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Abstract: In this paper, we propose a handwritten text recognition approach on word image patches extracted from 
Khmer historical documents. The network consists of two main modules composing of deep convolutional 
and multi-dimensional recurrent blocks. We utilize the annotated information of glyph components in the 
word image to build a glyph class map which is to be predicted by the first module of the network call glyph 
class map generator. The second module of the network encodes the generated glyph class map and 
transform it into a context vector which is to be decoded to produce the final word transcription. We also 
adapt an attention mechanism to the decoder to take advantage of local contexts which are also provided by 
the encoder. Experiments on a publicly available dataset of digitized Khmer palm leaf manuscripts called 
SleukRith set are conducted. 

1 INTRODUCTION 

Historical documents are very valuable since they 
contain significant historical information about a 
person, a place, or an event thus serve as primary 
sources of important ingredients useful for 
researchers in many fields of study. Preservation of 
these documents are essential, and with the help of 
recent technologies, they can be digitized and 
centralized. However, in order to enable word search 
to give the public easy and quick access to the 
content of the digitized documents, a text 
recognition system is needed. 

Handwriting text recognition is a very 
challenging task especially on old degraded 
documents. Recently, the performance of such kind 
of system has been improved greatly by leveraging 
deep learning approaches utilizing concepts such as 
convolutional neural networks (CNN) due to their 
ability to extract automatically both low and more 
abstract level of features from the text image. Long 
short-term memory recurrent neural networks 
(LSTM-RNN) are also widely used since such 
network is able to store and remember information 
for longer amounts of time which is suitable for 
sequential problem like text recognition. While a 
conventional LSTM uses its recurrence only over 

one dimension (normally the x-axis of the text 
image), a more robust multi-dimensional LSTM 
(MDLSTM) employs sequential information from 
both the vertical and horizontal axes of the image 
(Graves et al., 2007) (Graves and Schmidhuber, 
2009). In recent work, the combination of CNN and 
RNN modules together has shown great success in 
solving handwritten text recognition problems on 
Latin and Chinese scripts (Voigtlaender et al., 2016) 
(Ding et al., 2017) (Wu et al., 2017) (Wang et al., 
2018). To decode the final text transcription, 
Connectionist Temporal Classification (CTC) 
introduced by (Graves, et al., 2006) is often used 
since no time-consuming annotated alignment 
information is needed. This decoding technique is 
one dimensional in nature and works efficiently well 
for scripts with one directional writing style (for 
example, left to right or top to bottom), i.e. no more 
than one character is at the same horizonal or 
vertical position. However, for scripts with a more 
complex writing style such as Khmer, character 
annotation and alignment information might still be 
required to produce a more accurate recognition 
result. 

In this paper, we proposed a model which takes 
advantage of both the convolutional module and the 
multi-dimensional recurrent module to recognize 
texts on a particular type of historical documents 
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written in Khmer script called palm leaf 
manuscripts. The proposed model also incorporates 
the annotated spatial alignment information of each 
character or glyph in the text image. 

2 DESCRIPTION OF KHMER 
HISTORICAL DOCUMENTS 

2.1 Palm Leaf Manuscripts 

Palm leaves were used as one of the earliest writing 
mediums since centuries ago in many Southeast 
Asian countries. In Cambodia, palm leaf documents 
are called “Sleuk Rith” which literally means a 
binding of leaves. Khmer Palm leaf manuscripts are 
of important cultural value, and the content in the 
manuscript themselves has been passed on from 
generations to generations through scholars and 
scribers. As the name implies, palm leaf manuscripts 
are made from dried leaves of a specific specie of 
palm tree. The dried leaves are cut and trimmed to 
be long rectangular writing pages. A special kind of 
sharp metal stylus is used to scribe texts onto each 
page of the document, and a mixture of black ink 
(normally a combination of coal and a kind of paste) 
is applied afterwards to emphasize the carved letters. 
All scribed pages are eventually tied and bound 
together to form a complete book. 

2.2 Challenges for Text Recognition 
Task 

Biodegradation of palm leaf pages is one of the main 
issues for preservation measurement for this type of 
document. The degradation influences the images of 
the digitization process of the palm leaf document: it 
produces noises, discoloration, and poor contrast 
causing omission of texts, and other types of defects 
which render pre-processing tasks including 
binarization and segmentation difficult or impossible 
(Kesiman et al., 2018). 

Complexity of Khmer script is also a big 
challenge. Khmer is recognized by the Guinness 
World Records1 to be the language with the longest 
alphabet which consists of 74 distinct letters. Certain 
types of letters have more than one form and/or can 
be combined with other letters to create more shapes 
which increase even more the number of symbols in 
Khmer writing. The abundance of different symbols 
in Khmer script requires a complex and 
 
1http://www.guinnessworldrecords.com/world-records/longest-
alphabet 

sophisticated system for those letters to be 
efficiently recognized and accurately classified. 

On account of the large quantity of symbols, 
many of those symbols are very similar and can be 
distinguishable by only the appearance of some 
small strokes or holes and their spatial locations. In 
old handwritten form, this similarity is even more 
apparent and sometimes creates an ambiguity 
between symbols which requires context from 
neighbouring symbols so that those ambiguous 
symbols can be correctly identified.    

Consonants in Khmer script are used either as 
individuals or as clusters of multiple letters i.e. a 
double or triple decker form which is composed of a 
normal letter and one or two subscripts to merge the 
sound of those consonants together. Figure 1 shows 
some examples of different combinations of 
consonant clusters. Vowels and diacritics can be 
ascenders or descenders or can be placed at either 
side (right or left) of the main consonant or the 
cluster of the main consonant. Some letters even 
consist of multiple parts which can be positioned at 
different locations simultaneously. 

Unicode encoding (U1780-U17FF) has been 
adopted to represent Khmer symbols. Even though 
the overall writing direction of a word is left to right, 
the order of the Unicode codes in the code sequence 
representing that word does not always follow the 
writing order of the composing symbols. Also, 
symbol to code relationship is not always one to one 
i.e. some symbols can be represented by more than 
one code, and some codes can represent a 
combination of symbols. For instance, each 
subscript of any consonant does not have its own 
code but is instead represented by a sequence of two 
codes: a special code “coeng” (U17D2) followed by 
the code of its corresponding normal consonant. 
Unlike words in Latin script whose symbols can be 
identified one by one, to recognize a Khmer word, 
one must look at the whole writing of the word. This 
illustrates that the spatial information of each 
symbol composing a word is crucial for the 
recognition of that word. 

 

 

Figure 1: Examples of double-decker and triple-decker 
clusters of Khmer consonants. 
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3 SLEUKRITH SET 

SleukRith Set is a collection of annotated data 
created from a corpus of 657 digital images of 
Khmer palm leaf manuscript pages (Valy et al., 
2017). Three types of annotated data are 
constructed: glyphs, words, and lines. 

3.1 Isolated Glyph and Word Datasets 

Annotation of SleukRith Set is done in a bottom-up 
fashion. Each glyph is first manually segmented by 
tracing its polygon boundary. Note that a glyph may 
represent a part of a letter, a single letter, or a group 
of letters. The coordinates of all vertices of the 
polygon boundary are kept along with the code or 
sequence of codes accordingly assigned to the glyph. 
After all glyphs in a manuscript page have been 
segmented and annotated, annotation at word level 
can begin. To form a word, its glyph components are 
grouped together. A transcription of the word is then 
given. Word annotation therefore contains both the 
transcription (Unicode text) and the annotated 
information of its component glyphs (each glyph’s 
boundary vertices and its label codes). The rectangle 
patch image of each word can be generated by using 
the bounding box of the union of the polygon 
boundaries of all its glyph components. 

3.2 Glyph Class Map 

Using the annotated information of each glyph 
component, a glyph class map (GCM in short) 
originally called a character-class map (Valy, et al., 
2018) is built for each word patch image. Let’s 
suppose a word image ܫ composing of ݊ glyphs, and 
௜ (0ܤ ൑ ݅ ൏ ݊) represents the region bound by the 
polygon boundary of the ݅th glyph ௜݃. In each region 
 ௜, we replace the value of each pixel by a newܤ
value ݒ௜ (0 ൏ ௜ݒ ൑ ௚ܰ௖ where ௚ܰ௖ is the number of 
glyph classes) corresponding to the class of the 
glyph ௜݃ (see Figure 2.b). A new image ܫ′ with the 
same dimension as ܫ is created by forming the union 
of all regions ܤ௜. An additional value (ݒ௕௟௔௡௞ ൌ 0) is 
used to fill in the background region of ܫ′ where no 
glyph pixels are assigned to. The new image ܫ′ is 
divided into grid of cells of ܿ௛ by ܿ௪ pixels where ܿ௛ 
and ܿ௪ are the height and width of each cell 
respectively. Prior to this division, resizing ܫ′ to be 
of size ܪூ by ூܹ might be necessary to ensure that 
all cells are of equal size i.e. ܪூ	mod	ܿ௛ ൌ 0 and 
ூܹ 	mod	ܿ௪ ൌ 0. We also denote ௥ܰ௢௪ and ௖ܰ௢௟ to 

be the number of rows and the number of columns 

of the grid ( ௥ܰ௢௪ ൌ ூ/ܿ௛ and ௖ܰ௢௟ܪ ൌ  ூ/ܿ௪). Eachܪ
cell of the GCM is then assigned to one and only one 
glyph class which is the pixel value contained the 
most in that cell. Figure 2 shows how a GCM is 
constructed. 

4 TEXT RECOGNITION 

We propose an end-to-end model to recognize a 
handwritten text on word image patches extracted 
from Khmer palm leaf manuscripts. The model 
consists of two main modules: the GCM generator 
and the GCM encoder-decoder. Figure 3 illustrates 
the complete architecture of the proposed model. 
Both modules utilize the combination of 
convolutional and multi-dimensional recurrent 
blocks. 

4.1 GCM Generator 

A GCM generator takes a grayscale word image 
patch ܫ with dimension ܪூ ൈ ூܹ as input and returns 
a corresponding GCM of the patch as output. First, 
convolutional blocks are used to extract 
automatically the features of the word image patch. 
Each convolutional block is composed of a 
convolutional layer with a receptive field 5 ൈ 5 at a 
fixed stride 1 ൈ 1. We increase the number of 
feature maps from 64 to 128 and then to 256 to 
gradually obtain from low to higher levels of 
representation. To further extend the depth of the 
network, we also downscale the image by a factor of 
2 at the end of each convolutional block by using 
maxpooling with kernel size 2 ൈ 2 at a stride 2 ൈ 2.  
 

 

Figure 2: (a) Original word image patch ܫ, (b) New image 
 .GCM (c) ,′ܫ
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Figure 3: Overview of the architecture of proposed text 
recognition model. 

Convolutional blocks are activated by ReLu. To 
regularize the model and to prevent overfitting, 
dropout of dropped probability ݌ ൌ 0.3 is introduced 
after each block. To ensure that the dimension of the 
output predicted by the CGM generator is identical 
to the ground truth CGM (i.e. ௥ܰ௢௪ ൈ ௖ܰ௢௟), the 
feature map output from the convolutional blocks 
needs to be divided into a grid of cells of size 
ܿ௛
ᇱ ൈ ܿ௪ᇱ  which can be computed as follows: 

ܿ௛
ᇱ ൌ

ܿ௛
2ே೎೚೙ೡ

 (1)

ܿ௪ᇱ ൌ
ܿ௪

2ே೎೚೙ೡ
 (2)

where ௖ܰ௢௡௩ is the number of convolutional blocks 
which is equal to 3 in the proposed architecture. We 
should also ensure that ܿ௛ and ܿ௪ are large enough 
to allow the division by 2ே೎೚೙ೡ. Therefore, we use 
ܿ௛ ൌ ܿ௪ ൌ 8 in our experiments. Each cell in the 
grid is then transformed into a vector by flattening 
out its dimension. 

To take advantage of the importance of local 
spatial context in a two-dimensional space according 
to the characteristics of Khmer writing, we use 
multi-directional multi-dimensional LSTM 
(MDDLSTM) (Graves, et al., 2007) in our recurrent 
blocks. In stead of a single hidden state from the 
previous time step like in the conventional one-
dimensional LSTM, MDDLSTM makes use of two 
states each from both the vertical and horizontal 
axes. 

To take into account all directions in the 2D 
space, four grids of cells are produced from the 
feature map grid. Those four grids represent four 
diagonal directions: top-left to bottom-right, bottom-
left to top-right, top-right to bottom-left, and bottom-
right to top-left. The four directional grids share the 
same two-layer block of MDDLSTM (each layer 
with 256 hidden units) to produce four output grids 
whose feature vectors in each cell are then 
concatenated together to transform back into a single 
grid of feature map. At each cell of the grid, we 
apply a dropout (݌ ൌ 0.3) followed by a fully 
connected layer (with 1024 hidden units) activated 
by ReLu and another dropout (݌ ൌ 0.5). To predict 
the GCM corresponding to the input word image 
patch, the last layer with ௚ܰ௖ ൅ 1 hidden units and a 
softmax activation is used to output the probabilities 
of all glyph classes (including the class representing 
the background) for each cell in the predicted GCM.  

4.2 GCM Encoder-Decoder 

An encoder-decoder model is used to convert the 
GCM into final transcription of the input word 
image patch. This encoder-decoder module is 
separated into two sub-modules: an encoder and a 
decoder. The encoder encodes the GCM generated 
by the GCM generator into a representation vector 
called context vector. The decoder then uses the 
context vector as an initial state to predict the 
Unicode transcription one letter at each time step.  
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4.2.1 Encoder 

We propose a combination of convolutional blocks 
and recurrent blocks as our GCM encoder. It takes 
as input the GCM and first reduces the dimension of 
the vector in each cell by passing it through an 
embedding layer (64 neurons) and then squash it 
using Tanh activation. Since the GCM contains 
information about the identity and the number of 
glyphs appearing in the word image patch and also 
their estimated boundary regions, two convolutional 
blocks are used to capture the bottom features of the 
map. Two main benefits of these convolutional 
blocks are that (1) the features extracted are useful in 
detecting and grouping together automatically the 
neighbouring cells belonging to the same glyph 
region without the need for handcrafted method such 
as connected component extraction and also that (2) 
the maxpooling layer down-samples the GCM 
dimensionality which limits the length of the input 
sequence to the recurrent block of the encoder to be 
not too long. For the purpose of regularization, 
dropouts are used after each convolutional block. 
Due to the GCM being two-dimensional, we again 
use MDDLSTM in the recurrent block of the GCM 
encoder. Similar to the description of applying 
MDDLSTM in the GCM generator mentioned 
previously, the recurrent block output four grids 
along four different diagonal directions. The four 
grids are afterwards merged back together to form 
the final grid with dimension ½ ௥ܰ௢௪ ൈ½ ௖ܰ௢௟ (the 
GCM is down-sampled by a factor of 2 due to the 
maxpooling layer in the first convolutional block) 
which is used to compute the output context vector 
by averaging all its cells. The final grid of the 
encoder can also be referred to as the local contexts 
of the GCM. Both the context vector and the local 
contexts are sent to the decoder to be decoded into 
word transcription.  

4.2.2 Decoder with Attention Mechanism 

A GCM decoder is used to predict the next letter or 
character in the word transcription given the context 
vector generated from the encoder and all previously 
predicted characters. The characters to be predicted 
are represented by integer values 0 ,ܥ ൑ ܥ ൏
௖ܰ௛௔௥ ൅ 3 where ௖ܰ௛௔௥ is the total number of Khmer 

Unicode characters (which are limited between 
U1780 and U17E9). We add three more character 
codes to represent the start token ܥ௦௧௔௥௧, the end 
token ܥ௘௡ௗ, and the unknown character ܥ௨௡௞. Before 
being fed to the module as input, the character 
representation value ܥ is transformed into a vector 

by using the one hot encoding technique. For this 
module, we use a conventional one-dimensional 
LSTM as the recurrent block. Figure 4 shows the 
detailed architecture of the GCM decoder. Before 
becoming the initial hidden state of the LSTM, the 
context vector is first passed through a fully 
connected layer with equal number of hidden units 
(512) and is activated by Tanh function.  

Since the generated GCM may contain multiple 
groups of cells representing multiple regions of 
glyph boundaries, each predicted character from the 
decoder should be conditioned on a different region 
of cells. Instead of relying only on a single encoded 
context vector, the decoder should pay its attention 
to particular regions in the CGM to predict 
efficiently the correct character at each time step. 
The local contexts provided also by the GCM 
encoder are useful in this situation. We adopt the 
attention mechanism proposed by (Bahdanau et al., 
2014).  

Denote ݏሺ௜௝ሻ a local context at position ሺ݅, ݆ሻ, 0 ൑
݅ ൏ ½ ௥ܰ௢௪ and 0 ൑ ݆ ൏ ½ ௖ܰ௢௟, the attention vector 
at each time step ݐ (ܽ௧) is computed as a weighted 
sum of the local contexts.  
 

ܽ௧ ൌ ෍ ෍ ௧ߙ
ሺ௜௝ሻ ∗ ሺ௜௝ሻݏ

ே೎೚೗
ଶ ିଵ

௝ୀ଴

ேೝ೚ೢ
ଶ ିଵ

௜ୀ଴

 (3)

 

The weight vector ߙ௧
ሺ௜௝ሻ of each local context ݏሺ௜௝ሻ is 

computed by 
 

௧ߙ
ሺ௜௝ሻ ൌ

expሺ݁௧
ሺ௜௝ሻሻ

∑ ∑ expሺ݁௧
ሺ௠௡ሻሻ

ே೎೚೗
ଶ ିଵ

௡ୀ଴

ேೝ೚ೢ
ଶ ିଵ

௠ୀ଴

 (4)

݁௧
ሺ௜௝ሻ ൌ ௔݂௧௧ሺ݄௧ିଵ, ݏ

ሺ௜௝ሻሻ	 (5)

where ௔݂௧௧ is a small neural network with one hidden 
layer of 512 units 
 

௔݂௧௧൫݄௧ିଵ, ݏ
ሺ௜௝ሻ൯ ൌ ௔ܹ௧௧ൣ݄௧ିଵ;	ݏ

ሺ௜௝ሻ൧ ൅ ܾ௔௧௧ (6)
 

which is used to learn the weight vector ߙ௧
ሺ௜௝ሻ at time 

step ݐ in function of the previous hidden state of the 
decoder ݄௧ିଵ and each local context ݏሺ௜௝ሻ. The input 
 ௧ to the LSTM is the concatenation of the one hotݔ
encoding of the character and the attention vector ܽ௧. 
The decoder always has the start token ܥ௦௧௔௥௧ as its 
first input at time step ݐ ൌ 0. The current hidden 
state from the recurrent block is then fed into the 
final output layer (after applying a dropout with 
dropped probability ݌ ൌ 0.5), and a softmax 
function is applied afterwards. This sotfmax 
activated output is used to create the input for the 
next time step. The decoder stops generating new 
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characters when the end token ܥ௘௡ௗ is encountered 
or when the output transcription reaches a maximum 
length. 
 

 

Figure 4: Detailed architecture of GCM decoder. 

4.2.3 Beam Search 

Instead of using greedy search i.e. choosing the 
character with the highest probability at each time 
step, we adopt the beam search with length 
normalization as proposed by (Wu et al., 2016). The 
beam search technique maximizes the joined 
probability of all characters in the predicted word 
transcription by keeping the top ݇ predictions as 
hypotheses. To not let the search prefer short 
transcriptions to long ones, the joined probability of 
each hypothesis is normalized by being divided by 
 :௡௢௥௠ which is computed as followsܮ
 

௡௢௥௠ܮ ൌ
ሺߚ ൅ ሻఊܮ

ሺߚ ൅ 1ሻఊ
 (7)

 

where ܮ is the length of the predicted transcription in 
each hypothesis. In our experiments, we select the 
beam size ݇ to be 5, and the hyper parameters ߚ and 
 are chosen to be 5 and 0.7 respectively as ߛ
recommended by (Wu et al., 2016). The hypothesis 
whose joined probability is the maximum is chosen 
as the final output transcription.  

5 EXPERIMENTS AND RESULTS 

5.1 Training Procedure 

The dataset used to train the proposed model is 
generated from SleukRith set. It consists of 24,009 
samples of word image patches, their corresponding 
ground truth GCM, and their word transcriptions. 
The dataset is divided into three parts: around 65% 
for training, 5% for validating, and 30% for testing. 

All word image patches are in grayscale (only one 
colour channel) and are normalized by scaling so 
that they are of the same height (72 pixels) but still 
with variable width. 

To train the complete model, two losses are 
minimized. The first loss ܮଵ corresponds to how well 
the generator generates the CGM while the second 
loss ܮଶ captures the overall performance of the 
model to predict the final word transcription. For 
each sample image, those two losses are computed 
as follows: 
 

ଵܮ ൌ െ ෍ ෍ ෍ݕ௚௖,௞
ሺ௜௝ሻ logሺ݌௚௖,௞

ሺ௜௝ሻ ሻ

ே೒೎

௞ୀ଴

ே೎೚೗ିଵ

௝ୀ଴

ேೝ೚ೢିଵ

௜ୀ଴

 (8)

 

where ݌௚௖,௞
ሺ௜௝ሻ  is the probability that the generator 

predicts that the cell at the ݅th row and the ݆th column 
of the predicted GCM belongs to glyph class ݇, and 

௚௖,௞ݕ
ሺ௜௝ሻ  is equal to 1 if the cell at position ሺ݅, ݆ሻ of the 

ground truth GCM belongs to glyph class ݇ or 
otherwise it is equal to 0. The second loss ܮଶ is 
computed by 
 

ଶܮ ൌ െ෍ ෍ ௖௛௔௥,௞ݕ
ሺ௜ሻ log	ሺ݌௖௛௔௥,௞

ሺ௜ሻ ሻ

ே೎೓ೌೝାଶ

௞ୀ଴

௅ିଵ

௜ୀ଴

 (9)

 

where ݌௖௛௔௥,௞
ሺ௜ሻ  is the predicted probability of 

character of class ݇ at time step ݅, ௖ܻ௛௔௥
ሺ௜ሻ ൌ ሾݕ௖௛௔௥,௞

ሺ௜ሻ ሿ 
(0 ൑ ݇ ൏ ௖ܰ௛௔௥ ൅ 3) is the one hot encoding of the 
݅th character in the ground truth transcription, and ܮ 
is the length of the ground truth transcription. The 
total loss of the complete model is then computed by 
 

௧௢௧௔௟ܮ ൌ ଵܮߣ ൅ ሺ1 െ ଶ (10)ܮሻߣ
 

where ߣ) ߣ ∈ ሾ0,1ሿ) is a hyper parameter to control 
how generating the GCM affects the total loss. 

During training the total loss of the function is 
minimized using Adam optimizer (Kingma and Ba, 
2014). The GCM generator and the GCM encoder-
decoder are pre-trained separately to minimize their 
corresponding losses using a normal distribution 
with standard deviation of 0.1 as initial weights and 
constants values of 0.1 as initial biases for all layers 
of the network. For the GCM encoder, the ground 
truth GCM is used instead as input. We also adapt 
the teacher forcing technique for the GCM decoder. 
The technique feds the characters in the ground truth 
word transcription to the decoder for the prediction 
of later outputs instead of using the predicted output 
from the previous time step of the decoder itself. 
This teacher forcing behaviour forces the decoder to 
stay close to the ground truth sequence resulting in 
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faster training. Periodically every five epochs, we 
alternatively train with teacher forcing for the first 
three epochs, and without it for the last two epochs. 
After each module converges, the complete network 
is then fine tuned by minimizing the total loss as 
computed in equation (10). 

The network and its modules are trained per mini 
batch basis (25 samples per batch). For efficient 
training, input word image patches are sorted by 
their width and are then batched together so that all 
image samples in the same batch have similar width. 
At the start of each epoch, the order of the batch is 
shuffled. To ensure that all images in the same batch 
have the same dimension, they are rescaled to new 
height ܪூ෢ and width ூܹ෢ : 
 

ூ෢ܪ ൌ ሺ1 ൅ ߳ுሻܪூ (11)

ூܹ෢ ൌ ሺ1 ൅ ߳ௐሻ ூܹ,୫୧୬ (12)

where ூܹ,௠௜௡ is the minimum width of the batch, 
and ߳ு and ߳ௐ are small values selected arbitrarily 
between ሾെ0.15,0.15ሿ. This rescaling also provides 
data augmentation to the training set due to the 
random nature of ߳ு and ߳ௐ. 

For every ௜ܰ௧௘௥ of iterations, we evaluate the 
network on the validation set and stop the training if 
the evaluation result does not improve for ௘ܰ௣௢௖௛ 
consecutive epochs. In our experiments we select 
௜ܰ௧௘௥ ൌ 50 and ௘ܰ௣௢௖௛ ൌ 5.  

5.2 Evaluation Protocols 

We evaluate the network according to two criteria: 
the generated GCM and the final word transcription. 
To measure the performance of the GCM generator, 
the top ݇ error rate is used. Each cell of the target 
GCM is predicted by the network and is considered 
to be incorrect if the target cell in the ground truth 
GCM is not one of the top ݇ predictions from the 
network. The error rate of one sample word image 
patch is the number of incorrectly classified cells 
over the total number of cells ( ௥ܰ௢௪ ∗ ௖ܰ௢௟) in that 
image patch. We then obtain the final error rate of 
all samples in the test set by averaging the error rate 
of each sample. 

To evaluate the performance of the GCM 
encoder-decoder, Levenshtein distance ܦ௅ is used to 
compute the character error rate (CER) of each word 
as follows 

 

ܴܧܥ ൌ
min	ሺห ௚ܻ௧ห, ௅ሺܦ ௣ܻ௥௘ௗ, ௚ܻ௧ሻሻ

| ௚ܻ௧|
 (13)

 

where ௣ܻ௥௘ௗ and ௚ܻ௧ are the predicted transcription 
and the ground truth transcription respectively, and 

| ௚ܻ௧| represents the length of the ground truth 
transcription. According to this computation, the 
CER of each word is always between ሾ0,1ሿ. This 
also illustrates that the error rate is higher for the 
same amount of incorrectly predicted characters 
when the network performs on a shorter word image 
patch which makes sense since the importance of 
each character is stronger in short length 
transcriptions. The final CER is the average of each 
word CER in the test set. Word error rate (WER), 
which is the number of incorrectly predicted words 
over the total number of words, is also calculated for 
the evaluation. 

5.3 Results 

The evaluation results are shown in Table 1. We 
measure the top ݇ error rate (we choose ݇ ൌ 1 and 
݇ ൌ 5) of the output from the GCM generator and 
also the CER and WER of the transcription 
produced by the complete network.  Three 
experiments are conducted on the complete network 
after its two modules (the GCM generator and the 
GCM encoder-decoder) are pretrained separately to 
minimize ܮଵ and ܮଶ respectively: (1) we do not do 
any finetuning; (2) we finetune the complete 
network on ܮ௧௢௧௔௟ setting the hype-parameter ߣ to 
zero, i.e. ܮଵ has no effect on the total loss ܮ௧௢௧௔௟; and 
(3) we finetune on ܮ௧௢௧௔௟ with ߣ ൌ 0.9 (very strong 
influence of ܮଵ). 

By looking at the big difference between the top 
1 and top 5 error rate of the generated GCM, it is 
illustrated that even though the GCM generator is 
sometimes not able to predict the correct glyph class 
as the most probable (top 1), in most of those cases, 
the probability of the correct glyph class is still high 
enough to be among the top 5. Fortunately, in the 
complete system, this glyph class probability 
distribution of the predicted GCM is passed directly 
to the GCM encoder-decoder which can be helpful 
for the generation of the final word transcription. 

Table 1: Evaluation results of the proposed system. 

 
Error Rate of the 
GCM Generator 

(%) 

Error Rate of the 
Complete 

Pipeline (%)
Top 1 Top 5 CER WER

(1) No finetuning 12.42 0.25 4.43 13.49 

(2) Finetune on ܮ௧௢௧௔௟ 
with ߣ ൌ 0 

12.81 0.24 3.88 12.11 

(3) Finetune on ܮ௧௢௧௔௟ 
with ߣ ൌ 0.9 

12.21 0.23 3.80 11.81 
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As seen in Table 1, finetuning the complete 
network by minimizing ܮ௧௢௧௔௟ improves the overall 
performance. Moreover, by enforcing the network to 
produce a good GCM (i.e. set a high value to ߣ), the 
error rates of the predicted word transcription 
decrease even more.   

6 CONCLUSION 

In this paper, we present a robust approach to 
recognize handwritten texts on Khmer historical 
documents. The proposed approach utilizes the 
glyph class map (GCM) constructed using the glyph 
annotation which contains information about the 
structure, position, and identity of each glyph in the 
word image to be recognized. Two main modules, 
the GCM generator and the GCM encoder-decoder 
are developed to generate the GCM which is to be 
encoded into a context vector and also local contexts 
representing the input word image before being 
decoded into the final transcription. Our approach 
shows promising results evaluated on data extracted 
from SleukRith set, a publicly available dataset 
constructed on digitized Khmer palm leaf 
documents. 
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