
Decoupling Language and Editor - The Impact of the Language Server
Protocol on Textual Domain-Specific Languages

Hendrik Bünder
itemis AG, Bonn, Germany

Keywords: Textual Domain-Specific Languages, Model-Driven Development, Language Server Protocol, Case Study.

Abstract: Model-Driven Software Development using Domain-Specific Languages (DSL) has been widely adopted
throughout research and industry. The language workbenches required to efficiently build Domain-Specific
Languages and the associated editor support are often deeply integrated into a specific Integrated Development
Environment (IDE). Thereby, the chosen Domain-Specific Language workbench predicts the IDE required to
use the DSL. Yet, this IDE might not be the best choice for further implementing, testing, and debugging the
generated code. A case study was conducted to analyze how the Language Server Protocol could be utilized
to decouple the DSL implementation from a specific editor integrated into an IDE. First, the Language Server
Protocol capabilities are exemplified by building editor support for an Entity-DSL that is integrated into two
different IDEs. Second, a SWOT analysis is carried out to identify strengths and weaknesses as well as oppor-
tunities and threats for Domain-Specific Languages utilizing the Language Server Protocol. The case study’s
results indicate that the Language Server Protocol enables efficient multi-editor integration. Further, the results
of the SWOT analysis imply potential benefits for cross-functional teams specifying a shared domain model.

1 INTRODUCTION

Model-Driven software development focuses on the
abstract, formal description of domain models, that
declaratively describe real-world concepts. Model-to-
model and model-to-text transformations interpret the
domain models and eventually create source code and
configuration files that constitute the executable soft-
ware system (Sendall and Kozaczynski, 2003). Tex-
tual Domain-Specific Languages are used to specify
domain models using a textual concrete syntax. In
contrast to general purpose programming languages
such as Java, textual Domain-Specific Languages are
tailored to a narrow problem area for which they of-
fer concise and semantically rich notations (Hudak,
1997). Due to sophisticated editors that offer lan-
guage smarts, such as code completion, goto defini-
tion, and validations, modelers create domain models
efficiently and correctly.

In order to implement a Domain-Specific Lan-
guage with an associated editor, language work-
benches, such as MPS (Campagne, 2016), MontiCore
(Krahn et al., 2014), or Spoofax (Kats and Visser,
2010) can be utilized. Yet, the mentioned language
workbenches are deeply integrated into specific In-
tegrated Development Environments, such as Intel-

liJ (JetBrains, 2018) or Eclipse (Vogel and Beaton,
2013). While the deep integration enables semi-
automatic, efficient creation of language editors, it
also causes a tool lock-in by interweaving the DSL
editor with a specific IDE (Völter, 2013).

Yet, the IDE used for implementing, testing and
debugging a software system should not be deter-
mined by the DSLs language workbench. Although
most IDEs have support for the most popular pro-
gramming languages, they usually have very mature
support for a few specific programming languages.
For example, the Eclipse IDE offers sophisticated ed-
itor support for Java (Arnold et al., 2005) and C++
(Stroustrup, 2000), while Visual Studio Code (Mi-
crosoft, 2018) has a focus on JavaScript (Mikkonen
and Taivalsaari, 2007) and TypeScript (Bierman et al.,
2014) editors. Further, the IDE integrated editor as
well as testing and debugging support is differently
mature. While Eclipse and IntelliJ both provide IDE
features for Android development, IntelliJ offers a
more stable and feature rich editor. Therefore, pre-
defining the IDE by the DSLs language workbench
can be disadvantageous for toolsmiths and tool users.

The latter are either forced to use two separate
but specialized IDEs or one consolidated but not ideal
IDE. Both approaches decrease developer productiv-

Bünder, H.
Decoupling Language and Editor - The Impact of the Language Server Protocol on Textual Domain-Specific Languages.
DOI: 10.5220/0007556301290140
In Proceedings of the 7th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2019), pages 129-140
ISBN: 978-989-758-358-2
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

129

ity. The first by requiring a constant tool switch that
causes slower and more error-prone responses (Mon-
sell, 2003). The second, by not using the best tool
available for tasks like testing and debugging.

For toolsmiths there is often no economically rea-
sonable alternative to focusing on one IDE, because
supporting multiple editors causes tremendous effort.
Editor integration as well as computation of features,
such as code completion or validations, have to be im-
plemented for each IDE. Therefore, toolsmiths often
decide to provide support for only one editor or IDE.

While the use of IDEs as primary environment
comforts people with IT background, the large num-
ber of buttons, menus, and views often confuses non-
technical users. Therefore, implementing support for
only one editor not only causes the problems men-
tioned above but also excludes a group of potential
users. All available language workbenches are fo-
cused on creating mature tooling for arbitrary DSLs,
however, only for one specific IDE to integrate with.

The Language Server Protocol (LSP) which was
intentionally built to separate the language smarts of
general purpose programming languages from the ed-
itor integration, was recently adopted by the Xtext
language workbench. Thereby, textual DSLs based on
Xtext should be able to utilize all features of the Lan-
guage Server Protocol. A case study was conducted
to build an Entity-DSL that was integrated into two
different IDEs. Language smarts and the two editor
integrations are based on the Language Server Pro-
tocol. In addition, the case study includes a SWOT
analysis carried out to identify the impact of the LSP
on textual Domain-Specific Languages in general.

After analyzing related work Section 3 elaborates
on architecture, features and limitations of the Lan-
guage Server Protocol. In section 4 the Entity-DSL
implemented in the context of the case study is de-
scribed. Next, we outline the results of the SWOT
analysis conducted to identify the potential impact of
the LSP on textual domain specific languages. Fi-
nally, the results of the case study are discussed.

2 RELATED WORK

According to Tomassetti (Tomassetti, 2017a), an ex-
ternal Domain-Specific Language in contrast to an in-
ternal Domain-Specific Language has tool support. In
order to build such tool support, there are different
language workbenches available, that ease the cre-
ation of abstract syntax, parser, editor, and generators
(Fowler, 2005). Language workbenches like Monti-
Core or MPS generatively create DSL tools to be in-
tegrated into Eclipse or IntelliJ, respectively. Xtext

and Spoofax are two language workbenches that sup-
port Eclipse as well as IntelliJ integration. However,
since both are primarily focused on Eclipse, the Intel-
liJ support is rather experimental for Spoofax (Kats
and Visser, 2010) and lacking contributors for Xtext
(Xtext, 2018).

In addition to language workbenches targeting
specific IDEs, there is a variety of language work-
benches that produce web-based editors. Popoola et.
al. summarize such approaches as Modeling as a
Service (MaaS) (Popoola et al., 2017). They iden-
tify two categories of MaaS, namely client-server and
cloud-based. AToMPM, ModelBus, and DSLForge
represent modeling platforms from the first category,
that in some way require an installation on a lo-
cal server. In contrast, GenMyModel, WebGME,
CLOOCA, MORSE, and MDEForge require no in-
stallation and are accessible completely over the web.
While all approaches enable browser-based editing of
models, none of the approaches supports native inte-
gration into IDEs, such as Eclipse or IntelliJ.

The Language Server Protocol as introduced by
Microsoft, RedHat, and Codeenvy in 2016 fills this
gap (Microsoft, 2018). It aims at separating the com-
putation of language editor features, such as code
completion and validations, from the actual editor in-
tegration. Originally, invented to integrate different
programming languages into different IDEs and ed-
itors, there is also an implementation for the Xtext
language workbench. According to the list of Lan-
guage Server implementations (Microsoft, 2018a),
Xtext is by now the only language workbench sup-
porting the LSP. While Rodriguez-Echeverria et. al.
(Rodriguez-Echeverria et al., 2018) have already pro-
posed a Language Server Protocol infrastructure for
graphical modeling, little attention has been paid to
the impact of the LSP on textual modeling.

3 LANGUAGE SERVER
PROTOCOL

The number of programming languages is steadily in-
creasing over the last decades. While new program-
ming languages, such as Go (Go, 2018) or Swift (Ap-
ple, 2018), are gaining market shares (TIOBE, 2018),
old programming languages, such as Cobol or For-
tran, are staying as the basis of many legacy sys-
tems (Reuters, 2018). In addition, the number of in-
tegrated development environments is increasing as
well. Since most IDEs support a variety of program-
ming languages, IDE developers face the problem of
keeping up with ongoing programming language evo-
lution. At the same time language providers are inter-

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

130

Figure 1: Interprocess communication during routine editing session (Microsoft, 2018).

ested in providing as many IDE integrations as possi-
ble to serve a broad audience. Consequently, integrat-
ing every language in every IDE leads to a m-times-n
complexity.

The Language Server Protocol addresses this issue
by separating the language-specific smarts from the
integration into an editor. Features such as code com-
pletion, goto definition and refactoring are computed
in a language-specific server process. The Language
Server implementation itself can be implemented in
any programming language. Yet, there are Soft-
ware Development Kits (SDKs) encapsulating low-
level communication as specified by the LSP for pro-
gramming languages such as JavaScript or Java (Mi-
crosoft, 2018a). The server process communicates
over a standardized protocol with a client process that
integrates the language smarts into an IDE. The es-
sential parts of the Language Server Protocol are the
features specified by the protocol that client or server
implement. By decoupling the language implementa-
tion from the editor integration the complexity for in-
tegrating all programming languages into all existing
IDEs goes down to m-plus-n (Sourcegraph, 2018).

Since being introduced in 2016 more than 50 lan-
guage servers for languages such as Java, TypeScript,
and Cobol have been implemented. Moreover, there
are editor integrations for more than 10 IDEs in-
cluding widely adopted IntelliJ, Eclipse, and VSCode
(Sourcegraph, 2018). Since textual DSLs are pro-
gramming languages for a narrow set of problems
(Völter, 2013), the LSP can be utilized to decouple
language smarts from the editor for any DSL. How-
ever, by now Xtext is the only language workbench
that includes LSP support.

3.1 Architecture of the Language
Server Protocol

The Language Server Protocol is implemented by a
server and a client process. The interprocess com-
munication is defined by a protocol specifying the
available capabilities (Microsoft, 2018). The proto-
col is based on the stateless and lightweight remote-
procedure call protocol JSON-RPC. The transport ag-
nostic protocol uses JSON as data format (JSON-RPC
Working Group, 2018). Although JSON-RPC is de-
signed for remote procedure calls over a network,
server and client process not necessarily need to be
on different physical machines. In fact, most Lan-
guage Server implementations run two separate pro-
cesses, but on the same physical machine (Tomassetti,
2017b).

Figure 1 shows a routine editing session. On the
left-hand side, the Development Tool is shown and on
the right-hand side, the Language Server implemen-
tation is presented. The communication that is repre-
sented by the arrows between the Development Tool
and Language Server utilizes the Language Server
Protocol for remote procedure calls. The editing ses-
sion starts in the Development Tool where the user
opens a document. The Development Tool notifies the
Language Server that a document has been opened.
Next, the user edits the document which is again for-
warded to the server (textDocument/didChange). The
server now analyses the changes within the document
and sends detected errors and warnings back to the
Development Tool.

The following use case starts with the user execut-
ing a “Goto definition”, e.g. to jump to the declaration
of a variable. The Development Tool sends a request
to the Language Server giving the current cursor po-
sition within the document. Next, the position of the

Decoupling Language and Editor - The Impact of the Language Server Protocol on Textual Domain-Specific Languages

131

variable declaration is computed and returned to the
Development Tool. The Development Tool integra-
tion is now in charge of opening the correct document
and placing the cursor in the returned position. Fi-
nally, the user closes the document and the server is
notified again. From here on the truth about the con-
tent of the files is persisted on the file system (Bumer
et al., 2017).

The sample communication shows that the proto-
col is based on documents and positions within them.
Thereby, the protocol itself is independent of a spe-
cific programming language. However, it is currently
limited to text files. Consequently, binary file for-
mats are not supported. In addition to programming
languages, there is a variety of Language Server im-
plementations for configuration languages, such as
YAML (YAML, 2018) or XML (Microsoft, 2018a).
Xtext is currently the only textual DSL workbench
that supports the LSP. Therefore, languages imple-
mented with Xtext can utilize the features of the Lan-
guage Server Protocol .

3.2 Language Server Protocol Features

The Language Server Protocol currently in version
3.6 separates messages into header and content part.
The first specifies content length and content type
and is required for every message. The second con-
tains the actual content of the message. Within the
content of a message JSON-RPC 2.0 is used to de-
scribe requests, responses, and notifications. While
request messages always require a response message,
notifications do not (Microsoft, 2018b). In total the
current LSP version defines more than 40 message
types organized in five operational categories, namely
general, window, client, workspace, and document
(Rodriguez-Echeverria et al., 2018). The data for-
mat of the messages is JSON (JSON-RPC Working
Group, 2018).

Since not every language as well as not ev-
ery editor supports all features from the protocol,
both use Capabilities to announce the fea-
tures they support. During the initial request
to the Language Server, the client provides its
supported Capabilities. With the LSP 3.6 the
Capabilities consist of ClientCapabilities,
TextdocumentClientCapabilities, and
WorkspaceClientCapabilities. The latter de-
scribe features the editor supports on the workspace
level, such as operations to create, delete or re-
name resources. TextdocumentCapabilities
contain the support for text hovers or type
definitions. The ClientCapabilities
group TextdocumentCapabilities and

WorkspaceClientCapabilities. Additionally,
they add ExperimentalCapabilities which are
capabilities currently under development by a specific
language or editor implementation.

In general, the Language Server ignores unknown
Capabilities and interprets missing Capabilities
as not being supported by the client. The Language
Server itself answers to an initialization process by
returning the Capabilities offered to provide lan-
guage smarts (Microsoft, 2018c).

The focus of the protocol is on the language fea-
tures implemented by the Language Server. While
there is a large and steadily increasing num-
ber of language features included in the protocol,
the community-driven LSP-site (Sourcegraph, 2018)
cites “Code Completion”, “Hover”, “Goto Defini-
tions”, “Workspace Symbols”, “Find References”,
and “Diagnostics” as key features of a Language
Server implementation.

Code Completion. The code completion request
is sent to the server including the current document
and the cursor position within the document. The
Language Server computes completion items at the
given position and returns them to the Development
Tool. The client process is in charge of forward-
ing the completion proposals to the respective context
menu within the editor from which the user can select
the appropriate element. In case the computation of
completions is expensive, the completion can be rep-
resented by a handler. As soon as the user selects
the completion from the context menu, the handler
executes another request to the Language Server to
compute the full completion text. From the Language
Server implementations listed at (Sourcegraph, 2018)
nearly 90 percent support the code completion fea-
ture.

Figure 2: Theia Editor Integration - Hover Feature.

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

132

Hover. By sending a hover request to the server
additional information to be shown in a hover menu
is computed. Figure 2 illustrates the default hover
menu integrated into the Theia IDE. The hover menu
opened in line 16 contains the documentation of the
Address entity that is referenced as type of the at-
tribute address within the Employee entity. Addi-
tionally, text formatting including line-breaks, lists or
indentations is supported by the hover menu feature.
Around 88 percent of the listed Language Server im-
plementations provide a hover capability.

Goto Definitions. The Goto Definition request re-
turns the position within a document where the given
symbol is defined. Since LSP version 3.6.0 “Goto
Type Request” and “Goto Implementation Request”
have been added. While the first returns the position
where a given type is specified, the second returns the
implementation location of a given symbol. The Goto
Definition feature is supported by 83 percent of the
listed Language Server implementations.

Workspace Symbols. The Workspace Symbol re-
quest takes a query string and reveals all matching
symbols within the workspace. Out of the 58 Lan-
guage Server implementations only 35 implement the
workspace symbol request.

Find-References. Based on the current cursor
position within the document, the find-references re-
quest returns a project-wide list of locations. Each
of the locations references the symbol at the current
cursor position. The find-references request is imple-
mented by nearly 63 percent of the listed Language
Server implementations.

Diagnostics. The Language Server is responsible
for handling diagnostics. Depending on the kind of
project, diagnostics might be handled per file or for a
complete project. After the diagnostics, such as errors
and warnings, are computed, the server sends them to
the client. The client always replaces all diagnostics
so that no merge on the client side is required. There-
fore, a diagnostics notification with an empty list of
diagnostics is interpreted as no errors or warnings oc-
curred. 78 percent of the Language Server implemen-
tations support the diagnostics feature.

Besides the capabilities mentioned above, there
are more advanced features such as code lens or sig-
nature help included in the Language Server Protocol
(Microsoft, 2018b).

3.3 Limitations

The LSP provides a protocol for inter-process com-
munication between a language-specific server and an
editor specific client process. While the lightweight
protocol enables the separation of concerns and re-

duces the integration complexity, it also has some in-
herent limitations.

First, the LSP currently assumes that client and
server process have access to a shared file system.
Consequently, client and server run on the same phys-
ical machine. Not only is the naming of server and
client misleading, sharing a physical machine hinders
scalability and fail-over mechanisms of the stateless
server process. However, there are extensions to the
Language Server Protocol, such as the Files Exten-
sion that enables the Language Server to work with-
out a shared file system (Sourcegraph, 2016).

Second, the Language Server currently assumes
one Language Server serves exactly one Development
Tool (Microsoft, 2018b). In combination with run-
ning on a single physical machine, editing many dif-
ferent types of files at the same time, e.g. a Xtext
DSL, a Java program, and a XML configuration file
leads to three language servers running on a single
computer. Further, every Language Server is built as
a stand-alone application that does not communicate
with other language servers. In contrast to native in-
tegrations, common tasks, such as parsing XML files,
have to be implemented within each Language Server.

Thirdly, the Language Server Protocol currently
focuses on editing the text documents of a program-
ming, configuration or Domain-Specific Language.
Yet, there is no inherent support for running, testing
or debugging the specified programs. Hence, the ed-
itor might benefit from the decoupling achieved by
applying the Language Server Protocol , but features
mentioned above are still IDE-specific implementa-
tions. However, for the purpose of debugging the
Debugging Server Protocol has been announced, that
provides debugging support to be integrated into dif-
ferent editors(Kichwas Coders, 2018). Thereby, en-
abling IDE independent debugging support through a
standardized protocol that is similar to the LSP.

Fourthly, the Language Server Protocol has some
shortcomings compared to native IDE integrations.
Comparing the features available when editing a DSL
natively integrated into the Eclipse IDE, there is so-
phisticated support for type hierarchies or project- and
file-creation wizard (Vogel and Milinkovich, 2015).
The gain of easy integration into multiple editors
comes at the cost of losing some advanced features
available in native integrations.

4 BUILDING AN ENTITY-DSL
WITH THE LSP

In order to exemplify the capabilities of the Language
Server Protocol a case study was conducted. An

Decoupling Language and Editor - The Impact of the Language Server Protocol on Textual Domain-Specific Languages

133

Entity-DSL leveraging the LSP was implemented to
investigate the necessary tasks to integrate with differ-
ent IDEs. The Entity-DSL Language Server supports
the key language features as stated by the community-
driven LSP-site (Sourcegraph, 2018). To exemplify
the integration in different editors, a Language Server
client extension for Theia and Eclipse was imple-
mented.

Figure 3 shows the editor within the Theia IDE,
and Figure 4 displays the same language integrated
into the Eclipse IDE. In both cases the same ”Com-
pany.dsl” file is edited. While the completion pro-
posal shown by both figures is computed by the Lan-
guage Server process, the keyword highlighting was
implemented specifically for each editor integration.

Figure 3: Theia Editor Integration.

Figure 4: Eclipse Editor Integration.

The following subsections elaborate on imple-
menting the Language Server parts to compute Entity-

DSL smarts, as well as the client integration for Theia
and Eclipse.

4.1 The Entity-DSL Language Server
Implementation

Listing 1 shows an Xtext grammar in an EBNF-
like format defining the Entity-DSL including enti-
ties with properties and operations. The Entity-DSL
is a simplification of a typical textual DSL used in
real world projects to specify data models and oper-
ations. The root grammar element is the Model that
can hold an arbitrary number of Entity objects. Each
Entity can extend another Entity and contains an
unordered list of Property and Operation objects.
While a Property has a name and a type attribute,
an Operation consists of a name, an optional list of
Parameters and a returntype. Types can either
reference an Entity or a Primitive type, such as
string, number, or boolean.

Model:

entities+=Entity*;

Entity:

'entity' name=ID ('extends' superType=Entity)?

'{'

features+=Feature*

'}';

Feature:

Property | Operation;

Property:

name=ID ':' type=Type;

Operation:

'op' name=ID

'('(params+=parameter(','params+=parameter)*)?')'

(':'returntype=Type)?;

Parameter:

name=ID type=[Type];

Type :

{Primitive} name=Primitive | EntityReference;

EntityReference :

{EntityReference} entityDefinition=[Entity];

Primitive :

'number' | 'string' | 'boolean';

Listing 1: Grammar Rules for the Entity-DSL.

Based on the EBNF-like grammar, the Xtext language
workbench creates the required source code to parse
and link text files according to the specified gram-
mar. The generated language server classes use the
Language Server Protocol for Java (LSP4J) frame-
work (Eclipse, 2018c) to create messages in accor-
dance with the Language Server Protocol. LSP4J
encapsulates the low-level JSON communication and
defines a Java API that offers all features of the Lan-
guage Server Protocol (Miro Spnemann, 2018). Since
the Xtext language workbench generates the required

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

134

classes for the key language features, the default Lan-
guage Server implementation needs no further cus-
tomization. Yet, it supports the features explained in
Section 3.2.

4.2 Building a Client-extension for the
Theia Editor

Theia is a cloud and desktop IDE that integrates many
different languages based on the Language Server
Protocol. It separates the graphical user interface
from the backend processes. While the frontend ei-
ther runs in a browser or as a desktop application, the
backend process is executed locally or remotely, e.g.
on a cloud-based infrastructure (Theia.org, 2018).

In order to introduce editor support for the Entity-
DSL in Theia a backend extension is required that
configures the Language Server. Since Theia uses de-
pendency injection (Fowler, 2004) the required back-
end extension can be injected as shown by List-
ing 2. The EntityDslContribution extends the
BaseLanguageServerContribution from Theia’s
LSP-specific framework classes. As shown by List-
ing 2, the Language Server can either run as local
sub-process or remotely using web-socket communi-
cation (Fette and Melnikov, 2011). The details for
establishing the connections are encapsulated in Lan-
guage Server client specific libraries.

@injectable()

class EntityDslContribution extends

BaseLanguageServerContribution {

start(clientConnection: IConnection): void {

let socketPort = getPort();

if (socketPort) {

this.connectToRemoteServer(clientConnection ,

socketPort)

} else {

this.connectToLocalServer(clientConnection)

}

}

}

Listing 2: Registering a Language Server Extension in
Theia.

By registering a backend extension, the Theia editor
is ready to interpret the Entity DSL. Yet, the high-
lighting of keywords and comments is handled by
Theia’s frontend process. Therefore, an additional
frontend extension is added to support syntax high-
lighting. In addition, the frontend extension spec-
ifies the file suffix for which the Language Server
should be used. Listing 3 shows the part of the fron-
tend extension where the “globPattern” method of
the EntityDslClientContribution is overwritten

to specify the file extension the Language Server is
bound to.

@injectable()

export class EntityDslClientContribution

extends BaseLanguageClientContribution

{

protected get globPatterns() {

return ['**/*.dsl'];

}

}

Listing 3: Binding the “.dsl” file extension to the Language
Server.

Based on the backend and frontend extension the
Theia IDE can interpret Entity-DSL models as shown
by Figure 3.

4.3 Building a Client-extension for the
Eclipse IDE

The Xtext language workbench makes heavy use of
the Eclipse IDE for providing sophisticated, natively
integrated editor support for its DSLs. However, in-
stead of utilizing this native integration it will be
shown how the Entity-DSL can be integrated into the
Eclipse IDE using the Language Server for Eclipse
(LSP4E) framework (Eclipse, 2018b).

The integrated development environment Eclipse
has an extensible plugin architecture (Vogel and
Beaton, 2013). The IDE capabilities are ex-
tended by providing Eclipse plugins for specific pur-
poses. Consequently, to enable LSP-based sup-
port for the Entity-DSL an Eclipse-Plugin is pro-
vided. The Entity-DSL plugin extends the LSP4E
Plugin using well-defined extension points (Gamma
and Beck, 2004). The LSP4E plugin offers the
DSL-agnostic ”org.eclipse.lsp4e.languageServer” ex-
tension point. As shown by Listing 4, the
Entity-DSL plugins provides an extension in the
class EntityDslLanguageServerClass. While the
LSP4E plugin ensures that the Entity-DSL extension
is called at the correct time, the Entity-DSL plugin
handles the language-specific implementation.

<extension

point="org.eclipse.lsp4e.languageServer">

<server

id="org.eclipse.lsp4e.languages.dsl"

class="org.eclipse.lsp4e.languages.dsl.

EntityDslLanguageServer"

label="Entity -DSL Language Server">

</server></extension>

Listing 4: Registering a Language Server Extension in
Eclipse.

Decoupling Language and Editor - The Impact of the Language Server Protocol on Textual Domain-Specific Languages

135

Listing 5 shows the implementa-
tion of the EntityDslLanguageServer
that extends the LSP4E framework class
ProcessStreamConnectionProvider. As
soon as an editor for the “.dsl” file is opened
a Language Server is started as sub-process.
The createLauncherCommand method returns a
command to start a Language Server process as
sub-process. Afterwards, the working directory for
the Language Server is computed.

public class EntityDslLanguageServer extends

ProcessStreamConnectionProvider {

public MyDslLanguageServer() {

setCommands(createLauncherCommand());

setWorkingDirectory(workingDirectory());

}

}

Listing 5: Entity-DSL Extension.

In addition, there is a
ProcessOverSocketStreamConnectionProvider
class in the LSP4E plugin that can be extended in case
the connection to the server should be handled by
web-socket communication. Thereby, the connection
could be established to an already running Language
Server.

public class EntityPresentationReconciler extends

PresentationReconciler {

private Set<String > keywords = new HashSet <>(

Arrays.asList(new String[] {

"entity", "op", "string", "number","boolean","op"

}));

}

Listing 6: Keyword Definition for Syntax Highlighting.

To ensure correct highlighting for the Eclipse IDE
editor the PresentationReconciler needs to be
extended. The EntityPresentationReconciler
specifies syntax highlighting for keywords and com-
ments of the Entity-DSL. Listing 6 shows the defi-
nition of all keywords of the Entity-DSL to be high-
lighted.

Introducing Language-Server-based support for
the Entity-DSL in Theia and Eclipse is similar on a
conceptual level. Both integrations require a specific
implementation to support syntax highlighting. Fur-
ther, both extensions have to take care of starting the
Language Server. Yet, the two integrations have a lot
of differences in the details, such as architecture, pro-
gramming language, and API.

4.4 Results for Implementing the
Entity-DSL

In order to indicate the effort required for creating
a DSL with LSP support, we measured the time re-
quired to implement and integrate the Entity-DSL.
Building and integrating the Entity-DSL into Theia
and Eclipse can be divided into three major tasks.
First, the Language Server Implementation was done
using the Xtext language workbench. Since the Lan-
guage Server was generated based on the Xtext gram-
mar file, the first runnable version was done in about
two hours.

Table 1: Effort for implementing the Entity-DSL.

Time
Task (in minutes)
Language Server Implementation 127
Theia Editor Integration 414
Eclipse Editor Integration 317

Second, the Theia integration was implemented
requiring more manual implementation. Since fron-
tend and backend extension had to be implemented,
the overall effort for a first running version of the
editor integration took about 7 hours. Thirdly, the
Eclipse integration was implemented in a little bit
more than 5 hours, due to the experience gained when
writing the Theia extension.

For all three parts the implementation was only
possible in such a short amount of time, because there
are SDKs available that encapsulate low-level com-
munication including marshaling and demarshaling.

5 IMPACT ON TEXTUAL
DOMAIN-SPECIFIC
LANGUAGES

In addition to implementing the Entity-DSL a SWOT
analysis was carried out as part of the case study to get
a holistic view on the impact of the Language Server
Protocol on textual Domain-Specific Languages. The
analysis of strengths, weaknesses, opportunities, and
threats is used in a business context regularly for
strategic planning (Helms and Nixon, 2010). Af-
ter analyzing the internal strengths and weaknesses
of the Language Server Protocol the external oppor-
tunities and threats are examined. The analysis re-
veals the strengths that benefit the spread of the Lan-
guage Server Protocol and thereby the impact on tex-
tual DSLs. Additionally, it identifies weaknesses and

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

136

threats that need to be removed or mitigated, respec-
tively.

5.1 SWOT Analysis

Strengths. The Language Server Protocol provides
a standardized protocol for inter-process communi-
cation between a Development Tool and a Language
Server. Thereby, the language smarts required to
compute editing operations for source code, configu-
ration files, and textual Domain-Specific Languages
only have to be implemented once. Consequently,
support for new programming languages or textual
DSLs can be introduced into different IDEs and ed-
itors quickly.

Since the protocol is based on the JSON-RPC
standard, the data is represented by the lightweight
JavaScript Object Notation format. Thereby, the pay-
load between server and client is reduced to a min-
imum. Although LSP is currently used mainly with
two processes running on the same physical machine,
the efficient data exchange format forms an important
prerequisite for communicating over a network. Ad-
ditionally, the delays due to data exchange are mini-
mized leading to better user experience when editing
text documents.

While the Language Server Protocol specifies a
set of language capabilities that a client or a server
can implement, it also allows for custom capabilities.
Using custom capabilities enables toolsmiths to im-
plement language or editor specific features. Yet, the
editor integration has to be built manually. Thereby,
custom protocol features might not be supported by
all editors or languages. Nevertheless, language ex-
tensions that appear to be reasonable for the majority
of programming languages may be added to the pro-
tocol.

Especially for DSLs, the tool users are not al-
ways developers. Instead, team members with a
business background want to engage in creating
domain-specific models, e.g., to specify insurance
contracts or banking products (Völter, 2013). The
ability to integrate LSP-based editors seamlessly into
browser-based applications lowers the barrier for non-
technical experts. By accessing and editing the DSL
through a browser-based interface, installation and
distribution efforts are minimized. At the same time,
web editors may not be as confusing as integrated de-
velopment environments from a non-technical user’s
perspective.

Weaknesses. The LSP is implemented under the
assumption that there is one Language Server per
tool. While this is appropriate for a single language
approach it has some shortcomings regarding multi-

language approaches and cross-language referencing.
Since a Language Server is started for every kind
of language on the same physical machine (s. Sec-
tion 3.3) as the editor, the choice of a programming
language to implement the Language Server becomes
significant. If the Language Server is implemented in
Java, then a Java Virtual Machine (JVM) is started for
every language. Assuming an average memory con-
sumption of 1 GB per JVM and editing a DSL, a Java
program, and a XML file at a time, 3 GB memory
is allocated. Depending on the size and complexity
of the projects and the computers used, this can re-
sult in poor user experience. However, since the pro-
gramming language used to implement the Language
Server is independent of the programming language
of the Development Tool, toolsmith are free to use
languages with a smaller memory footprint, such as
JavaScript.

Additionally, language servers are currently im-
plemented to be independent. While this enables
separated life-cycles of servers, it also forces each
language implementation to re-implement potentially
reusable concepts of other languages. If a DSL, for
example, references Java classes on the classpath, it
has to implement the access to the classpath and the
classes on it. In contrast, a native IDE integration,
e.g., in Eclipse, allows the DSL implementation to re-
use functionality from other plugins, such as the Java
Development Tools (JDT) plugin (Eclipse, 2018a).

As Section 4 has shown, each editor integration
requires its own specific extension. Therefore, the
language provider still needs to specify which edi-
tors to support. Consequently, the knowledge about
how to provide extensions for Eclipse, Theia, etc. is
still required. Further, since every integration is a lit-
tle bit different, they all have to be tested to guar-
antee the same user experience, e.g., keywords be-
ing highlighted or code completion proposals being
sorted correctly.

The Language Server is currently limited to sup-
port programming languages and thereby textual
DSLs that are programming languages for a specific
problem domain. However, frameworks like Intel-
liJ’s Meta Programming System (MPS) offer a pow-
erful language workbench for implementing editors
for projectional editing of DSLs (Fowler, 2005). In
addition, graphical notations are often beneficial to
present a quick overview of complex relations. Both
are not supported by the Language Server Proto-
col. Thereby, excluding a large number of powerful
Domain-Specific Language implementations.

Opportunities. Domain-specific languages are
widely adopted through research and industry. Ma-
ture language workbenches such as Xtext enable fast

Decoupling Language and Editor - The Impact of the Language Server Protocol on Textual Domain-Specific Languages

137

creation of Domain-Specific Languages. However,
the DSL usage is often bound to one specific IDE.
At the same time, software developers demand more
freedom when choosing their IDE. In multi-layered
software architectures a variety of programming lan-
guages are utilized that are edited best with different
IDEs. For example, the Javascript code for the fron-
tend might be edited best with the Theia IDE, while
the Java backend code is edited best with the Eclipse
IDE. Yet, a holistic DSL aims to describe parts of both
architectural layers, e.g., to provide consistency be-
tween backend and frontend.

The Language Server Protocol solves the prob-
lem of writing specific extensions or plugins for ev-
ery potential editor and thereby enables a fast spread
of the DSL. Given an industry that constantly adds
new DSLs and editors, the Language Server Protocol
creates the opportunity to provide a Domain-Specific
Language in an environment that the user is most fa-
miliar with.

By introducing abstract Domain-Specific Lan-
guages, non-technical team members are enabled to
engage in the process of describing a software system
on a technology agnostic level. Yet, DSLs integrated
into heavyweight IDEs cause a lot of distraction. The
graphical user interface is often perceived by non-
technical users to be overloaded with menus, buttons,
and views. Further, additional software has to be in-
stalled and maintained to use the DSL. Besides being
integrated into client-based IDEs a Language Server
client extension can also be built for web-based ed-
itors such as Monaco (Microsoft, 2018). By edit-
ing DSLs through a browser-based editor that does
not require any additional installations or new tools
to learn, the entry barrier for non-technical users is
lowered. Consequently, each team member can work
on a shared ubiquitous domain model from his or her
preferred editor environment. Further, the develop-
ment activities of non-technical and technical team
members are closely integrated. They not only use
the same Domain-Specific Language to specify a soft-
ware system, but they are also allowed to use the ed-
itor of their choice. Thereby, the domain-model can
be created through two differently skilled stakehold-
ers from their favorite editing environment.

Threats. While there is currently no comparable
alternative to decoupling the language smarts from
the editor integration, the threats do not lie in other
technologies but rather in semantically rich program-
ming languages. Further, multi-notational DSLs that
integrate forms, tables, graphs and text pose a real
threat.

New programming languages, such as Scala, D, or
Go are more expressive than programming languages

such as Java or C. Additionally, frameworks provide
high-level APIs that ease the development of complex
processes. More expressive languages and framework
diminish the need for low-level textual DSLs, e.g. to
describe entities or service interfaces, since the ad-
vantage gained from transformation and generation
is small. Consequently, Domain-Specific Languages
must provide higher levels of abstraction to create
benefits.

In addition, multi-notation support, e.g. for ta-
bles, charts or formulas becomes more important. Al-
though, projectional DSLs built with language work-
benches such as MPS are bound to a specific IDE,
they are a valuable alternative to parser-based DSLs.
If the Language Server Protocol is not enhanced to
also handle projectional editor based languages, a
growing market share of DSLs is out of reach.

While current projectional DSL workbenches do
not offer web editor support, there are browser-based
multi-notation language workbenches. WebGME
(Maróti et al., 2014), for example, enables the cre-
ation of Domain-Specific Languages through a web-
client. Especially, for high-level, graphical notations
WebGME is an alternative to parser-based languages
built with the LSP.

6 DISCUSSION

The case study has shown that Entity-DSL language
and editor can be separated easily by using the Lan-
guage Server Protocol. At the same time, the inte-
gration into multiple different Development Tools is
possible. Section 4.4 indicates that the creation of the
Language Server itself is relatively fast, due to the
high ratio of generated source code. Although each
editor integration has its own programming language
and API, basic concepts are the same. Therefore, the
implementation of the second editor integration into
Eclipse was slightly faster than the Theia integration.
Further, the SWOT analysis revealed that the LSP
is concerned with the right problems in an industry
where the number of DSLs and Development Tools is
increasing steadily. However, by focusing on textual
DSLs valid and powerful alternatives such as graph-
ical or projectional DSLs are not covered. Neverthe-
less, since the Xtext language workbench supports the
LSP, the number of DSLs utilizing the protocol will
increase in the future.

The Language Server Protocol has already had
an impact on Domain-Specific Languages. First, the
widely used Xtext language workbench has already
adopted the LSP. Further, the language workbench
automatically creates support for the main language

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

138

features as listed by the community-driven LSP-site
(Sourcegraph, 2018). Thereby, the Language Server
Protocol has defined the capabilities a language must
have to comply with the minimal editor-support “stan-
dard”. Second, the LSP contains features that are cur-
rently not supported by the Eclipse native integration,
e.g., the signature help feature. Since this capability
can be included in DSLs built with the Xtext work-
bench, the LSP has introduced new features. Thirdly,
DSLs built with the Language Server Protocol will
in the future be edited by a broader group of poten-
tial users, such as developers, business analysts, and
testers due to the relatively easy integration into mul-
tiple editors. Thereby, the LSP will foster the collab-
oration in cross-functional teams.

By enabling multi-editor integration, LSP-based
textual DSLs become a valid alternative to web-based
approaches. Domain-Specific Languages backed by
the Language Server protocol have the advantage
that they can be integrated into IDEs as well as into
browsers. Thereby, enabling all team members to
contribute to shared domain models from the editor
that best suits their needs. The technological lim-
itations, such as a shared physical machine and no
direct communication between language servers, are
outweighed by the advantages of decoupling language
smarts and editor integration.

7 CONCLUSIONS

The paper has shown how the LSP can be leveraged
to integrate one DSL in a variety of editors. Although
the integration into every additional editor came at the
cost of providing a new extension for the specific IDE,
the overall integration costs are far below implement-
ing an IDE-specific integration. Further, the SWOT
analysis has shown that the LSP has the potential to
provide textual DSLs to many different user groups
and thereby foster collaboration. However, focusing
solely on textual DSLs is also the largest disadvan-
tage, since it leaves out projectional and graphical ap-
proaches.

The impact of the Language Server Protocol on
textual Domain-specific languages is threefold. First,
the six main features as listed by Section 3.2 can be
seen as the minimum feature set that should be sup-
ported by any DSL editor. Second, the effort required
to support different IDEs and editors for any given
textual DSL is significantly reduced by the Language
Server Protocol. Thirdly, by liberating the language
smarts from the editor integration users can specify
domain models without installing heavyweight IDE,
e.g. through a browser-based editor.

The fact that each Language Server is built to
serve one Development Tool and has no inherent con-
nection to other Language Servers introduces some
disadvantages. Additional research is required to an-
alyze whether the separation leads to consequent re-
implementation of basic features. Further, having one
Language Server per Development Tool on the same
physical machine should be investigated in industry
size projects to estimate the effect on the overall per-
formance.

The contribution of this paper based on the con-
ducted case study is two-fold: First, we showed how
to apply the LSP to implement an Entity-DSL and in-
tegrate its editor into the Theia and Eclipse IDE. Sec-
ond, a SWOT analysis identified internal strength and
weaknesses of the LSP and evaluated them against
current external conditions in form of opportunities
and threats. Based on the first-hand experiences from
utilizing the LSP and the results of the SWOT analysis
the potential impact on textual DSLs was analyzed.

REFERENCES

Apple (2018). About swift.
Arnold, K., Gosling, J., and Holmes, D. (2005). The

Java programming language. Addison Wesley Pro-
fessional.

Bierman, G., Abadi, M., and Torgersen, M. (2014). Un-
derstanding typescript. In European Conference
on Object-Oriented Programming, pages 257–281.
Springer.

Bumer, D., Gamma, E., and McBrean, S. (2017). What is
the language server protocol (lsp).

Campagne, F. (March 2016). The MPS language work-
bench: Meta Programming System. campagnelab,
[New York, NY], third edition, version 1.5.1 edition.

Eclipse (2018a). Eclipse java development tools (jdt).
Eclipse (2018b). Eclipse lsp4e.
Eclipse (2018c). Eclipse lsp4j.
Fette, I. and Melnikov, A. (2011). The websocket protocol.

Technical report.
Fowler, M. (2004). Inversion of control containers and the

dependency injection pattern.
Fowler, M. (2005). Language workbenches: The killer-app

for domain specific languages.
Gamma, E. and Beck, K. (2004). Contributing to Eclipse:

principles, patterns, and plug-ins. Addison-Wesley
Professional.

Go (2018). The go programming language.
Helms, M. M. and Nixon, J. (2010). Exploring swot anal-

ysis where are we now?: A review of academic re-
search from the last decade. Journal of Strategy and
Management, 3(3):215–251.

Hudak, P. (1997). Domain-specific languages. Handbook
of programming languages, 3(39-60):21.

JetBrains (2018). Intellij idea.

Decoupling Language and Editor - The Impact of the Language Server Protocol on Textual Domain-Specific Languages

139

JSON-RPC Working Group (2018). Json-rpc 2.0 specifica-
tion.

Kats, L. C. and Visser, E. (2010). The spoofax language
workbench: Rules for declarative specification of lan-
guages and ides. In Proceedings of the ACM Interna-
tional Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’10,
pages 444–463, New York, NY, USA. ACM.

Kichwas Coders (2018). Debugging protocol vs. language
server protocol.

Krahn, H., Rumpe, B., and Völkel, S. (2014). Efficient edi-
tor generation for compositional dsls in eclipse. arXiv
preprint arXiv:1409.6625.

Maróti, M., Kecskés, T., Kereskényi, R., Broll, B.,
Völgyesi, P., Jurácz, L., Levendovszky, T., and
Lédeczi, Á. (2014). Next generation (meta) model-
ing: Web-and cloud-based collaborative tool infras-
tructure. MPM@ MoDELS, 1237:41–60.

Microsoft (2018). Code editing. redefined.
Microsoft (2018a). Implementations - language servers.
Microsoft (2018b). Language server protocol specification

- base protocol.
Microsoft (2018c). Language server protocol specification

- initialize.
Microsoft (2018). Monaco editor - about.
Microsoft (2018). Overview - what is the language server

protocol.
Mikkonen, T. and Taivalsaari, A. (2007). Using javascript

as a real programming language.
Miro Spnemann (2018). The language server protocol in

java.
Monsell, S. (2003). Task switching. Trends in Cognitive

Sciences, 7(3):134 – 140.
Popoola, S., Carver, J., and Gray, J. (2017). Modeling as

a service: A survey of existing tools. In MODELS
(Satellite Events), pages 360–367.

Reuters (2018). Cobol blues.
Rodriguez-Echeverria, R., Izquierdo, J. L. C., Wimmer, M.,

and Cabot, J. (2018). Towards a language server pro-
tocol infrastructure for graphical modeling. In Pro-
ceedings of the 21th ACM/IEEE International Con-
ference on Model Driven Engineering Languages and
Systems, MODELS ’18, pages 370–380, New York,
NY, USA. ACM.

Sendall, S. and Kozaczynski, W. (2003). Model transfor-
mation: the heart and soul of model-driven software
development. IEEE Software, 20(5):42–45.

Sourcegraph (2016). Files extension to the lsp.
Sourcegraph (2018). Languageserver.org.
Stroustrup, B. (2000). The C++ programming language.

Pearson Education India.
Theia.org (2018). Theia - cloud and desktop ide.
TIOBE (2018). Tiobe index for november 2018.
Tomassetti, F. (2017a). The complete guide to (external)

domain-specific languages.
Tomassetti, G. (2017b). Why you should know the language

server protocol.
Vogel, L. and Beaton, W. (2013). Eclipse IDE: Java pro-

gramming, debugging, unit testing, task management

and Git version conrol with Eclipse. Vogella series.
Vogella, [Lexington, Ky], 3rd ed. edition.

Vogel, L. and Milinkovich, M. (2015). Eclipse Rich Client
Platform. vogella series. Lars Vogel.

Völter, M. (2013). DSL engineering: Designing, imple-
menting and using domain-specific languages. Cre-
ateSpace Independent Publishing Platform, Lexing-
ton, KY.

Xtext (2018). Idea support.
YAML (2018). Yaml ain’t markup language.

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

140

