x,y) :=Cp(x,y)+1
“)

Shrink(x,y) : Cb(xvy) = Cb(xay) -1

The evolution of each point is influenced by the
image forces computed by a fast gradient vector
field(Wang and Boyer, 2012) and the topology con-
straints to be described in the next subsection 2.4.

2.4 Topology Constrains

As highlighted earlier in subsection 2.1 the ordering
of the layers must be preserved. Taking into account
the architecture of the OCT image, boundary Cp; is
always below Cp for any given boundary points Cp;
and Cpp, i.e. a point (x,y) on the curve will neither
Shrink nor Expand if it makes Cp;(x,y) < Cpa(x,y).
Hence, with our appropriate initialisation, we enforce
the topology requirement by carrying out this simple
topology validation before either shrinking or expand-
ing a boundary. Finally, we employ an intuitive ap-
proach to ensure this topology is preserved, by addi-
tionally refining the topology constraint in the vertical
direction:

1. Because each layer boundary spans the image hor-
izontally (one boundary point per column) we add
a condition for evolving a boundary point Cp(x, y)
to a new boundary point Cpyy, (x,y). We restrict
Expand(x,y) if its neighbour points are u con-
secutive points above it; do not Shrink(x,y) if its
neighbour points are u consecutive points below
it;
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2. Looking at the sample of initial layer boundaries
in figure 5, a boundary point Cp(x,y) is limited
to a maximum of v operations (either Expand or
Shrink) consecutively in the vertical direction).

The parameters u and v are two prior constants, in
our experiments u and v are set to 3 and 20 respec-
tively. The parameter u aids with boundary smooth-
ness and avoiding peaks for Expand(x,y) or valleys
for Shrink(x,y) on the boundaries, while v further en-
sures the layered architecture is preserved. Addition-
ally, this is why our layer initialisation is ideal be-
cause the starting points are based on the individual
image. The topology constraints facilitate the evolu-
tion because the validation is performed before ex-
panding or shrinking a boundary. Perhaps, this might
not be ideal for abnormal structures. However, con-
sidering the ordering of the layers where C,2 will al-
ways be below Cp 1 the layers will move together even
in the case of abnormal retinal structure. The pseudo-
code of our algorithm is illustrated in Algorithm 1.

3 RESULTS AND DISCUSSIONS

We applied our method to 200 macula OCT images.
The original size of each image is 512 by 992 pixels,
with a resolution of 16 bits per pixel. We crop the
image in the pre-processing stage to improve the re-
sults of our method. Comparison to the ground truth
labelling is carried out on full image size. In our ex-
periments N(x) = 8 neighbourhood, mainly, because
only the layers are remaining in the cropped image
and the effect of inhomogeneity is reduced. Experi-
mental results show that our method successfully seg-
ments seven (7) layers of the retina. Samples of the
method output are shown in figure 6.

Table 1 shows the mean and standard deviation
for the performance of the method compared to the
labelling of manual graders. The values show the
promising performance of our method in converging
at curves Cppin very close to the actual layer bound-
aries. Notably, the RNL thickness is used for diag-
nosing major eye diseases such as glaucoma, and the
mean (0.951) and standard deviation (£0.022) of dice
coefficient for this layer is reassuring.

Moreover, it can be deduced that our method is
consistent in identifying the layer boundaries from
the distribution of the values in figure 7. Consider-
ing the second quarterlies of the NFL, IS and RPE
begin at > 0.900 further attests to the optimum per-
formance of our method, except for few instances in
the GCL+IPL+INL and OPL layers, where the dice
score is below 0.800. However, in few instances the
method could not properly identify the GCL-INL and
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Figure 6: From top to Bottom: Sample results from Nasal,
Foveal and Temporal regions respectively.

Table 1: Performance evaluation: Mean and Standard Devi-
ation (STDEV) of Dice Coefficient on 200 B-Scan images
(Units in pixels).

Retinal Layer Mean STDEV
NFL 0.951 +0.022
GCL+IPL+INL 0.879 + 0.031
OPL 0.892 + 0.032
ONL 0.907 + 0.030
IS 0.932 +0.017
oS 0.920 +0.028
RPE 0.934 + 0.021

the OPL due to some of the small components not
been removed. The method avoids over and under
segmentation, due to our layer initialisation and topo-
logical constraint, which prevents merging or splitting
of boundaries. On the other hand, the method will
come in short when compared to studies targeting the
choroidal region, which is believed to provide details
on some of the visual impairments (Sun et al., 2016).
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Algorithm 1: Boundary Evolution.

1: Initialise Boundaries
: loop:

[\

. if evolution will not make Cp; (x,y) < Cpa(x,y) then

%% Shrink Boundary

if C(x,y) has not moved v consecutive points in the vertical direction then

if force at point is negative then

3
4
5: if neighbours of Cj(x,y) # consecutive u points below it then
6
7
8

: Shrink(x,y)
9: %% Expand Boundaries.

10: if neighbours of Cj(x,y) # consecutive u points above it then

11: if Cp(x,y) has not moved v consecutive points in the vertical direction then
12: if force at point is positive then

13: Expand(x,y)

14: %% Cp(x,y) are at relative local minima.
15: if no changes made to all Cy(x,y) then
16: break
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Figure 7: Box plot of mean Dice Coefficient distribution for the seven (7) layers.

4 CONCLUSIONS

We have presented an automatic level set method
for retinal OCT segmentation. The proposed work
separates retinal OCT images into seven (7) non-
overlapping layers. Our approach has explored image
segmentation using level set from the point of initial-
isation, and the constraining of curve evolution based
on retinal layer topology explicitly. Refined edges
of gradients images are used to initialise the curves.
Image forces constrained by the topological architec-
ture of the OCT are used to guide the evolution of
the curve to its minimum layer boundaries. These
two components ensure the boundaries obtained by
the method are close to the actual features of interest.
The proposed method takes advantage of handling the
obstruction of image background noise in the pre-
processing stage, consequently making the segmen-

tation process to suffer less from the image artefacts.
Additionally, refinement of the gradient edge infor-
mation ensures only the targeted layers are initialised
at the beginning of the evolution process. Experimen-
tal results show that the proposed approach success-
fully segmented the target layers from OCT images,
and the segmentation results are close to the manu-
ally labelled ground-truth.Future work will seek to in-
clude the GCL to IPL and choroid regions in the ROI,
which has to do with implicitly assigning the param-
eters 7" and P based on the image as opposed to con-
stants used in our approach.
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