On-the-Fly Construction of Composite Events in Scenario-Based
Modeling using Constraint Solvers

Guy Katz¹, Assaf Marron², Aviran Sadon³ and Gera Weiss³

¹The Hebrew University of Jerusalem, Jerusalem, Israel
²Weizmann Institute of Science, Rehovot, Israel
³Ben-Gurion University of the Negev, Be’er Sheva, Israel

Keywords: Scenario-Based Programming, Behavioral Programming, Constraint Solvers, SMT Solvers.

Abstract: Scenario-Based Programming is a methodology for modeling and constructing complex reactive systems from simple, stand-alone building blocks, called scenarios. These scenarios are designed to model different traits of the system, and can be interwoven together and executed to produce cohesive system behavior. Existing execution frameworks for scenario-based programs allow scenarios to specify their view of what the system must, may, or must not do only through very strict interfaces. This limits the methodology’s expressive power and often prevents users from modeling certain complex requirements. Here, we propose to extend Scenario-Based Programming’s execution mechanism to allow scenarios to specify how the system should behave using rich logical constraints. We then leverage modern constraint solvers (such as SAT or SMT solvers) to resolve these constraints at every step of running the system, towards yielding the desired overall system behavior. We provide an implementation of our approach and demonstrate its applicability to various systems that could not be easily modeled in an executable manner by existing Scenario-Based approaches.

1 INTRODUCTION

Modeling complex systems is a difficult and error-prone task. The emerging Scenario-Based Programming (SBP) approach (Damm and Harel, 2001; Harel and Marelly, 2003; Harel et al., 2012b) aims to mitigate this difficulty. The key notion underlying SBP is modeling through the specification of scenarios, each of which represents a certain aspect of the system’s behavior. These scenarios may describe either desirable behaviors that the system should strive to uphold, or undesirable behaviors that the system should try to avoid. The models produced in SBP are fully executable: when composed together according to certain underlying semantics, the scenarios yield cohesive system behavior.

The SBP approach has been implemented in dedicated frameworks such as the Play-Engine and PlayGo for the visual language of Live Sequence Charts (LSC) language (Harel and Marelly, 2003; Harel et al., 2010a) or ScenarioTools (Greenyer et al., 2017) for the Scenario Modeling Language (SML) textual language. Further, SBP has been implemented on top of several standard programming languages, such as Java (Harel et al., 2010b), C++ (Harel and Katz, 2014), and JavaScript (Bar-Sinai et al., 2018), and was amalgamated with the Statecharts visual formalism (Marron et al., 2018)

SBP has been successfully used in modeling complex systems, such as web-servers (Harel and Katz, 2014), cache coherence protocols (Harel et al., 2016), robotic controllers (Gritzner and Greenyer, 2018), and as part of the Wise Computing effort aimed at turning computers into proactive members of system development teams (Harel et al., 2018).

Despite the diversified adaptations of SBP for various programming languages and for various use cases, a common theme remains: in all existing frameworks, scenarios are interwoven using a very basic mechanism. Specifically, during execution the scenarios are synchronized at predetermined points, and at every synchronization point each scenario declares a set of events it would like to see triggered, and a set of events it forbids from being triggered. The execution framework then selects for triggering one event that is requested by at least one scenario and is not blocked by any of the scenarios. The event is broadcast to all scenarios, and the execution continues until the next synchronization point is reached. An example appears in Fig. 1.
In particular, the event selection mechanism is sufficiently simple to make scenario-based models easy to analyze automatically using formal compositional techniques (Harel et al., 2013; Harel et al., 2015c; Harel et al., 2016; Greenyer and Gritzner, 2018), and even to automatically distribute, repair and synthesize them (Harel et al., 2012a; Harel et al., 2015a; Steinberg et al., 2015; Greenyer et al., 2016b; Greenyer et al., 2016a), primarily because it facilitates the automatic composition of individual scenarios that are simple and succinct (Harel et al., 2015b). Still, the simplicity of the event selection mechanism seems to be a limiting factor in some cases — requiring cumbersome workarounds to associate complex behaviors with simple events, and at times even preventing the use of SBP for modeling a particular system altogether.

Consider, as a toy example, a model for an autonomous drone. The model contains various behavioral scenarios for modeling the drone’s horizontal and vertical movement. At every execution cycle of the model, independent actions may be triggered for each of the axes — **climb**, **descend**, or **maintain height** for the vertical axis, and **turn right**, **turn left** or **maintain direction** for the horizontal axis. Further, climb or descend actions are parameterized by a numerical value indicating the angular velocity of the climb or descent; and similarly, turn right or turn left actions are parameterized by the angular velocity of the turn. It is unclear how to express such a model in SBP. For example, because the traditional event selection mechanisms stipulates that precisely one action be triggered in every cycle, how shall we express the fact that multiple actions (horizontal and vertical) may be triggered in the same cycle? And how shall we account for the infinitely-many numerical parameters for ascent, decent and turning actions? Some discretization schemes may be proposed, but this seems to go against the grain of SBP — which aims at creating simple and intuitive scenario objects.

In this paper, we propose an extension to SBP that utilizes **constraint solvers**: automated tools that take as input a set of variables and certain kinds of constraints on these variables, and return a variable assignment that satisfies the given constraints (or indicate that no such assignment exists). Automated solvers have become widespread and highly successful in the last decades, particularly in tasks related to program analysis and verification (Clarke et al., 2018). Here, we propose to use such solvers **on-the-fly**, as part of the execution mechanism of scenario-based models. Specifically, we propose to augment SBP such that in each synchronization point, each scenario contributes to the creation of a formula that is fed into the constraint solver — and the assignment (of all variables) which is returned by the solver assumes the role of the event selected for triggering. Further, the very act of selecting simple events from some set is extended into constructing, or computing complex events based on rich specifications. This allows us to specify scenarios that interact using a far richer formalism, and can thus model more complex systems. Compared to existing SBP approaches, this allows for the scenarios to collaboratively construct the events, not only choose among events that each propose.

In particular, using constraint solvers in this fashion allows us to seamlessly model the autonomous drone system: the constraints produced in every synchronization point may include multiple variables indicating multiple actions; and these constraints may include arbitrary numerical values, indicating, e.g., the various angular velocity parameters. We elaborate on this example later on.

In this work we describe how a solver-based SBP modeling framework can be implemented, focusing mainly on the semantics but also propose a syntax, with accompanying implementation details and examples for completeness.

The paper is organized as follows. In Section 2 we provide some necessary background on SBP and on constraint solvers. In Section 3 we propose our...
extension to SBP that allows modelers to integrate it with constraints solvers, followed by illustrative examples. In Section 4 we describe an evaluation of our approach, followed by a discussion of related work in Section 5. We conclude in Section 6.

2 BACKGROUND

2.1 Scenario-Based Modeling

Before we discuss our proposed extensions to SBP, we begin by recapping the existing, commonly used formulation and semantics. Formally, a scenario-based model consists of independent scenario objects that are interwoven at run time. Each scenario repeatedly declares sets of events which, from its own perspective, should, may, or must not occur. At runtime, the scenarios are executed simultaneously and are synchronized by a mechanism responsible for selecting events that constitute the integrated system behavior. The scenarios never interact with each other directly; all interactions are carried out through the event selection mechanism.

Following the definitions in (Katz, 2013), we define a scenario object \(O \) over event set \(E \) as the tuple \(O = (Q, \delta, q_0, R, B) \), where the components are interpreted as follows:

- \(Q \) is a set of states, each representing one of the predetermined synchronization points;
- \(q_0 \) is the initial state;
- \(R : Q \to 2^E \) and \(B : Q \to 2^E \) map states to the sets of events requested and blocked at these states (respectively); and
- \(\delta : Q \times E \to 2^Q \) is a transition function, indicating how the object reacts when an event is triggered.

Scenario objects can be composed, in the following manner. For objects \(O_1 = (Q_1, \delta_1, q_{0_1}, R_1, B_1) \) and \(O_2 = (Q_2, \delta_2, q_{0_2}, R_2, B_2) \) over a common event set \(E \), the composite scenario object \(O_1 \parallel O_2 \) is defined by \(O_1 \parallel O_2 = (Q_1 \times Q_2, \delta, (q_{0_1}, q_{0_2}), R_1 \cup R_2, B_1 \cup B_2) \), where:

- \((q_1, q_2) \in \delta((q_1', q_2'), e) \) if and only if \(q_1' \in \delta_1(q_1', e) \) and \(q_2' \in \delta_2(q_2', e) \); and
- The union of the labeling functions is defined in the natural way; e.g., \(e \in (R_1 \cup R_2)((q_1', q_2')) \) if and only if \(e \in R_1(q_1') \cup R_2(q_2') \), and \(e \in (B_1 \cup B_2)((q_1', q_2')) \) if and only if \(e \in B_1(q_1') \cup B_2(q_2') \).

A behavioral model \(M \) is simply a collection of scenario objects \(O_1, O_2, \ldots, O_n \), and the executions of \(M \) are the executions of the composite object \(O = O_1 \parallel O_2 \parallel \ldots \parallel O_n \). Each such execution starts from the initial state of \(O \), and in each state \(q \) along the run an enabled event is chosen for triggering, if one exists (i.e., an event \(e \in R(q) - B(q) \)). Then, the execution moves to state \(\bar{q} \in \delta(q, e) \), and so on.

2.2 Constraint Solvers

As our proposed extensions to SBP rely heavily on automated constraint solvers, we give here a very brief introduction to some of these tools (and mention sources of information for additional reading). Broadly speaking, constraint solvers are automated tools that take as input a set of constraints given as a formula \(\varphi \) over a set of variables \(V \), and either (i) return a variable assignment that satisfies \(\varphi \), or (ii) answer that no such variable assignment exists. (A satisfying assignment is usually called a model, but we will refrain from using that term as to not overload it). Different solvers differ in the kinds of constraints they allow as part of their input, and many popular solvers operate on constraints given in restricted forms of first order logic. The performance of these solvers (and the complexity of the problems they solve) also closely depends on the inputs they allow.

In this paper, we will focus on three kinds of automated solvers:

Boolean Satisfiability (SAT) Solvers. These are solvers that operate on a set \(V \) of Boolean variables, and limit the constraint formula \(\varphi \) to be a quantifier-free propositional formula over the variables of \(V \). The solver then attempts to find a Boolean assignment that satisfies \(\varphi \). For example, for \(V = \{p, q\} \), the formula \(\varphi_1 = (p \lor q) \land (p \lor \neg q) \) is satisfiable, and one satisfying assignment is \(p, \neg q \); whereas the formula \(\varphi_2 = (\neg p \lor \neg q) \land p \land q \) is unsatisfiable. Although the Boolean satisfiability problem is NP-complete, there exist many mature tools that can solve instances with hundreds of thousands of variables (Nadel, 2009).

A particular kind of SAT solvers, called MaxSAT solvers, attempt to find a Boolean assignment that satisfies as many of the input constraints as possible (and not necessarily all of the constraints).

Linear Programming (LP) Solvers. LP solvers operate on a set \(V \) of rational variables, and the constraint formula \(\varphi \) is a conjunction of linear constraints, often referred to as a linear program. For example, for the variables \(V = \{x, y, z\} \), the constraint \(\varphi_3 = (x \leq 5) \land (x + y \leq z) \) is satisfiable, whereas the constraint \(\varphi_4 = (x \leq 5) \land (y \leq 2) \land (x + y \geq 20) \) is unsatisfiable. LP is known to be solvable in polynomial time, although many solvers use worst-case exponential algorithms that turn out to be more efficient in practice (Chvátal, 1983).
Satisfiability Modulo Theories (SMT) Solvers. These solvers can be regarded as generalized SAT solvers, capable of handling formulas in rich fragments of first order logic. The satisfiability of the formulas is checked modulo background theories, which intuitively restrict the search only to satisfying assignments that “make sense” according to these certain theories. For example, considering the theory of arrays of integer elements with variable set \(V = \{ a, b \} \), the formula \(\phi_3 = (a[3] \geq b[5]) \land (a[4] \leq b[0]) \) is satisfiable, whereas the formula \(\phi_4 = (a = b) \land (a[4] \neq b[4]) \) is unsatisfiable. Modern SMT solvers support many theories of interest, including various arithmetic theories, the theory of uninterpreted functions, and theories of arrays, of sets, of strings, and others (Barrett and Tinelli, 2018). Further, these background theories can be combined: for example, one can define formulas that includes arrays of integers or sets of strings, etc. The SMT problem is, in general, undecidable, although certain background theories afford efficient decision procedures.

The three kinds of solvers are used for different tasks, and all are highly successful. Many mature tools exist, and a great deal of research is being put into improving them further.

3 INTEGRATING SBP WITH CONSTRAINT SOLVERS

3.1 Extending SBP

The notion underlying our proposed extension of SBP is as follows. At each synchronization point, instead of declaring sets of requested and blocked events, each scenario object \(O_i \) can instead declare a set of constraint formulas \(\Phi = \{ \phi_1, \ldots, \phi'_q \} \) that are intended as guiding rules for a solver-based mechanisms that assembles the events. These constraint formulas are labeled by a labeling function \(L_i \), which takes a formula \(\phi_i \) and returns its labeling, i.e. a subset of a finite set of predefined labels \(L \). The motivation for these labels is that they can be used to assign different semantics to different constraint formulas.

For example, going back to the drone system described in the introduction, one scenario can specify that the total speeds of the rotors must be above some threshold and another scenario can suggest to increase one of the rotors. The labeling function is a protocol through which the execution mechanism knows that the first is a “must” specification and the latter is a “may” condition.

At each synchronization point, the execution mechanism collects the sets of constraint formulas \(\Phi_1, \ldots, \Phi_n \) produced by the individual scenario objects, and combines them into a global constraint formula \(\varphi \). This formula is then passed into a constraint solver, and the satisfying assignment returned by the solver is broadcast to all scenarios, which can then change their states. If no satisfying assignment is found, the SBP model is deadlocked, and the execution terminates. (Another possible extension in case a deadlock is discovered is to wait for an external event, along the lines proposed in (Harel et al., 2011), but this is beyond our scope here).

Formally, we modify the definitions of SBP to support integration with constraint solvers as follows. Let \(V \) denote a set of variables, and let \(L \) denote a finite set of labels. We define a scenario object \(O \in V, L \) as a tuple \(O = (Q, \delta, q_0, C, L) \), where \(Q \) is a set of states and \(q_0 \) is the initial state, as before. The function \(C \), which replaces the labeling functions \(R \) and \(B \) in the previous definition, takes a state \(q \in Q \) as input and returns a set of constraint formulas \(\Phi = \{ \phi_1, \ldots, \phi'_q \} \) over the variables of \(V \). The function \(L \) returns a labeling of these constraint formulas according to the current state, i.e. \(L : Q \times \xi \to 2^L \), where \(\xi \) represents the set of all possible formulas. By convention, we require that \(L(q, \emptyset) = \emptyset \) for every \(\varphi \) such that \(\varphi \notin C(q) \). The transition function \(\delta \) is now defined as \(\delta : Q \times A(V) \to 2^Q \), where \(A(V) \) is the set of all possible assignments to the variables of \(V \). Intuitively, given a specific state \(q \) and a variable assignment \(\alpha \in A(V) \), invoking \(\delta(q, \alpha) \) returns the set of states the object may transition into.

In order to account for the new constraint formulas, we modify the composition operator for scenario objects as follows: For objects \(O^1 = (Q^1, \delta^1, q_{t0}^1, C^1, L^1) \) and \(O^2 = (Q^2, \delta^2, q_{t0}^2, C^2, L^2) \) over a common variable set \(V \) and a common label set \(L \), the composite scenario object \(O^1 \parallel O^2 \) is defined by \(O^1 \parallel O^2 = (Q^1 \times Q^2, \delta, (q_{t0}^1, q_{t0}^2), C, L) \), where \((q^1, q^2) \in \delta((q^1, q^2), \alpha) \) if and only if \(q^1 \in \delta^1(q^1, \alpha) \) and \(q^2 \in \delta^2(q^2, \alpha) \). The constraint-generating function \(C \) is defined as \(C((q^1, q^2)) = C^1(q^1) \cup C^2(q^2) \), i.e. the constraints defined by the individual objects are combined and become the constraints defined by the composite object. We define \(L((q^1, q^2), \varphi) = L^1(q^1, \varphi) \cup L^2(q^2, \varphi) \) using again the convention that \(L^1(q, \varphi) = \emptyset \) if \(\varphi \notin C^1(q) \).

The key difference between our extended semantics and the original is in the event selection mechanism. As before, a behavioral model \(M \) is a collection of scenario objects \(O^1, O^2, \ldots, O^n \), and the executions of \(M \) are the executions of the composite object \(O = O^1 \parallel O^2 \parallel \ldots \parallel O^n \). Each such execution starts from the initial state of \(O \), and after each
state \(q \) along the run a variable assignment \(\alpha \) is assembled by invoking a constraint solver on a formula \(\varphi \) constructed from \(C(q) \), according to the constraint labeling \(L \). Specifically, we assume that the modeler also provides a \textit{constraint composition rule} \(\psi \). Given the constraint-generating function \(C \) and the labeling function \(L \), \(\psi \) dictates how to construct for every state \(q \) the constraint formula \(\varphi \) that should be passed to the solver, and/or how to treat the various constraints altogether (e.g., apply priorities among scenarios, or apply various optimization goals when multiple solutions exist). The execution then moves to state \(\bar{q} \in S(q, \alpha) \), and so on.

3.2 Illustrative Examples

The aforementioned framework is general, and can be customized in several ways through the constraint formulas, their labeling, and the constraint composition rule \(\psi \). We next illustrate this using a few simple examples.

Traditional SBP Semantics. The traditional semantics of SBP can be obtained as follows: We allow only two labels \(L = \{ r, b \} \), where \(r \) represents \textit{request constraints} and \(b \) represents \textit{block constraints}. In addition, we define the variable set \(V \) to contain precisely one variable, \(V = \{ e \} \), representing the triggered event. Next, we syntactically restrict the constraint formulas \(\varphi_i \) to be of the form \(e = c \) for some constant \(c \); and finally, for any state \(q \) we define the constraint composition rule to be:

\[
\psi(q, C, L) = (\bigvee_{\varphi \in C(q) | r \in L(q, \varphi)} \varphi) \land (\bigwedge_{\varphi \in C(q) | b \in L(q, \varphi)} \neg \varphi)
\]

Intuitively, at each state, each scenario object can declare events it would like to see triggered (expressed as constraints labeled \(r \)), and those it wants to prevent from being triggered (expressed as constraints labeled \(b \)). The constraint composition rule then translates these individual constraints into a global formula representing the fact that the triggered event needs to be requested and not blocked (note that constraints labeled \(b \) are negated).

When using these particular restrictions, the straightforward solver of choice is a SAT solver: since the formula \(\varphi \) only contains propositional connectives and the variable \(e \) can only take on a finite number of values, we can encode these possible values using a finite set of Boolean variables (this process is often called \textit{bit-blasting}). A modern SAT solver can then be used for selecting the triggered event very quickly — in a way that is likely to enable an execution that is sufficiently fast for many application domains.

Autonomous Drone. The general framework we proposed in the previous subsection can be used to model complex interactions, which are either beyond the reach of the traditional semantics, or at least require a great deal of effort on the modeler’s side. Let us return to our toy aircraft example: a drone capable of simultaneous vertical and horizontal maneuvers. Using our extended modeling framework, we can define our variable set \(V \) to include two variables, \(V = \{ v, h \} \), where \(v \) represents the vertical angular velocity and \(h \) represents the horizontal angular velocity.

One scenario object can be used for setting upper and lower bounds on the vertical turning angular velocities, due to the drone’s mechanical limitations (see Fig. 2), and another can be used for limiting the horizontal turning angular velocity (see Fig. 3). In this case we require no labeling of the constraint, i.e. \(L = \emptyset \), and the constraint composition rule \(\psi \) is a simply a conjunction of all the individual constraints.

Figure 2: A scenario object that puts hard limits on the vertical turning angular velocity of the drone. The scenario has a single synchronization point (indicated by a single state), in which it contributes \(\varphi_1 = v \geq -3 \) to the global constraint set. The only transition, a self loop that does not depend on the variable assignment returned by the solver, indicates that the scenario continues to contribute this constraint, regardless of the satisfying assignment discovered by the solver.

\[
\begin{align*}
\varphi_1 &= v \geq -3 \quad \text{true} \\
\varphi_2 &= -v \leq 5 \quad \text{true}
\end{align*}
\]

Figure 3: A scenario object that puts hard limits on the horizontal turning angular velocity of the drone.

Without any additional limitations, i.e. if only these two scenarios existed in the system, the constraint formula in any synchronization point would be \(\varphi = \varphi_1 \land \varphi_2 = (v \geq -3) \land (-v \leq 5) \land (-10 \leq h \leq 10) \). Because the constraint are arithmetical, linear constraints, we can use an LP solver to dispatch them; and indeed, in this case an LP solver will return an assignment such as \(v = 3, h = 0 \). Other objects in the system, called actuators, may then process these values and adjust the drone’s engines accordingly.

Let us now consider a particular flight situation. Suppose another object is in charge of navigating the drone to its destination, and that that object is requesting a right turn at an angular velocity of at least 6 degrees per second: \(\varphi_3 = h \geq 6 \). Further suppose that a sensor has detected an electrical wire up ahead, and in order to circumvent it is requesting either that the elevation be increased, or that a left turn be initiated: \(\varphi_4 = h \leq -3 \lor v \geq 2 \). In that case, when the solver is given the global constraint formula \(\varphi = \bigwedge_{i=1}^4 \varphi_i \), a
possible solution is $h = 8, v = 3$ — which satisfies all constraints, by both turning right and increasing the drone’s altitude.

Dependency Management. So far, we have seen two examples for constraint composition rules ψ: when simulating the traditional SBP event selection mechanism, we labeled individual constraints as request or block statements, and then composed them accordingly; and in the drone example, we had no labeling, and ψ was a simple conjunction. We now demonstrate a situation in which yet another composition rule is useful.

Consider a system in charge of installing software packages on a computer, similar to the standard package managers that ship with modern Linux distributions. Software packages have **dependencies**: for example, installing package A might require that package B already be installed, in which case we say that package A **requires** package B. Some packages may also be **incompatible** with other packages: for example, if package A is incompatible with package C, this means that A cannot be installed alongside C. The **state** of the system is the set of currently installed software packages. Finally, the system is given a user-supplied goal, such as “install A”. In order to achieve the goal, the system needs to install A and any required packages, while removing the smallest number of packages currently installed that A and its dependencies are incompatible with. Of course, deciding which packages to install and which to remove in order to achieve an optimal result is a complex task.

To model this system using our extended version of SBP, we can utilize a specific kind of SAT solver, called a **MaxSAT** solver. A MaxSAT input formula consists of subformulas labeled either **hard** or **soft**, and the solver finds an assignment that satisfies the hard constraints, and as many of the soft constraints as possible. MaxSAT solvers play a crucial role in our model, in the following way: for each package dependency, we will introduce a scenario object that adds a hard constraint that represents the dependency; and we will introduce other scenario objects that express the currently-installed packages as soft constraints. That way, the MaxSAT solver will give us back an assignment that indicates which packages should be installed and which should be removed, in a way that guarantees that the goal package is installed while the number of previously installed packages that need to be removed is minimized (Mancinelli et al., 2006; Argelich and Lynce, 2008).

More specifically, our model for the package dependency system is constructed as follows. The variable set V consists of a Boolean variable for each software package, e.g. $\{x_A, x_B, x_C, \ldots\}$, that signifies whether the package is installed (variable is true) or not installed (variable is false). A change in the variable’s value indicates that the package should be installed or removed. Our label set is $= \{h, s\}$, indicating whether a constraint is hard or soft, respectively. Each dependency is represented by a dedicated object; for example, the requirement “A requires B” is encoded by the scenario object in Fig. 4. Other objects are used for encoding the soft constraints representing the currently installed packages—an example appears in Fig. 5.

Figure 4: A scenario object that encodes the fact the installing A requires B. Observe that the constraint is labeled as hard, to indicate that it must never be violated.

![Figure 4: A scenario object that encodes the fact the installing A requires B.](image)

Figure 5: A scenario object that adds x_B as a soft constraint if package B is currently installed (left state), and contributes no constraints if it is not installed (right state). Switching between the states is performed according to the assignment discovered by the solver — specifically, it depends on whether x_B is assigned to true or not. We assume the package is initially installed.

![Figure 5: A scenario object that adds x_B as a soft constraint](image)

4 IMPLEMENTATION AND EVALUATION

In this section we evaluate the applicability of our approach by discussing its implementation, and by applying it to more complex problems.

4.1 Two Implementations

We developed a proof-of-concept implementation of our approach in two platforms. The first uses MATLAB/Simulink. Scenario objects generate their constraints as strings. These strings are then passed into MATLAB `solve`, the equation and system solver. The solution yielded by the solver is then translated...
into variable values that control classical Simulink-driven behavior. The results of this behavior are also fed back into the scenarios, which can then change the constraints they present.

Below, we describe in detail a second implementation, based on Python and the Z3 SMT solver (De Moura and Bjørner, 2008). The framework enables users to create fully-executable models using the aforementioned approach, and then run them and analyze the output. We plan to make the framework available online in the near future, and also intend to extend it; see some discussion in Section 6.

We began by implementing the basic SBP semantics in our framework. For these semantics, the set of allowed labels is $L = \{ \text{may}, \text{must}, \text{wait-for} \}$; the may label represents requested events, the must label is used here to block the complement of the specified event set, and the wait-for label is merely syntactic sugar used to simplify defining the transition relation. This labeling scheme uses the composition rule

$$
\psi(q, C, L) = \left(\bigvee_{\varphi \in C(q)} \varphi \right) \wedge \left(\bigwedge_{\varphi \in C(q)} \varphi \right)
$$

For the event selection mechanism, we apply the Z3 solver for solving the formula φ, constructed from the scenario objects’ may and must constraints as specified above.

In our implementation, each scenario object is modeled using a Python generator: a function that can pause itself and yield control at any point, and then be subsequently resumed when it is re-invoked with the language’s next() idiom. This functionality of Python allows us to implement the SBP idioms — i.e., have the scenario objects pause at synchronization points and be resumed when a satisfying assignment for the variables of V has been found.

At each synchronization point, the scenario object thus yields control, and passes to the event selection mechanism a Python dictionary containing any subset of the keys may, must, and wait-for, where each such key is associated with a Z3 constraint.

The core of the code of the execution mechanism appears in Fig. 6. The main function, run, takes as input the set of scenario objects, and then executes the model that is obtained by composing these objects. Specifically, the function invokes the scenario objects, one at a time, and waits for each of them to reach its next synchronization point, indicated by a yield statement. Once all scenario objects are synchronized, the framework collects the constraints (in the form of dictionaries, called tickets in the code) generated by the individual scenarios. These constraints are then composed and passed on to Z3, which tries to find an assignment that satisfies all the must and may constraints. If such an assignment is found, the execution framework wakes up the scenario objects whose wait-for conditions are satisfied by the chosen assignment, and allows them to resume. They then continue to execute until they reach the next yield point, and then the process is repeated again, possibly ad infinitum.

4.2 Examples

Hot-Cold Example. Using this framework, one can specify the scenario objects from the water tank system that appears in Fig. 1. This specification appears in Fig. 7. When the scenario objects defined therein are executed, the satisfying assignments obtained by the solver during the execution alternate between assigning “hot” to true and “cold” to false, and vice versa.

Consider now a situation where the customer decides to change the requirements for the system. For example, assume that the last requirement (that does not allow to add two doses of the same type in a row) is removed and, instead, the customer decides to add the requirements modeled in Fig. 8. The scenarios listed in the figure are then added instead of the last scenario in Fig. 7.

Note that the new requirements involve a new solver variable called “temp”, for temperature, that the new scenarios control. Note also that this is done without changing anything in the remaining scenarios and that the remaining scenarios are not at all aware of the new variable.

This example raises the following discussion: consider, for example, the situation in Fig. 9 where, as in the water tap example, two scenarios deal with separate variables called x_1 and x_2, respectively. Since the first scenario is not aware of the second one, it assumes that the only may constraint for x_1 is that it is greater than 50 — and so it does not expect the solver to allow an assignment to x_1 that is smaller than 50.

According to our semantics, however, the composition rules produces the constraint $\psi = x_1 > 50 \lor x_2 > 50$ to which the assignment $\{x_1 = 0, x_2 = 51\}$ is valid. A way to avoid this unintended behavior can be to label each proposition with the variable that it is aware of and to solve for each set of variables separately. Another way to avoid it can be to look for assignments that maximize the number of satisfied may constraints, e.g., by using solvers that optimize the number of satisfied clauses.

Leader Follower Benchmark Example. As a more complex example, we used the extended SBP modeling framework, with the composition rule de-
def run(scenarios):
 global m # A variable where the solved model is published
 tickets = [] # A list containing the tickets issued by the scenarios

 # Run all scenario objects to their initial yield
 for sc in scenarios:
 ticket = next(sc) # Run the scenario to its first yield and collect the ticket
 ticket['sc'] = sc # Maintain a pointer to the scenario in the ticket
 tickets.append(ticket) # Add the ticket to the list of tickets

 # Main loop
 while True:
 # Compute a disjunction of may constraints and a conjunction of must constraints
 (may, must) = (False, True)
 for ticket in tickets:
 if 'may' in ticket:
 may = Or(may, ticket['may'])
 if 'must' in ticket:
 must = And(must, ticket['must'])

 # Compute a satisfying assignment and break if it does not exist
 sl = Solver()
 sl.add(And(may, must))
 if sl.check() == sat:
 m = sl.model()
 else:
 break

 # Reset the list of tickets before rebuilding it
 oldTickets = tickets
 tickets = []

 # Run the scenarios to their next yield and collect new tickets
 for oldTicket in oldTickets:
 # Check whether the scenario waited for the computed assignment
 if 'wait-for' in oldTicket and is_true(m.eval(oldTicket['wait-for'])):
 # Run the scenario to the next yield and collect its new ticket
 newTicket = next(oldTicket['sc'], 'ended')

 # Add the new ticket to the list of tickets (if the scenario didn't end)
 if not newTicket == 'ended':
 newTicket['sc'] = oldTicket['sc'] # Copy the pointer to the scenario
 tickets.append(newTicket)
 else:
 # Copy the old tickets to the new list
 tickets.append(oldTicket)

Figure 6: A python implementation of an extended SBP framework. The scenarios are assumed to be given as an array of generators that return, using the yield command, labeled Z3 propositions expressed as dictionaries with keys that are subsets of {may, must, wait-for}. In this code these dictionaries are called "tickets".
hot = Bool('hot')
cold = Bool('cold')

def mutual_exclusion():
 yield {'must': Or(Not(hot), Not(cold))}

def three_hot():
 for i in range(3):
 yield {'may': hot, 'wait-for': hot}

def three_cold():
 for j in range(3):
 yield {'may': cold, 'wait-for': cold}

def no_two_same_in_a_row():
 yield {'wait-for': True}
 while True:
 if is_true(m[cold]):
 yield {'must': Not(cold), 'wait-for': True}
 if is_true(m[hot]):
 yield {'must': Not(hot), 'wait-for': True}

def hot_temp():
 yield {'must': Implies(hot, temp > 50)}

def cold_temp():
 yield {'must': Implies(cold, temp < 50)}

def after_hot_temp():
 while True:
 yield {'wait-for': hot}
 while is_true(m[hot]):
 yield {'must': temp > 20, 'wait-for': True}

def after_cold_temp():
 while True:
 yield {'wait-for': cold}
 while is_true(m[cold]):
 yield {'must': temp < 80, 'wait-for': True}

def scenario1():
 yield {'may': x1 > 50}

def scenario2():
 yield {'may': x2 > 50}

Figure 7: A simple example of a model that uses the solver-based execution mechanism. The model sets the “hot” and “cold” flags, indicating that additional doses of hot and cold water are added to a tank, according to the following five rules: (1) do not add hot and cold doses at the same time; (2) add three doses of hot water; (3) add three doses of cold water; (4) never add two doses of the same type in a row.

described in preceding sub-section, to model a reactive controller for a rover in a leader-follower simulation. In a leader-follower system, a controlled follower rover tracks a leader rover. The follower rover is required to follow the leader, while always staying at a safe distance from it, no matter how the leader behaves (assuming reasonable bounds on speed and turn angles). This problem served as a challenge problem in the MDETOOLS’18 workshop, where the organizers supplied a simulation software for it. Participants of the workshop were encouraged to demonstrate their various modeling approaches by constructing software to control the follower rover (see mdetools.github.io/mdetools18/challengeproblem.html).

The simulator provided in the MDETOOLS’18 challenge periodically emits the location of the rovers, the distance between the rovers, and the heading angle of the follower (compass). The follower rover can be controlled by setting the power for the left and right wheels in the range \([-100, \ldots, 100]\). For example, if power to the left wheels is set to 40 and power to the right wheels is set to 0, the rover will turn right.

The code for the scenarios that we created in order to control the follower rover is listed in Fig.10. The first scenario specifies the bounds for the \(pR\) and \(pL\) variables, indicating the power to the right and left wheels, respectively. The second scenario specifies forward and backward motion, where wheel power is a function of the relative distance, i.e., when the rovers get too far apart or too close, the follower gradually increases or decreases power to the wheels, even down to negative values. The third scenario specifies how the follower is steered towards the leader location. When the relative angle (calculated from the data emitted from the simulator) exceeds a specified value (3 degrees), the follower will accordingly turn left or right towards the leader. The last scenario specifies how to perform a turn by setting different power
levels to the left and right wheels (note, however, that this scenario does not trigger a turn — but rather controls a turn that has been triggered by another scenario). This example demonstrates the modularity of the suggested approach and the ability to construct complex behaviors using distinct behavioral aspects.

The final behavior yielded in this case study is indeed very similar to the one yielded by the traditional behavioral programming approach where events are selected without a constraint solver, using direct filtering logic, which had been presented in (Greenyer et al., 2018). The main difference between the techniques used in these two implementations is that in the implementation described in (Greenyer et al., 2018) scenarios can only request finite sets of events while here the spin() scenario, for example, specifies infinitely many options that may happen. This allows, as demonstrated by the turnpowers() scenario, to break the specification to better align with the requirements.

A Patrol Vehicle. Another example, described briefly to fit space constraints, was implemented in MATLAB/Simulink and associated solvers with the tool described earlier in this section. It is a simulation of an autonomous vehicle that moves repeatedly in a fixed route in the shape a figure eight. The main scenarios reflect the following requirements: (1) The vehicle should always attempt to accelerate to a maximum prespecified speed; (2) when the vehicle reaches a sharp curve, it should reduce its speed below a specified value until exiting the curve; and (3) after driving at a speed that is higher than a certain value, for a length of time that is higher than some threshold, the vehicle must reduce its allowed speed and acceleration to some other values for a certain amount of time (e.g., to avoid engine overheating).

This example illustrates and emphasizes the power of scenarios as “stories” that progress from one state to another and present different constraints at different times and states. E.g., specifying the speed constraints that hold only after detecting the arrival at (or departure from) a sharp curve, or the passage of a certain amount of time, appears more intuitive, and is better aligned with the stated requirements, than specifying ever-present constraints with conjunctions of conditions, of, say, current speed and road curvature, or, current speed and acceleration and the time that has passed since certain events in the past.

5 RELATED WORK

The paper presents a particular approach to run-time composition of behavior, namely, extending the existing SBP-style composition with specification and solving of constraints. Below we briefly compare SBP to other execution-time composition mechanism with a special focus on the present context of constraint specifications (see (Harel et al., 2012b) for an earlier, related analysis).

A key contribution of SBP over most other approaches to system specification is its succinctness and intuitiveness. These properties emerge from the ability to specify forbidden behavior explicitly and directly, rather than as control-flow conditions that prevent certain pieces of code or specification from actually doing the undesired action (this was accomplished first with concrete lists of requested events and filter-based blocking, and now, more generally, with constraint solvers). For example, in SBP, one can build, and sometimes even test, the specification that a vehicle is not allowed to enter a road intersection when the traffic light is red, before having coded how vehicles behave. By comparison, other approaches, like business-workflow engines, simulation engines, and tools for test-driven development support intuitive specification of executable use cases and scenarios, but their support for generic composition of multiple scenarios and anti-scenarios is limited. Ordinary procedural and object oriented programming, functional programming and logic programming languages provide for composition of behaviors, but the requirements scenarios and use cases are not directly visible in the code and are reflected only in emergent properties of the actual execution.

SBP principles have been implemented in several languages in both distributed and centralized environments. These implementations also position SBP as a design pattern for using common constructs like semaphores, messaging, and threads, as well as concepts such as agent-orientation for incrementally and alignment of code with requirements.

Publish-subscribe mechanisms provide for straightforward parallel composition, but without language support for forbidden behavior. Aspect oriented programming (AOP) (Kiczales et al., 1997) supports specifying and executing cross-cutting concerns on top of a base application, but does not support specifying forbidden behavior, state management within an aspect, or symmetry between aspects and base code, which SBP does.

Behavior-based models such as Brooks’s subsumption architecture (Brooks, 1986) Branicky’s behavioral programming (Branicky, 1999), and LEGO Mindstorms leJOS (see review in (Arkin, 1998)), also call for constructing systems from behaviors. SBP is a language-independent formalism with multiple implementations and extends in a variety of ways each of the coordination and arbitration mechanisms in those
def bounds():
 yield {'must': \(-MAX \leq pL \leq MAX \land -MAX \leq pR \leq MAX\)}

def forward_backward():
 while True:
 if dist > CLOSE:
 if dist < FAR:
 yield {'may': \(pL = pR = \frac{MAX(d_{\text{dist}} - CLOSE)}{FAR - CLOSE}\), 'wait-for': true}
 else:
 yield {'may': \(pL = pR = MAX\), 'wait-for': true}
 else:
 yield {'may': \(pL = pR = -MAX\), 'wait-for': true}

def spin():
 while True:
 if abs(dir_error) > 3:
 if dir_error > 0:
 yield {'may': \(pL > pR, \text{must}: pL > pR\), 'wait-for': true}
 else:
 yield {'may': \(pL < pR, \text{must}: pL < pR\), 'wait-for': true}
 else:
 yield {'wait-for': true}

def turnpowers():
 yield {'must': \(pL \neq pR \Rightarrow (pL = 0 \land pR = 40) \lor (pL = 40 \land pR = 0)\)}

Figure 10: Main scenarios of the leader-follower model. The first scenario specifies the bounds for the \(pR\) and \(pL\) variables, which represent the power for the left and right follower wheels. The second specifies the follower forward and backwards motion as a function of the distance from the leader. The third specifies how the follower is steered towards the leader location as function of \(\text{dir}_\text{error}\), which represents the relative angle (in degrees). The last scenario specifies the turn powers.

architectures.

The execution semantics of behavioral programming has similarities to the event-based scheduling of SystemC (IEEE, 2006), which performs cyclical co-routine scheduling by synchronization, evaluation, update and notification. SBP differs from SystemC in its direct support for specifying scenarios and anti-scenarios with direct relation to the original requirements, where SystemC provides a particular architecture for composing parallel component in certain architectures and designs. In SBP the synchronization is an inherent technique for continuously complying with all constraints that the requirements impose where in SystemC synchronization is used for coordination in an otherwise parallel component execution. This also implies differences in the details in the semantics of synchronization, event selection, queuing, and state management within a parallel component.

The BIP language (behavior, interaction, priority) and the concept of glue for assembling components (Bliudze and Sifakis, 2008) pursue goals similar to SBPs with a focus on correctness by construction rather than on execution of intuitively specified behaviors and constraints, with run-time resolution of these constraints.

As mentioned earlier, SBP was recently implemented in the visual formalism of Statecharts. The Yakindu Statecharts tool extended Statecharts’ original support for orthogonal, concurrent and hierarchical state machines (Harel, 1987), with optional specification of requested and blocked events in any state, and a corresponding enhancement to the event selection semantics (Marron et al., 2018). These enhancements also provide the formal definitions of SBP principles, which are based on state machines and transition systems (see, e.g., (Harel et al., 2010b)), with a direct, concrete, executable implementation that is also readily understood by humans. This facilitates
6 CONCLUSION

Scenario-based programming is a promising approach for the design and modeling of complex systems, and yet its applicability is somewhat hindered by the simplistic way in which it interleaves scenario objects. We proposed here a generalization of the approach that lets objects interact in much more subtle and intricate ways, and consequently allows SBP to faithfully model more complex systems. Our generalization relies heavily on the use of automated constraint solvers — tools that are capable of resolving the constraints imposed by the various scenarios and produce a cohesive behavior. Apart from setting the theoretical foundations for this extension, we developed a proof-of-concept implementation and used it to demonstrate the applicability of our approach.

In the future, we plan to continue this line of work by developing support for model-checking, statistical analysis and synthesis algorithms for our extended SBP. These tools exist already for traditional SBP, and have proven useful — but extending them to our formulation will entail accounting for the more flexible event selection mechanism. We also intend to apply our extended SBP to additional, larger case-studies.

REFERENCES

