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Abstract: This study proposes a new stochastic spinning reserve estimation model applicable to multi-connected energy 

systems with reserve rescheduling algorithm based on Bayesian Networks. The general structure of the model 

is developed based on the probabilistic reserve estimation model that considers random generator outages as 

well as load and renewable energy forecast errors. The novelty of the present work concerns the additional 

Bayesian layer which is linked to the general model. It conducts reserve rescheduling based on the actual net 

demand realization and other reserve requirements. The results show that the proposed model improves 

estimation of reserve requirements by reducing the total cost of the system associated with reserve schedule. 

1 INTRODUCTION 

Reduction of the greenhouse gas emissions is 

considered as one of the main issues faced by modern 

society. Global warming and deteriorating ecological 

situation on the planet require drastic changes to the 

energy production technologies. Undoubtedly, 

renewable energy and smart grid technologies have 

crucial impacts in this transformation. During the last 

decade, the total installed capacity of renewable 

energy in the world has increased from 1.058 TW to 

2.012 TW (Whiteman et al., 2017). It is expected that 

the overall share of renewable energy will reach 40% 

by 2040 (IEA, 2017). Nevertheless, to successfully 

reach the renewable energy targets, many challenging 

tasks need to be overcome in the near future. Because 

of highly stochastic nature of renewable power, 

accommodating large amounts of renewable 

generation requires to have flexible grid from the 

technical and operational perspectives.  

Smooth integration of renewable energy 

sources into the market and grid infrastructure will 

require reconsideration of conventional operating 

practices. Especially, significant attention should be 

paid to the operational reliability of power systems. 

Currently, there are two major reliability assessment 

approaches prevailing in the electric power industry, 

namely deterministic and probabilistic. Under 

deterministic approach the reliability criteria are set 

such that the grid system would be capable of 

withstanding the loss of a single unit (N-1), or even 

simultaneous loss of several power generating units 

(N-k). The power system reliability evaluation based 

on pure deterministic approach does not consider 

stochastic processes occurring in the grid; however, 

most of the present-day reliability criteria are based 

on deterministic techniques. One of the reasons for 

the widespread of deterministic reliability evaluation 

methods is their relative simplicity and the lower 

requirements applied to its input data (Billinton and 

Allan, 1996). On contrary, reliability assessment 

based on probabilistic techniques are more 

sophisticated and require detailed information about 

system characteristics such as generator outage rates, 

load and renewable forecast errors, etc. The 

advantage of probabilistic methods, as compared with 

deterministic ones, is the ability to capture system 

uncertainties and evaluate the magnitudes and effects 

of these uncertainties on the operation of power 

systems (Morales et al., 2014). Consequently, in 

probabilistic reliability assessment methods, the 

events are treated based on the likelihood of their 

occurrence and the degree of their severity (Grigsby, 

2013). 
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The interest in utilization of the power system 

reliability assessment using probabilistic methods has 

been increasing with the growth of stochastic power 

generation. Various reserve estimation 

methodologies considering stochastic generation 

have been proposed in the last few years. 

Consideration of stochastic events in most of these 

methodologies is conducted in two distinct ways: one 

way requires imposing an upper limit to reliability 

metrics determining the loss of load or loss of energy 

expectation; another way includes an economic 

penalty into the objective function. Conventional 

probabilistic reliability assessment methods are 

generally based on analytical or Monte-Carlo (MC) 

techniques. Application of Bayesian network theory 

in probabilistic reliability assessment has its 

advantages over conventional analytical or MC-based 

probabilistic methods. Particularly, Bayesian 

Networks (BNs) aim to model conditional 

dependence of system components and states, which 

in turn allows making inference on the events of the 

interest (Zarikas and Tursynbek, 2017). The BN-

based power system reliability assessment models 

provide powerful and mathematically sound 

framework to analyse complex and stochastic 

domains making them an effective decision-making 

tool for the grid system operators. 

Although, the implementation of BNs in power 

system analysis is relatively new approach, several 

valuable works have been published during the last 

decades.  In one of the earliest studies on BN-based 

power system reliability assessment (Yu et al., 1999), 

the authors proposed the BN model for reliability 

assessment of multi-area power systems. In this 

study, the BN representation of a grid system is 

conducted via system components, such as, power 

generating capacity, tie-line capacity, interconnected 

capacity etc. The information provided by the system 

components is used to determine the system state 

variable – Loss of Load (LOL). Here, LOL serves as 

a binary variable identifying the states when demand 

exceeds available power. The overall reliability of a 

power system is evaluated in terms of the Loss of 

Load Probability (LOLP). The methodology was 

applied to the Three-Area IEEE Reliability Test 

System (RTS). The reported LOLP results show close 

proximity with the analytical method. Somewhat 

similar approach presented in the study by (Limin et 

al., 2002). The study constructs the BN of a grid 

system in two steps. First, the fault tree graph is 

created for each node using bucket elimination 

(Dechter, 1996). During the second step, the minimal 

path set is determined by using the graph search 

technique. The study by (Yongli et al, 2006) proposes 

an approximate inference algorithm on BN for 

reliability assessment of power systems by time-

sequence simulation. The system components are 

modeled using two-state Markov model. The 

methodology constructs the fault tree graph and 

corresponding BN for a system of interest using the 

bucket elimination method. In the study by (Ebrahimi 

and Daemi, 2009) the authors present a novel BN-

based grid system reliability assessment method. The 

methodology uses the MC-based data sampling 

technique to generate training data. The training data 

is used to construct BN representing the power 

system of interest. The methodology assesses the 

reliability level of a system in terms of LOLP. The 

methodology has been tested on the IEEE RTS. The 

reported LOLP results are very close to those 

obtained using conventional probabilistic techniques. 

The main contribution of this paper is to present a 

hybrid method for estimation of optimal amount of 

spinning reserves in multi-connected power systems 

using traditional probabilistic cost-benefit analysis in 

conjunction with the BN-based reserve rescheduling 

algorithm. 

2 METHODOLOGY 

The proposed methodology is carried out in three 

phases. The flowchart of the proposed methodology 

is presented in figure 1. 

 

Figure 1: Flowchart of proposed model. 

During the first phase, the reliability of the power 

system of interest is evaluated neglecting its 

interconnection with neighbouring systems. At the 
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second phase, the Capacity Outage Probability Tables 

(COPT) of the assisting power systems are obtained 

using recursive algorithm and incorporated into 

COPT of the assisted system. The reliability 

evaluation is performed in terms of the Expected 

Energy Not Supplied (EENS), which serves as a 

metric for potential shortfall in supply of electricity to 

consumers. As a result, the required amount of 

spinning reserves is calculated based on the level of 

reliability of the system and the capacity that is 

available at a given time-period. At the final phase, 

the BN-based algorithm is used to adjust the reserve 

schedules based on the intra-hour actual data. The 

detailed description of calculations conducted during 

the first, second and third phases are described below. 

2.1 Phase I 

2.1.1 Net Demand Model 

The proposed methodology considers renewable 

power as negative load, and the net demand is defined 

as the difference between load and renewable power 

generation given by: 

t t tD L R   (1) 

where Dt is the net demand at period t, Lt and Rt are 

the actual load and renewable energy production at 

time period t. The forecast uncertainty is taken into 

consideration by implementation of parametric 

assumptions. Namely, the forecast error distribution 

at time period t is given by: 

~ ( ; )t

tY F y   (2) 

where Yt is the forecast error at time period t, F is the 

distribution function of forecast error, y and 𝜃t is the 

set of parameters characterizing F (Morales et al., 

2014). 

It should be noted that throughout this paper the 

superscript t denotes the time periods and subscripts 

i, j, l and k denote the power generating units, 

interconnected reserve units, power transmission 

lines and energy system areas respectively.   

In this study, we assume that the load and 

renewable forecast errors follow Normal distribution 

with zero mean and the standard deviation given by 

the following formulas (Ortega-Vazquez and 

Kirschen, 2009): 

Standard deviation of load forecast error: 

100

t tk
L FL   (3) 

where 𝜎𝐿
𝑡 is the standard deviation of the load forecast 

error distribution, k is a function depending on the 

accuracy of the forecasting software and   the 

forecasted load at time period t.  

Standard deviation of renewable forecast error: 

1 1
5 50

t t

R F IR R    (4) 

where 𝜎𝑅
𝑡  is the standard deviation of renewable 

power forecast error distribution at time period t, 𝑅𝐹
𝑡  

is the forecasted renewable power at period t and 𝑅𝐼 
is the total installed capacity of renewable power. The 

former term stays constant throughout the simulation 

horizon. 

 

Figure 2: Seven-interval approximation of normal 

distribution. 

Discretization of load and renewable forecast 

uncertainty can be done using seven-interval 

approximation technique described in (Billinton and 

Allan, 1996). Discretization is performed by dividing 

the probability distribution of an error into an odd 

number of equal intervals (Figure 2). These intervals 

are considered as scenarios with individual 

probabilities corresponding to the mid-point of each 

interval. The lack of correlation between these errors 

allows to calculate the net demand forecast error by 

summation of the load and renewable forecast errors. 

2.1.2 Generation System Model 

The random outages of conventional units are 

considered in the same fashion as it was done in 

(Bapin et al., 2018). A random unavailability of 

generating capacity can be modelled by representing 

it as a Markov process. The availability and 

unavailability of each generating unit in this case are 

given by (5) and (6) (Billinton and Allan, 1996): 

( )

( ) ( )

t

i

up time
A

down time up time





 

 (5) 

 

1t t

i iU A   (6) 

where 𝐴𝑖
𝑡 and 𝑈𝑖

𝑡 represent availability and 

unavailability of unit i at time period t. Equations (5) 
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and (6) represent the probability of finding the unit 

either available or on forced outage at a given period 

and can be used to create the Capacity Outage 

Probability Table (COPT). Creation of COPT is 

carried out using the recursive algorithm described in 

(Billinton and Allan, 1996) and includes information 

on available capacity and corresponding probabilities 

for each system state. It should be noted that 

throughout this paper the units’ capacity and power 

production are denoted by capital P, whereas 

lowercase p denotes probability. 

The Expected Energy Not Supplied (EENS) due 

to a random capacity outage m at time period t is 

given by (Billinton and Allan, 1996): 

1

,

1 1

[( ) ]
M S I

t t t

s mm

m i

i s

s

EENS D P q q
  

 
   

 
    (7) 

where s is an index representing the net demand 

scenario, 𝑃𝑖,𝑚
𝑡  is the available power when generation 

system is at state m during time period t, qs and qm are 

the probability of scenario of the net demand and 

generating system availability respectively. Finally, I, 

M and S are the total number of generating units, 

generation system states and net demand scenarios 

respectively. It is worth noting that, although variable 

𝐸𝐸𝑁𝑆𝑚
𝑡  highly depends on the level of capacity 

forced out of service, the probability of this outage 

may have even stronger impact on the loss of energy 

expectation. For instance, a simultaneous failure of 

two or more units may cause significant disruption of 

electricity supply. However, the probability of this 

event is very low, thus the overall loss of energy 

expectation would be lower as compared to the single 

unit outage event. 

2.2 Phase II 

2.2.1 Interconnected Capacity 

It is very common for an electric grid to have 

interconnection with neighbouring systems, as most 

of the time grid interconnections improve reliability 

of the system and reduce its needs in reserve capacity 

(Watchorn, 1950). The cross-border electricity 

trading between interconnected systems is often done 

based on the contractual agreements, where the 

system operators define trading time, limits, ramp 

rates etc. To account for interconnected capacity, the 

proposed model utilizes the equivalent assisting unit 

method as described in (Billinton and Allan, 1996). 

The maximum assistance level provided by 

interconnected system at time period t is given by the 

minimum of available interconnected capacity and 

tie-line capacity (Allan et al., 1986): 

max , max

, , , ,

1

min ( ),
J L

t inst t t

k j k j k j k l k

j l

IR IR IR e IR r B


  
   

  
   (8) 

Where 𝐼𝑅𝑗,𝑘
𝑖𝑛𝑠𝑡 is the installed capacity of 

interconnected unit j located in the assisting system k, 

𝐼𝑅𝑒𝑗,𝑘
𝑡  is the capacity committed for energy 

generation of interconnected unit j located at assisting 

system k during time period t, 𝐼𝑅𝑟𝑗,𝑘
𝑡   is the capacity 

of interconnected unit j committed for provision of 

spinning reserve at assisting system k during time 

period t and 𝐵𝑙
𝑚𝑎𝑥 is the maximum transmission 

capacity of transmission line l. Finally, J and L are the 

total number of interconnected reserve units and 

transmission lines respectively. The maximum 

capacity assistance level can be utilized to create a 

capacity model in the same way as it was described in 

the previous subsection. The resulting COPT is 

regarded as an equivalent multi-stage generator, 

which can be integrated in the existing capacity 

model of an assisted system. During this phase, the 

capacity assistance states are determined individually 

for all assisting systems and added to the COPT of the 

system of interest. It should be noted that in this paper 

we assume that the interconnected capacity can only 

participate in ancillary service market, thus it can only 

provide up-spinning reserve service. 

2.2.2 Stochastic Security Constrained Unit 

Commitment 

Objective Function.  

In this study, the unit commitment problem is 

expressed as a two-stage stochastic MILP. The first 

stage involves conventional unit commitment with 

stochastic reliability criteria to find the most optimal 

energy production schedule. This stage is performed 

for the base case scenario. The base case implies no 

unit outage and results in the most economically 

efficient unit commitment. The first-stage 

optimization objective is to minimize the total cost of 

system operation, where the total system operation 

cost is given by: 
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1 1

1

, ,

1 1 1

( )

( )

T I
t t t

total i i i i

t i

I
t t t t

i i i i

i

K J M
t t t

j k j k m

k j m

up up dw dw

C C P u CS

C R C R

CIR IR SC

 


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
 



 


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

 



 

 (9) 

where 𝐶𝑖 is the cost of power of generating unit i, 𝑃𝑖
𝑡 

is the power produced by unit i during time period t, 

𝑢𝑖
𝑡 is the binary indicator of the status of generating 

unit i at time period t (0 – not operating, 1 – 

operating), 𝐶𝑆𝑖
𝑡 is the start-up cost of unit i during 

time period t, 𝐶𝑢𝑝𝑖
𝑡 is the cost of power of unit i, 

during time period t for providing the up-spinning 

reserve, 𝑅𝑢𝑝𝑖
𝑡 is the up-spinning reserve service 

provided by unit i during time period t, 𝐶𝑑𝑤𝑖
𝑡 is the 

cost of power of unit i, during time period t for 

providing the down-spinning reserve, 𝑅𝑑𝑤𝑖
𝑡  is the 

down-spinning reserve service provided by unit i 

during time period t, 𝐶𝐼𝑅𝑗,𝑘
𝑡  is the cost of power 

provided by interconnected unit j, located at energy 

system k, during time period t, 𝐼𝑅𝑗,𝑘
𝑡  is the amount of 

reserve provided by the interconnected unit j, located 

at energy system k, during time period t. 𝑆𝐶𝑚
𝑡  is 

related to the second-stage decisions and is given by: 



,

1 1

, , ,

1 1

M I
t t t

m i i m

m i

J K
t t

j k j m k

j k

t

m

SC q C R

CIR IR

VOLL CE

 

 


 





 

 

  
(10) 

where 𝐶𝑖
𝑡 is the cost of providing the spinning reserve 

by intra-zonal unit i during time period t, 𝑅𝑖,𝑚
𝑡  is the 

reserve service provided by intra-zonal unit i, at 

system state m, during time period t, 𝐼𝑅𝑗,𝑚,𝑘
𝑡  is the 

amount of reserve provided by the interconnected unit 

j, located at energy system k, at system state m, during 

time period t. VOLL represents the value of lost load 

– the financial loss of consumers due to interruption 

in electricity supply, 𝐶𝐸𝑚
𝑡  is the amount of curtailed 

energy when generation system is in state m, during 

time period t. The objective of the second-stage is to 

find the most optimal reserve schedule by comparing 

different scenarios. 

 

First-Stage Constraints. 

The objective function (9) must be minimized subject 

to the set of constraints specified below. Note that to 

reduce the computational burden and simplify the 

model, the transmission line constraints are neglected 

in this study. The equality between supply and 

demand of electric power is specified by the power 

balance constraint, which for all time instances is 

given by: 

1

, ,

1 1

( )
I

t t t t t t t

i i i i i i

i

К J
t t

j k j k

к j

up dwD P u R u R u

IR u



 

  






 (11) 

In addition to equation (11) the conventional units are 

subject to their operating constraints, such as 

minimum up and down time, ramping and capacity 

limits. 

 

Second-Stage Constraints. 

The second-stage constraints specifying all capacity 

outage states is presented below. For all time periods 

and scenarios, the power balance equation is given 

by: 

, ,

1

, , ,

1 1 1

( )

( )

I
t t t

m i i m i m

i
K J S

t t t

j k m s s m

k j s

up dwq P R R

IR D CE



  

 

  



 
 (12) 

Under this formulation of probabilistic reliability 

criteria, the optimal spinning reserve requirement is 

determined by counterweighting costs required to 

operate the reserves with socioeconomic costs of 

possible load curtailment. Reduction of spinning 

reserves will negatively affect reliability of a system, 

yet this reduction will be justified if the probability of 

capacity outage is insignificant, or the social value of 

curtailed load is very low. 

2.3 Phase III 

During recent years, rapid rise in computational 

efficiency triggered the introduction of complex 

machine learning algorithms into many different 

areas. The scope of application of these algorithms 

ranges from intellectual games, such as chess (David 

et al., 2014) or go (van den Werf et al., 2003), medical 

research (Eleftheriadou et al., 2009), (Deltsidou et al., 

2017), (Zarikas et al., 2015) to the power system 

operation (Calabria et al., 2015) and (Steels and 

Hanappe, 2008). 

Aside from other machine learning algorithms, 

BN-based algorithms have gained wide popularity 

among power system and electrical engineers. 

According to (Craciun et al., 2017) the application of 
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BNs by the power system engineering researchers 

include, but not limited to load forecasting, power 

system reliability assessment and stability analysis, 

electrical networks fault analysis and power system 

state estimation.  

Generally speaking, BN is a probabilistic 

graphical model representing variables, their mutual 

dependencies and associated probabilities (Zarikas, 

2007). BN models are usually expressed in terms of 

causal directed acrylic graphs (Jensen and Nielsen, 

2011), where each variable has one or several directed 

links with other variables. The objective of BN 

models is to determine posterior conditional 

probability distribution of an event in question based 

on new evidence (Pearl, 2005). Equation (13) 

represents the Bayes’ rule serving as the foundation 

for BNs. 

( | ) ( )
( | )

( )

p B A p A
p A B

p B
  (13) 

In this study, we propose a BN-based reserve 

rescheduling algorithm. The main purpose of this 

algorithm is to adjust the spinning reserve schedule 

that was calculated during the first and second phases 

of this methodology. The algorithm adjusts the 

reserve requirement of the next closest time period 

(t+1) based on the evidence received from the past 

closest time period (t-1). Other parameters considered 

by the algorithm during the adjustment procedure are 

hour type (peak, non-peak) and day type (weekday, 

weekend, holiday). The node specific properties, such 

as, conditional probabilities or reserve 

increase/decrease levels were set based on existing 

practice, nevertheless, these properties can be easily 

adjusted according to the user-specific preferences.   

 

Figure 3: Part of the Influence Diagram of Proposed 

Algorithm.  

The algorithm was implemented in BayesiaLab 7 

(Bayesia S.A.A., 2018). Figure 3 shows a simplistic 

view of the decision influence diagram of the 

proposed algorithm. The implemented BN consists of 

2 such graphs each of every hour of one day. 

The diagram consists of probabilistic, utility and 

decision nodes each represented by elliptical, 

hexagonal and rectangular-shaped figures 

respectively. The detailed description of nodes is 

provided below. 

Probabilistic Nodes. 

The probabilistic nodes denote variables specified 

below: 

Peaking Hour – denotes the variable containing 

information about hour type and affects RS 

Smoothening and Utility nodes. Usually, during peak-

hours energy systems pass through tremendous stress, 

so the risk of electricity supply interruption is very 

high. One way of reducing the level of this risk is to 

increase the level of spinning reserve capacity.    In 

this model, the spinning reserve schedule adjustment 

is set, such that, the reserve requirement is increased 

by 10% for peaking time. The off-peak hours do not 

affect previously calculated reserve schedule.   

Day Significance – denotes the variable 

containing information about day types and their 

influence on spinning reserve schedule. In the 

proposed algorithm, three day types were considered, 

these are: weekdays, weekends and holidays. 

Weekends do not have any effect on reserve schedule, 

whereas weekends and holidays increase the reserve 

requirement by 10% and 20% respectively. 

Actual Demand – denotes the variable containing 

information about the level of net demand forecast 

error and its influence on spinning reserve schedule. 

This node signals to adjust initial reserve schedule if 

the difference between the forecasted and actual net 

demand values exceed some predefined threshold. It 

should be reasonable to set this threshold equal to the 

expected value or the standard deviation of load/net 

demand forecast error. According to (Allan et al., 

1986) it is suggested to model the load forecast 

uncertainty associated with IEEE RTS using normal 

distribution with a standard deviation equal to 5%. 

However, since the proposed model considers not 

only load, but also renewable forecast uncertainty the 

average threshold was set to be equal to 10% of 

forecasted value. The prior probabilities for this node 

do not have big importance. For completeness we 

note that there are five states in this node and the 

priors are P(same actual demand with forecast 

demand reserve power)=P(small positive difference 

between forecast and actual value)= P(small negative 

difference between forecast and actual value)=0.25. 

 

Probabilistic Method for Estimation of Spinning Reserves in Multi-connected Power Systems with Bayesian Network-based Rescheduling
Algorithm

845



 

“Small” means within the 10% variance as we have 

explained. The other priors P(big positive difference 

between forecast and actual value)=P(big negative 

difference between forecast and actual value)=0.125. 

“Big” means above 10% difference. 

The important thing for this node is to determine 

how evidences are updated. The following 

description of this subsection is devoted to this issue; 

what are the conditional probabilities for updating the 

node. 

Mathematically, the spinning reserve adjustment 

given the actual net demand of the previous hour is 

expressed as follows. 

Increase by 10%: 

1 1

1 1 1

( | )

0. (

,

) 10%

0.2,

8,

t t t

U U A F

t t t

A F F

D

D D

other

p
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R D

D

 

     
 
 



 

 
(14) 

where 𝑅𝑈𝑈
𝑡  is the 10% increase in reserve requirement 

for time period t, 𝐷𝐴
𝑡−1 and 𝐷𝐹

𝑡−1 are the actual and 

forecasted values of net demand of time period t-1. 

Increase by 5%: 

1 1

1 1 1 1
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



 
(15) 

where 𝑅𝑈
𝑡  is the 5% increase in reserve requirement 

for time period t. 

Decrease by 10%: 

1 1

1 1 1

( | )
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t t t

D D A F
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(16) 

 

where 𝑅𝐷𝐷
𝑡  is the 10% decrease in reserve 

requirement for time period t. 
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where 𝑅𝐷
𝑡  is the 5% decrease in reserve requirement 

for time period t. 

For all other cases, the probability of adjustment 

the reserve requirements equal to 0. 

The conditional dependencies stated above are 

expanded by the example presented in table 1. 

Table 1: Calculation of spinning reserve adjustment level 

given actual net demand value.  

Variable 

Observed/ 

forecasted 

value, MW 

Difference/ 

adjustment, 

MW 

Difference/ 

adjustment, 

% 

𝐷𝐴
𝑡−1 1 467 

129 10.47 
𝐷𝐹
𝑡−1 1 328 

𝑅𝐹
𝑡  268 

27 10 
𝑅𝐴𝑑𝑗
𝑡  295 

The difference between the actual and forecasted 

net demand, in this example, is greater than 10% of 

forecasted net demand, therefore, the equation (14) 

must be used in further calculation. According to 

equation (14), for this particular case, the algorithm 

would assign the probability of increasing previously 

calculated spinning reserve by 295 MW equal to 0.8. 

Note that the adjustment procedure is not finished at 

this point, the final decision on the adjustment level 

would be made by the Decision Node.  

Reserve Schedule (RS) Smoothening – denotes the 

variable containing information about spinning 

reserve requirements forecasted for previous (t-1), 

intra (t) and the next adjacent (t+1) time periods. As 

the name suggests, the main objective of this node is 

to smoothen the reserve schedule by increasing 

(positive smoothening) or decreasing (negative 

smoothening) reserve requirement for time period t 

based on the difference between forecasted reserve 

values of t-1 and t+1 time periods.  

Mathematically the setting of new evidences for 

the smoothening procedure concerns the definition of 

the conditional probabilities. Thus, the update of of 

this node is as follows. 

Positive 5% smoothening: 
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Negative 5% smoothening: 
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(19) 

Thus, in this study, the probability of applying or 

not applying the smoothening given the forecasted 

values of spinning reserves for t-1, t and t+1 time 

periods is set to 0.8 and 0.2 respectively. For all other 

cases, the probability of adjustment the reserve 

requirements equal to 0. 
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Table 2: Calculation of spinning reserve adjustment level 

given forecasted reserve requirements.  

Variable 

Reserve 

requirement, 

MW 

Difference, 

MW 

Difference, 

% 

Assigned 

probability 

𝑅𝐹
𝑡−1 232 36 13,43 - 

𝑅𝐹
𝑡  268 - - - 

𝑅𝐹
𝑡+1 256 8 4,48 - 

𝑅𝐴𝑑𝑗
𝑡     0.2 

The example presented in table 2 demonstrates 

calculation of conditional probability of smoothening 

given forecasted reserve requirements. The first step 

in the smoothening procedure is to evaluate the 

difference between initial reserve requirements 

calculated for time periods t and t-1. The same 

calculation should be conducted for time periods t and 

t+1. In this particular case, 𝑅𝐹
𝑡  greater than 𝑅𝐹

𝑡−1 and 

𝑅𝐹
𝑡+1, thus the equation (18) must be applied. 

According to the equation (18) the probability of 

increasing reserve requirement by 5% would be set to 

be equal to 0.2.    

Utility Node. 

In general, the utility node denotes a value that 

contains information about the decision maker’s 

goals and objectives. Usually, these types of nodes 

express the decision maker’s preferences over the 

outcomes over their direct predecessors.  

In the proposed algorithm, the utility node 

contains information about all possible combination 

of relevant states of the parents, given the information 

provided by probabilistic nodes. The decision 

whether to adjust initial reserve schedule is made 

based on the weights that are set manually. The 

weights represent the strength of influence that each 

combination has on the final decision. The weights 

range on the scale from 0 to 10 indicating zero and 

maximum influence respectively. To save the paper 

space, only several combinations are presented in the 

table 3. 

Table 3: Utility node conditional dependence table.  

Day Significance Weekend 

Actual Demand Increase by 5% Decrease by 10% 

RS Smoothening Positive 

5% 

Negative 

5% 

Positive 

5% 

Negative 

5% 

Peaking Hour P NP P NP P NP P NP 

Value 9 7 2 4 5 4 4 7 

Decision Node. 

The decision node denotes a variable that is under 

decision maker’s control and is used to model 

decision maker’s options. 

The objective of this algorithm is to find optimal 

spinning reserve adjustment actions based on the set 

of parameters described above. The set of decisions 

available to the decision maker through this algorithm 

is stated below: 

1. Keep initially calculated reserve requirement; 

2. Increase reserve requirement by 5%; 

3. Increase reserve requirement by 10%; 

4. Decrease reserve requirement by 5%; 

5. Decrease reserve requirement by 10%. 

3 CASE STUDY 

This section presents a case study which was 

conducted by applying the model on the distribution 

system of Pavlodar, Kazakhstan. The main objective 

of the case study is to analyze the performance of the 

proposed BN-based rescheduling algorithm by 

comparing it to the conventional probabilistic reserve 

estimation model based on the cost-benefit analysis. 

The overall performance of the model is evaluated in 

terms of the total cost of reserve schedules given by 

the following equation: 

t t t

totalCR CR SE   (20) 

Figure 4 represents the costs of the test system 

presented in this case study calculated for one 

particular day using equation (20). 

The analysis was conducted for a 24-hour 

operating horizon on 20 different days almost equally 

representing weekdays, weekends and holidays. The 

Value of Lost Load (VOLL) was set to 2 000 $/MWh. 

The I and II Phase simulations were performed 

in MATLAB R2017a. The MILP optimization was 

done in IBM ILOG CPLEX Optimization Studio 

12.7.1 using YALMIP. The computational efficiency 

of the model is achieved by considering the system 

state probabilities above 105. The III Phase 

calculations were conducted in BayesiaLab software. 

 

Figure 4: Total costs of reserve schedule calculated for the 

test system. 
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Table 4 represents the results obtained by the 

models. In this table CP represents conventional 

probabilistic model, whereas P represents the 

proposed model. 

Table 4: Simulation results.  

Day CP P Day CP P 

1 256 254 11 269 266 

2 268 266 12 265 265 

3 262 261 13 244 246 

4 254 251 14 252 248 

5 265 266 15 261 261 

6 250 250 16 240 242 

7 269 264 17 249 249 

8 246 246 18 267 264 

9 256 255 19 245 244 

10 262 262 20 259 254 

According to the simulation results, the 

proposed algorithm outperformed the conventional 

probabilistic reserve estimation model. The 

adjustments made by the proposed model resulted in 

11 reserve schedules that were on average 1.05% 

cheaper than that of conventional probabilistic model. 

It’s worth noting that out of 20 simulations 6 (30%) 

produced totally similar results. This can be explained 

by the fact that there are relatively fair number of 

scenarios that end up in unchanged reserve schedule. 

4 CONCLUSION 

A probabilistic model to estimate the spinning 

reserves in multi-connected systems with a BN-based 

spinning reserve rescheduling algorithm was 

discussed. The model accounts for random outages of 

conventional units as well as load and renewable 

forecast errors. Random unavailability of generating 

capacity was modeled through a two-state Markov 

process. The load and renewable forecast errors were 

modeled assuming that they are normally distributed. 

The model considers the interconnected capacity of 

multiple energy systems through utilization of the 

equivalent assisting multi-state unit approach. The 

two-stage unit commitment problem was formulated 

such that the mixed integer linear program could be 

applied to conduct the optimization. Furthermore, to 

minimize the total cost associated with spinning 

reserve schedule the BN-based reserve rescheduling 

algorithm was implemented. The algorithm takes into 

account actual net demand, forecasted reserve 

requirement of previous and next hours as well as the 

day and hour types. The objective of the algorithm is 

to perform reserve rescheduling if significant 

deviations in actual versus predicted net demand have 

occurred or there is a big difference between reserve 

requirements of adjacent hours.      

The proposed model was evaluated on the energy 

system of Pavlodar, Kazakhstan. The goal of the case 

study was to estimate the performance of the 

proposed model by comparing it to the conventional 

probabilistic reserve estimation model that is based 

on the cost-benefit analysis. The test was conducted 

for 20 different days almost equally representing 

three groups (weekdays, weekends and holidays). 

The results show that 11 (55%) out of 20 simulations 

resulted in reserve schedules that were on average 

1.05% cheaper compared to those obtained by 

conventional probabilistic reserve estimation model. 
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