
On-the-spot Knowledge Refinement for an Interactive Recommender
System

Yuichiro Ikemoto1 and Kazuhiro Kuwabara2

1Graduate School of Information Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
2College of Information Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan

Keywords: Knowledge Refinement, Interactive Recommender System, Crowdsourcing.

Abstract: This paper proposes a method to refine knowledge about items in an item database for an interactive recom-
mender system. The proposed method is integrated into a recommender system and invoked when the system
recognizes a problem with the item database from users’ feedback about recommended items. The proposed
method collects information from a user via similar interactions to those of a recommendation process. In
this way, a user who is knowledgeable in a target domain, but does not necessarily know the internal system
can participate in the knowledge refinement process. Thus, the proposed method paves the way for applying
crowdsourcing to knowledge refinement.

1 INTRODUCTION

This paper proposes an interactive method to refine
knowledge about items in the item database of a rec-
ommender system. Owning to the growing availabil-
ity of large amounts of information, recommender
systems are becoming increasingly popular. In this
paper, we focus on a type of a recommender system
that interacts with a user to obtain their preferences
to provide better recommendations or to ask for a cri-
tique to improve a recommended item (e.g., (Chris-
takopoulou et al., 2016; Widyantoro and Baizal,
2014)).

There are two main causes for recommending an
unsuitable item: (1) a problem in the recommenda-
tion mechanism or (2) an error in knowledge about
items in the item database. Many researches have
been conducted to refine recommended items to suit
a user’s preferences. However, even if a recommen-
dation algorithm, such as one predicting user’s true
preferences, works properly, the output of the recom-
mendation system may be inherently incorrect if the
item database contains an error.

In this paper, we address the latter issue. We let a
user give feedback to the system when the user finds a
wrongly recommended item. When enough feedback
is accumulated, the system determines that there
is a problem in the item database and invokes the
refinement mode to collect information to identify the

incorrect data and fix the error in the database.
We integrate the refinement mode into an interac-

tive recommender system (Ikemoto et al., 2018). That
is, the user interface in the refinement mode is essen-
tially the same as that in the recommendation mode.
The system asks the user a question about their pref-
erences and recommends an item based on the user’s
acquired preferences. The user gives feedback to the
system about whether the recommended item is satis-
factory or inappropriate. If there are enough feedback
that points out the problem, the refinement mode is in-
voked. The difference between the modes lies in how
to select a question to ask and which item to present.

In the recommendation mode, the system asks a
question that narrows down a list of possible recom-
mended items, and in the refinement mode, the sys-
tem asks the most promising question to help identify
an error. In the recommendation mode, the item that
most suits the user’s preferences is recommended, but
in the refinement mode, the item that may contain an
error is recommended so that the system can obtain
feedback from the user about the item. Since the user
interaction between the user and the system is the
same on the surface, we expect that a non-technical
user who may not know the internal workings of the
system can participate in refining the knowledge in
the item database.

The remainder of this paper is organized as fol-
lows. Section 2 describes related work, and Section 3

Ikemoto, Y. and Kuwabara, K.
On-the-spot Knowledge Refinement for an Interactive Recommender System.
DOI: 10.5220/0007571508170823
In Proceedings of the 11th International Conference on Agents and Artificial Intelligence (ICAART 2019), pages 817-823
ISBN: 978-989-758-350-6
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

817

presents the proposed method to refine an item
database. Section 4 describes an example execution,
and Section 5 concludes the paper.

2 RELATED WORK

To build an intelligent system, knowledge about the
target domain plays a crucial role. Unless correct data
are available, the system does not function properly.
Several methods have been proposed to refine knowl-
edge represented as a graph (Paulheim, 2017). Since
maintaining knowledge often requires human inter-
vention, interactive methods are effective (Atzmueller
et al., 2005). Crowdsourcing is a promising approach
for involving many people and has been utilized in
knowledge base maintenance (Acosta et al., 2013). In
particular, a gamification approach was introduced in
crowdsourcing to give meaningful incentive to crowd
workers (Morschheuser et al., 2017).

Gamification approaches have also been applied
in linked data refinement ((Hees et al., 2011; Waitelo-
nis et al., 2011)), and a framework to build games for
this purpose has been proposed (Re Calegari et al.,
2018). These works aim to bring playful elements
into a tedious task.

In contrast to the aforementioned studies, we pro-
pose an approach to blend a knowledge refining task
into a main task, which is an interactive recommenda-
tion. In this way, we expect increased user participa-
tion in the knowledge refinement process.

3 KNOWLEDGE REFINEMENT

3.1 Overview

The proposed knowledge refinement method is inte-
grated into an interactive recommender system.

Item database

User preferences Refinement candidates

Recommendation engine Refinement engine

User

question recommendation feedback

Knowledge about items

Figure 1: Overview of the proposed system.

Figure 1 shows an overview of the proposed sys-
tem. The recommender system estimates a user’s
preferences through questions and answers, and rec-
ommends an item that suits the user’s preferences. In
addition to the item database and user preferences, the
system has a database called refinement candidates,
which keeps track of feedback that flags an inappro-
priate item recommendation.

In the following sections, we describe the data
model used in the proposed system, present an un-
derlying recommendation method, and explain the re-
finement method.

3.2 Data Model

There are n items in the dataset. An item is character-
ized by m properties. The property value of an item is
either 1 (has a characteristic about of the correspond-
ing property) or−1 (does not have a characteristics of
the corresponding property).

An item si (1 ≤ i ≤ n) is represented as an m-
dimensional vector: ~si = (si,1, · · · ,si,m), where si, j
represents the value of property j of item si and takes
a value of either 1 or −1.

A user’s preferences are represented as an m-
dimensional vector~u= (u1, · · · ,um), which is initially
set to (0,0, · · · ,0). The user’s response to the system’s
questions are recorded in the user vector.

3.3 Recommendation Mode

In the recommendation mode, the system asks about
the user’s preferences. Notably, the system asks the
user if there are interested in the ith property (1≤ i≤
m). If the response to the question is yes, the corre-
sponding value of the user vector, ui, is set to 1. For a
response of no, ui is set to −1. Otherwise, ui remains
at 0.

Each time the question is asked, the user vector
is updated, and the score of items are updated, where
the score represents how much an item suits the user
preferences. The score of item si, SCORE(si), is cal-
culated as follows:

SCORE(si) =
m

∑
j=1

u jsi, j . (1)

The item with the highest score is selected, and if
its score is higher than the recommendation threshold,
it is recommended to the user. If not, another question
is asked. Figure 2 shows the overall flow of the rec-
ommendation mode.

The order of questions is important for an efficient
recommendation. As a heuristic, we calculate the in-
formation entropy of each property j (1≤ j≤m) and

ICAART 2019 - 11th International Conference on Agents and Artificial Intelligence

818

Start

Initialize user vector

Does the user like
the recommended item?

Is there an item whose score
exceeds the threshold?

Does the user report an error?

Are there remaining
properties to ask about?

End

Recommend an Item

Update refinement
candidates

Select a property to ask

Get user's response

Update user vector

No

Yes

Yes

No
No

Yes

No

Yes

Figure 2: Recommendation mode flow.

select the property with the highest information en-
tropy. The information entropy of property of j is
calculated as follows:

IE j =− ∑
k∈{1,−1}

pk log pk , (2)

where pk is the probability that the of value of prop-
erty j is k, which is either 1 or−1. Here, we use N j(k)
to denote the number of remaining items whose value
of property j is k, and N to denote the total number of
remaining items. If we assume that all the remaining
items will be selected with equal probability, pk can
be represented as pk =

N j(k)
N .

The reason behind this heuristic is that a property
whose information entropy is higher would divide a
set of items into subsets of a relatively similar size.
Thus, it is expected that an item to be recommended
can be identified with fewer questions.

For a recommended item, a user is expected to re-
spond. If the user is satisfied with the recommended
item, the recommendation ends. If the user asks the
system to recommend another item, the system con-
tinues the search. In addition, we allow a user to
give feedback that the recommended item is not ap-
propriate. The system records that feedback in refine-
ment candidates, which is almost a mirror of the item
database. The value for item si’s property j in refine-
ment candidates is represented as ci, j, which is ini-
tially set to 0, and reflects the possibility that item si
contains an error in the value of property j.

3.4 Refinement Mode

When enough data is accumulated in refinement can-
didates, the refinement mode is invoked. The process-
ing flow of the refinement mode, is similar to that of
the recommendation mode except for the different se-
lection of a question to ask and the item to be pre-
sented.

Figure 3 shows a flowchart of the refinement
mode. First, the user vector is initialized to
(0,0, . . . ,0). Then, the system searches for a prop-
erty to ask about. In the recommendation mode, the
information entropy is calculated, but in the refine-
ment mode, we consider points for each property j,
POINT (j), which is defined as follows:

POINT (j) =
n

∑
i=1

ci, j . (3)

The value of points indicates how probable it is that
an error exists in this property value of a certain item.
The property with the highest points is selected; if the
points equal or exceed the point threshold, the corre-
sponding property is asked about. The response from
the user is reflected in a user vector.

If no property can be selected for a question, we
calculate an item to present and ask for a user’s re-
sponse. For the refinement mode, we define the score
of item si as follows:

SCOREr(si) =
m

∑
j=1

u jsi, jci, j . (4)

On-the-spot Knowledge Refinement for an Interactive Recommender System

819

Start

Initialize user vector

What is the user's feedback?

Is there an item whose score
exceeds the refining threshold?

Is there a property whose points
exceed the point threshold?

End
Present an Item

Update refinement candidates

Ask a question about the property

Get user's response

Update user vector

No

Yes

not sure

like or not like

NoYes

Is there an entry that
exceeds the fix threshold?

Fix the item database

Yes

No

Figure 3: Refinement mode flow.

Table 1: Sample dataset (with an error in the castle property of Shimanto River).

Sightseeing spot Property
nature castle history summer resort temple

Kochi Castle -1 1 1 -1 -1
Shimanto River 1 -1→ 1 -1 1 -1

Chikurin-ji Temple -1 -1 1 -1 1
History Museum -1 -1 1 -1 -1

Note that we consider the refinement candidates, so
that an item that is more likely to have an error
has higher precedence. The item with the highest
SCOREr is selected; if the score equals or exceeds
the refining threshold, the corresponding item is pre-
sented to a user as a recommended item and user feed-
back is requested, with the possible responses equat-
ing to like, not like, or not sure. Assume item si is
presented. Then, ci, j (1 ≤ j ≤ m) is updated as fol-
lows:

ci, j←


ci, j−u jsi, j (if user’s feedback is like)
ci, j +u jsi, j (if user’s feedback is not like)
ci, j (otherwise) .

(5)
Intuitively, if the user’s response is like, the value

of ci, j is decremented for the property j if the user
vectors’ value u j matches the value of property j of
item si, si, j; otherwise, it is incremented. If the user’s
response is not like, the increment and decrement are
reversed.

Then, refinement candidates are updated. If the
value of ci, j equals or exceeds the fix threshold, the
corresponding value in the item database (si, j) is de-
termined to be an error and is updated as follows:

si, j←−si, j . (6)

In this way, an error in the item database is found and
fixed.

4 EXAMPLE EXECUTION

4.1 Dataset

We explain how the proposed refining method works
using a simple dataset shown in Table 1. This dataset
contains the data of four sightseeing spots, which
were selected from popular sightseeing spots in Kochi
prefecture, Japan. We define five properties to de-
scribe sightseeing spots: nature, castle, history, sum-

ICAART 2019 - 11th International Conference on Agents and Artificial Intelligence

820

Table 2: Sample users’ preferences.

User Property
nature castle history summer resort temple

User A 1 1 -1 0 0
User B 0 1 0 1 -1
User C 1 1 0 -1 0

Table 3: Changes in scores for sightseeing spots for each user.
(a) User A

Sightseeing spot
Rounds (property asked)

initial 1st round 2nd round 3rd round
(castle) (history) (nature)

Kochi Castle 0 1 0 -1
Shimanto River 0 1 2 3

Chikurin-ji Temple 0 -1 -2 -3
History Museum 0 -1 -2 -3

(b) User B

Sightseeing spot
Rounds (property asked)

initial 1st round 2nd round 3rd round 4th round
(castle) (history) (summer resort) (temple)

Kochi Castle 0 1 1 0 1
Shimanto River 0 1 1 2 3

Chikurin-ji Temple 0 -1 -1 -2 -3
History Museum 0 -1 -1 -2 -1

mer resort, and temple. The property value of a sight-
seeing spot is set to 1 if the spot aligns with this prop-
erty, and −1 otherwise. For example, the Shimanto
River’s property value of castle should be −1, since
it has nothing to do with a castle. To show how the
refinement mode works, we assume that the value of
castle is erroneously set to 1 for Shimanto River as in-
dicated in the grayed cell in Table 1. We will show
how this error can be fixed with users participating in
the process.

For the sake of explanation, let us assume that
there are three users (User A, User B, and User C) as
shown in Table 2. This tables shows a user’s prefer-
ences, where 1 indicates that the user likes sightseeing
spots with a positive corresponding, and −1 indicates
that the user does not like such sightseeing spots.

4.2 Recommendation Mode

Let us assume that User A uses the system. The sys-
tem starts in the recommendation mode. User A’s user
vector is initialized to uA = (0,0,0,0,0). The system
calculates the scores of the sightseeing spots accord-
ing to Formula (1) as shown in the initial column of Ta-
ble 3(a). Since the score for all the sightseeing spots
is 0, there is no sightseeing spot to be recommended.
To ask the user a question, the system calculates the
information entropy of each property and selects the
one with the highest information entropy.

Since the number of sightseeing spots whose cas-

tle property is 1 and the number of sightseeing spots
whose castle property is 0 are the same, unlike
other properties, its information entropy is the high-
est among the properties. Thus, the system asks about
the castle property. Since User A’s preferences indi-
cate that the User A likes castles, the user’s response
is yes, and the user vector is updated to (0,1,0,0,0).
Accordingly, the score of sightseeing spots is updated
as in Table 3(a) (1st round column).

Let us assume that the recommendation threshold
is 3. Since there are no sightseeing spots whose score
equals or is greater than this threshold, a question
about another property is asked. Since other proper-
ties have the same information entropy, a property is
randomly selected. Let us assume that the next ques-
tion is about history. Since User A does not like his-
tory, User A replies with no, and User A’s user vec-
tor is updated to (0,1,−1,0,0). Since no sightseeing
spots satisfy the recommendation threshold, a ques-
tion about another property is asked. Let us assume
the next question is about nature. Since User A’s
preferences indicate that the user is interested in na-
ture, the user vector is updated to (1,1,−1,0,0). The
scores for the sightseeing spots are updated as shown
in Table 3(a) (3rd round column). In this case, the
score for Shimanto River equals the recommendation
threshold and is thus recommended to the user.

However, User A, who is assumed to like nature
and castles, gives feedback that the recommended
Shimanto River is inappropriate. The system then

On-the-spot Knowledge Refinement for an Interactive Recommender System

821

Table 4: Refinement candidates.
(a) After User A used (recommendation mode)

Sightseeing spot Property
nature castle history summer resort temple

Kochi Castle 0 0 0 0 0
Shimanto River 1 1 1 0 0

Chikurin-ji Temple 0 0 0 0 0
History Museum 0 0 0 0 0

(b) After User B used (recommendation mode)

Sightseeing spot Property
nature castle history summer resort temple

Kochi Castle 0 0 0 0 0
Shimanto River 1 2 1 1 1

Chikurin-ji Temple 0 0 0 0 0
History Museum 0 0 0 0 0

(c) After User C used (refinement mode)

Sightseeing spot Property
nature castle history summer resort temple

Kochi Castle 0 0 0 0 0
Shimanto River 1 3 1 1 1

Chikurin-ji Temple 0 0 0 0 0
History Museum 0 0 0 0 0

Table 5: Points of properties in the refinement mode.

Property
nature castle history summer resort temple

Points 1 2 1 1 1

updates the refinement candidates as shown in Ta-
ble 4(a). Since in this scenario, User A has already
answered the questions about nature, castle and his-
tory with either yes or no, corresponding values are
set to 1, indicating that these property values might
contain an error.

Next, let us assume that User B, whose prefer-
ences are shown in Table 2, starts using the system.
As with User A, User B’s user vector is initialized to
(0,0,0,0,0), and the question about castles is asked.
Since User B replies with yes, the user vector is up-
dated to (0,1,0,0,0), and the scores for sightseeing
spots are updated as shown in Table 3(b) (1st round
column).

Let us assume that the system asks about history
next. Since User B’s reply is not sure, the user vector
does not change. The next question is about summer
resorts. User B’s reply is yes, and the user vector is
updated to (0,1,0,1,0). Then, the score is recalcu-
lated as shown in the Table 3(b) (2nd round column).
For a question about temple, User B’s reply is no, and
the scores are updated as shown Table 3(b) (3rd round
column). Then, the Shimanto River is recommended
since the score of Shimanto River is 3. As with User
A, User B’s feedback is no to Shimanto River.

In this case, User B has responded to the ques-

tions castles, summer resorts, and temples with yes or
no, and the corresponding values in refinement candi-
dates are incremented. Note that User B’s reply to the
question about history is not sure, so the value regard-
ing history does not change.

4.3 Refinement Mode

Continuing the example execution, let us assume that
User C, whose preferences are shown in Table 2, starts
using the system in the refinement mode with the re-
fining candidate as shown in Table 4(b). Let us also
assume that the point threshold is set to 2. Since the
property whose points are the largest is castle, and its
points satisfy this threshold (Table 5), a question is
asked about this property. Since User C likes castles,
they answer this question with yes. The user vector
of User C is updated to (0,1,0,0,0), and the SCOREr
is updated as shown in Table 6.

Since the points of the other properties do not sat-
isfy the threshold, there are no other properties to ask
about, and the system looks for an item to present to
the user. In this scenario, the Shimanto River has the
highest score (SCOREr) of 2. If we assume the refin-
ing threshold is 2, the Shimanto River is presented to
User C as the recommended item.

ICAART 2019 - 11th International Conference on Agents and Artificial Intelligence

822

Table 6: SCOREr in the refinement mode.

Sightseeing spot Rounds
initial

Kochi Castle 0
Shimanto River 2

Chikurin-ji Temple 0
History Museum 0

In the example dataset, the Shimanto River incor-
rectly has the characteristics of castle. User C, who
likes castles, gives a feedback that they do not like
this item. Using Formula (5), ci, j is updated as shown
in Table 4(c). Note that, compared with Table 4(b),
the castle value of Shimanto River is incremented.

Here, if we assume the fix threshold is 3, the castle
property of Shimanto River is judged to be incorrect,
and its value is set to −1, which is correct. In this
way, an error in the item database can be fixed.

5 CONCLUSION

This paper proposed a method for refining an item
database in a interactive recommender system. The
main feature of the proposed method is that the re-
finement process is integrated into the recommenda-
tion process. Thus, more people can easily participate
in the refinement process, and the proposed method
can pave the way for using crowdsourcing for refin-
ing knowledge.

Here, we implicitly assume that users are not ma-
licious. When we deploy the proposed method in a
real-world situation, we need to deal with malicious
users and user mistakes or misunderstandings, which
may be a focus of future work.

We are currently building a prototype based on the
proposed method. We plan to simulate a refinement
process by building various user models and deter-
mine proper parameter values. Using the prototype,
we will examine the effectiveness of the proposed
method from the perspective of how efficiently errors
in an item database can be found and repaired. We
also plan to let human users interact with the system
and to evaluate their subjective impression of using
the system.

ACKNOWLEDGEMENTS

This work was partially supported by JSPS KAK-
ENHI Grant Number 18K11451.

REFERENCES

Acosta, M., Zaveri, A., Simperl, E., Kontokostas, D., Auer,
S., and Lehmann, J. (2013). Crowdsourcing linked
data quality assessment. In Alani, H., Kagal, L., Fok-
oue, A., Groth, P., Biemann, C., Parreira, J. X., Aroyo,
L., Noy, N., Welty, C., and Janowicz, K., editors, The
Semantic Web – ISWC 2013, pages 260–276. Springer
Berlin Heidelberg.

Atzmueller, M., Baumeister, J., Hemsing, A., Richter, E.-
J., and Puppe, F. (2005). Subgroup mining for inter-
active knowledge refinement. In Miksch, S., Hunter,
J., and Keravnou, E. T., editors, Artificial Intelligence
in Medicine, pages 453–462. Springer Berlin Heidel-
berg.

Christakopoulou, K., Radlinski, F., and Hofmann, K.
(2016). Towards conversational recommender sys-
tems. In Proceedings of the 22nd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and
Data Mining, KDD ’16, pages 815–824. ACM.

Hees, J., Roth-Berghofer, T., Biedert, R., Adrian, B., and
Dengel, A. (2011). BetterRelations: Using a game to
rate linked data triples. In Bach, J. and Edelkamp, S.,
editors, KI 2011: Advances in Artificial Intelligence,
pages 134–138. Springer Berlin Heidelberg.

Ikemoto, Y., Asawavetvutt, V., Kuwabara, K., and Huang,
H.-H. (2018). Conversation strategy of a chatbot
for interactive recommendations. In Nguyen, N. T.,
Hoang, D. H., Hong, T.-P., Pham, H., and Trawiński,
B., editors, Intelligent Information and Database Sys-
tems ACIIDS 2018, pages 117–126. Springer Interna-
tional Publishing.

Morschheuser, B., Hamari, J., Koivisto, J., and Maedche,
A. (2017). Gamified crowdsourcing: Conceptualiza-
tion, literature review, and future agenda. Interna-
tional Journal of Human-Computer Studies, 106(Sup-
plement C):26–43.

Paulheim, H. (2017). Knowledge graph refinement: A sur-
vey of approaches and evaluation methods. Semantic
web, 8(3):489–508.

Re Calegari, G., Fiano, A., and Celino, I. (2018). A frame-
work to build games with a purpose for linked data
refinement. In Vrandečić, D., Bontcheva, K., Suárez-
Figueroa, M. C., Presutti, V., Celino, I., Sabou, M.,
Kaffee, L.-A., and Simperl, E., editors, The Semantic
Web – ISWC 2018, pages 154–169. Springer Interna-
tional Publishing.

Waitelonis, J., Ludwig, N., Knuth, M., and Sack, H. (2011).
WhoKnows? evaluating linked data heuristics with a
quiz that cleans up DBpedia. Interactive Technology
and Smart Education, 8(4):236–248.

Widyantoro, D. H. and Baizal, Z. (2014). A framework
of conversational recommender system based on user
functional requirements. In 2nd International Confer-
ence on Information and Communication Technology
(ICoICT 2014), pages 160–165. IEEE.

On-the-spot Knowledge Refinement for an Interactive Recommender System

823

