Air Quality Forecast through Integrated Data Assimilation and Machine Learning

Hai Xiang Lin¹,², Jianbing Jin¹ and Jaap van den Herik²

¹Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands
²Leiden University, Leiden, The Netherlands

Keywords: Chemical Transport Model, Data-driven Machine Learning, Physics-based Machine Learning.

Abstract: Numerical models of chemical transport have been used to simulate the complex processes involved in the formation and transport of air pollutants. Although these models can predict the spatiotemporal variability of a variety of chemical species, the accuracy of these models is often limited. Therefore, in the past two decades, data assimilation methods have been applied to use the available measurements for improving the forecast. Nowadays, machine learning techniques provide new opportunities for improving the air quality forecast. A case study on PM$_{10}$ concentrations during a dust storm is performed. It is known that the PM$_{10}$ concentrations are caused by multiple emission sources, e.g., dust from desert and anthropogenic emissions. An accurate modeling of the PM$_{10}$ concentration levels owing to the local anthropogenic emissions is essential for an adequate evaluation of the dust level. However, real-time measurement of local emissions is not possible, so no direct data is available. Actually, the lack of in-time emission inventories is one of the main reasons that current numerical chemical transport models cannot produce accurate anthropogenic PM$_{10}$ simulations. Using machine learning techniques to generate local emissions based on real-time observations is a promising approach. We report how it can be combined with data assimilation to improve the accuracy of air quality forecast considerably.

1 INTRODUCTION

Air pollution is one of the most important environmental issues of our time. For instance, according to a report by the World Health Organization (WHO, 2016) the passing away of one out of every nine persons is related to air pollution. Next to life and death, air pollution also causes great damage to economy. A dust storm or heavy smog with low visibility can cause a severe disruption of air traffic operations. Over the last thirty years, large efforts have been spent in developing numerical atmospheric models in order to produce accurate air quality forecasts. Traditionally, the so-called chemical transport model (CTM) has been widely used to forecast the air quality index. CTM adopts (1) physical principles and (2) statistical methods to model the emission, advection, diffusion, and deposition. However, the accuracy of the CTMs is strongly affected by the model parametrization errors and the emission inventories. Here we note already that a timely update of the emission inventories is an essential prerequisite for an acceptable air quality forecast.

1.1 Data Science and Data-driven Machine Learning

The advances in sensor technologies and the continuously decreasing costs of electronic devices have made large scale measurements feasible. A combination with the ever increasing power of computing platforms has led to a new paradigm in the computational and statistical methods for processing and analyzing data (Hey et al., 2009). It is collectively referred to as data science. Data-driven machine learning methods are nowadays able to deal with issues such as local refinement. However, current knowledge is not sufficient to formulate them into a (partial differential) equation. Therefore, data-driven machine learning techniques have been applied and they showed us some successes in improving relevant air quality predictions. Examples of using machine learning in atmospheric modeling have shown remarkable performances in a number of situations see (Li et al., 2016; Fan et al., 2017; Li et al., 2017; Chen et al., 2018). Their results demonstrate that in some cases data-driven machine learning approaches are able to
produce results with a high accuracy. However, we have to admit that the notion of a black-box application within data science has so far met only limited success, e.g., (Caldwell et al., 2014; Lazer et al., 2014). Currently, we see in PM$_{10}$ (PM$_{10}$ stands for Particulate Matter of 10 micrometers or less in diameter) research that the majority of the machine learning tools are data-driven and the knowledge about physical laws does not play any role of importance. As our starting point we put forward that scientific problems are often under-constrained in nature as the state space (the degree of freedom) is much larger than the training samples (observations). For example, the number of state variables in an atmospheric model is outnumbering the observations by far, because for a numerical model with millions or even billions grid points it is impossible to perform accurate measurements at every grid point and every time step.

1.2 Data Assimilation and Theory-based Machine Learning

Data assimilation (DA) is a method which utilizes the information of a relative small number of observations to improve the uncertain parameters and the initial conditions. Typically, DA infers the most likely sequence of states of the dynamical systems such that the model outputs are in agreement with the observations available at every time step. DA tries to minimize the difference between the outputs of the numerical model and the observations. This happens under the assumptions that both model and observations contain errors and uncertainties. In fact, data assimilation can be considered as one of the first methods to integrate data with theory-based models.

Recently, several research groups have started to study the combination of physics and theory in data-driven machine learning models (Keller et al., 2017; Karpatne et al., 2017; Jia et al., 2018). An example is attempting to enforce physical consistency (e.g., conservation of mass and energy) through adding a regularization term in the loss function. It has resulted in more consistent output.

In this paper, we discuss a new approach, viz. to integrate data assimilation and data-driven machine learning so as to make them fit for air quality modeling. The details of this novel approach is introduced in Section 2. A case study on PM$_{10}$ concentration during a dust event is performed. The results are compared to the ones from a conventional regional chemical transport model (CTM), viz. Lotos-Euros/air quality (AQ), in Section 3. Section 4 gives the conclusions and also discusses the different ways to combine physics and observations into machine learning AQ forecast system.

2 AN INTEGRATED MACHINE LEARNING AND DATA ASSIMILATION SYSTEM FOR AEROSOL FORECAST

In the following, we describe in a case study how our system of integrating machine learning and data assimilation works. First, we estimate the local non-dust PM$_{10}$ concentration using data-driven machine learning and calculate dust concentration by subtracting the non-dust PM$_{10}$ value from the raw PM$_{10}$ observations. Second, the resulting dust concentrations will be used in CTM/dust data assimilation. Third, a full-aerosol prediction will be provided by combining forecasts from machine learning and CTM/dust.

2.1 Data-driven Non-dust PM$_{10}$ Forecast System

The recurrent neural network, long term short memory (LSTM) is used to estimate the local non-dust aerosol. History records for training are from a ground-based observing network which has more than 1000 observing stations all over China. The simulation is expected to have an agreement with the PM$_{10}$ concentration when there is no dust storm, and an underestimation in case of dust storms.

The input configuration of our data-driven machine learning system is shown in Fig.1(a), while Fig.1(b) represents the data-driven & model-based system explained in Section 3. The Y_{t-k} represents the output list. In this study, the output list is the non-dust PM$_{10}$ concentration forecast t hours in advance. W_{t-k} and A_{t-k} are vectors representing time series of meteorological and air quality measurements in the past m hours, respectively. W_{t-k} includes the local meteorological data (temperature at 2m, dew point at 2m, wind speed v10 and u10) from European Center for Medium-Ranged Weather Forecast (ECMWF); while A_{t-k} represents a vector of stationary air quality observations (PM$_{2.5}$, SO$_2$, NO$_2$, O$_3$, CO) and measurements from nearby sites. L represents the LSTM non-dust PM$_{10}$ regression model based on the history data from Jan 2013 to March 2015, observations in the following period from April 2015 to May 2015 will be used for tests.
2.2 Dust Storm Data Assimilation

In our previous work (Jin et al., 2018), we have already performed dust emission data assimilation over East Asia in which the hourly-measured PM$_{10}$ are assimilated using a reduced-tangent-linearization 4DVar. The dust emissions are estimated to best fit the model and observation, the dust concentration forecast is shown to be significantly improved using the emission field estimated by data assimilation. Further information can be found in (Jin et al., 2018).

2.3 A Framework of Combining Data Assimilation and Machine Learning

The observed PM$_{10}$ cannot be fully attributed to the dust storm, since it actually also contains a fraction of non-dust PM$_{10}$ released in human activities. The real dust measurement is then calculated by subtracting the baseline value (in other words, non-dust PM$_{10}$ concentration) from the raw PM$_{10}$ observations. The traditional method to model the baseline in PM$_{10}$ for dust storm simulates non-dust PM$_{10}$ using conventional CTMs. Fig.2 illustrates the three modules of using observational data to improve forecast of PM$_{10}$ fraction based on the real measurements up to now. The non-dust PM$_{10}$ is called the PM$_{10}$ baseline. This quality-assured PM$_{10}$ baseline would improve the dust storm data assimilation. Hence, it will generate a more accurate full-aerosol prediction.

Generally, the emission inventory data by human activities are only available after several years. So, CTM models suffer from the absence of the actual source emission data and subsequently their forecast accuracies are not very high. For instance, (Timmermans et al., 2017) showed that there is an obvious underestimation of PM$_{2.5}$ forecast using the existing inventories. In contrast, we apply machine learning to generate non-dust PM$_{10}$ fraction based on the real measurements up to now. The accuracy of machine-learning based non-dust PM$_{10}$ model can be further improved. Another way of integrating machine learning with the CTM model is to include the CTM non-dust PM$_{10}$ predictions as an extra input for the machine learning model. We expect such an integration of physics (implemented in the CTM model) and data science will result in a further improvement of air quality forecast.

3 RESULTS

The result of our approach is compared to the result of a conventional regional transport model (CTM), viz. Lotos-Euros/air quality (AQ), which simulates the emission, advection/diffusion, deposition of aerosols released in anthropogenic activities.

Fig.3(a) to (c) present the scatter diagrams of forecast PM$_{10}$ values against the observed PM$_{10}$ values. A forecast value is in a good agreement with the observation when it is close to the diagonal. Fig.3(a) shows the result of the Lotos-Euros/AQ forecasts 12 hours in advance vs. the field PM$_{10}$ in test set (from April 2015 to May 2015). Fig.3(b) and (c) show the LSTM forecasts of 1 hour and 12 hours in advance, respec-
tively. It is noted that the records on a severe dust event, which lasted 2 to 3 days, are also included in the test period. Thus parts of the Lotos-Euros/AQ and LSTM forecasts are largely underestimated compared to the PM$_{10}$ observations as seen in the bottom right corners in Fig.3 (a) to (c). The CTM model Lotos-Euros/AQ underestimates the non-dust PM$_{10}$, which is probably caused by the errors in the emission inventories. In comparison, the two LSTM predictions are in better agreement with the real observations. Moreover, a smaller forecast length $t=1$ hour gives a better result as expected.

We also plot the variation of the non-dust aerosol simulations and the PM$_{10}$ observations in four cities in Fig.4, viz. Holhot(a), Beijing(b), Xingtai(c) and Baoding(d). The orange band and blue band in the figures show the LSTM non-dust PM$_{10}$ estimations and the observed PM$_{10}$, respectively. The black dotted line at the bottom of each figure shows the predicted non-dust PM$_{10}$ by the Lotos-Euros/AQ. Since all these four cities have several observing sites, we do not only plot the averaged PM$_{10}$ observation, but also show the spread with its maximum and minimum measurements. Similarly, the LSTM non-dust PM$_{10}$ prediction is given together with its spread. Before the arrival of a dust storm at these cities, the LSTM prediction produces the variations as good as possible. There is a sharp rise in the PM$_{10}$ observation values when the dust storm arrives at a city. However, the LSTM prediction of the non-dust fraction remains at a low level just as was expected, because it is independent of the dust storm. In comparison, the Lotos-Euros/AQ is found continuously to underestimate the non-dust PM$_{10}$ in all these cities.

4 CONCLUDING REMARKS

We have presented a new approach by integrating data assimilation and data-driven machine learning for air quality modeling. We distinguished three modules.

The first module uses the data-driven machine learning to model the non-dust PM$_{10}$ with history records of air quality and meteorological information. The accuracy is verified to be improved compared to the traditional chemical transport model (CTM) which simulates the physical processes of baselines in PM$_{10}$ concentration. In the second module, the data assimilation is performed using the baseline-removed observations for parameter estimations in dust modeling. The third module combines the predictions from data-driven machine learning and the CTM/dust model to generate the final full-aerosol forecast.

Our new proposed approach is a comprehensive framework which integrates the data-driven machine learning and physics-based model via data assimilation and data generation using a physics-based simulation model. In an adjusted way we can explain this as follows. The first module provides a solution to cope with incomplete knowledge, the second module uses observations to improve the physics-based (possibly partial) mode through adjustment of parameters and initial conditions. Finally, the third module combines the results of the first two modules to generate the final prediction.
Our first test of non-dust PM$_{10}$ simulation shows that the machine learning outputs are better in agreement with the observations when compared to the conventional CTMs. In future experiments, we will further explore the possibility of combining machine learning and CTM. The effect of (1) new input features on the baseline simulation result and (2) the dust storm data assimilation will be explored in the near future.

In contrast to the data-driven machine learning approach, the conventional CTM is based on the physical principles and statistic methods to model dynamic systems. It requires thorough understanding of the underlying governing equations and well identified parameters (e.g., the accurate emission inventories). In practice, we often do not have complete knowledge about the emission source data. What we have now is the flexibility and generality of data-driven machine learning. It provides a powerful means to fill this gap. In the past few years, the question how to include physics or theory into a data-driven machine learning system has absorbed increasingly more attentions of the researchers involved. In the literature, some researchers have used the term physics-guided
or theory-based machine learning to distinguish from the pure data-driven approaches.

There are two options to include physical rules into data-driven machine learning models, of which the overview is given in Fig.5. The first option is to enforce physical consistency through adding a regularization term in the loss function. Such an approach is based on data-driven machine learning. The second option is to use a CTM for generating output which is then used as input for a machine learning system. The latter one combines knowledge of physics (formulated in terms of physical parametrization) with data-driven machine learning.

Option 2 uses the mechanism depicted in Fig.1(b) which represents the model-based & data-driven baseline forecasts, the configuration of the extended system. $CTM_{0,\cdots, t}$ gives the baseline forecasts of i hours in advance from the CTMs. The meteorological forecast $W_{0,\cdots, t}$ is also used as input.

Finally, we believe that integration of machine learning, data assimilation and physics-based numerical models can be applied to many other problems in scientific and engineering fields. For instance, consider another air quality modeling application, predictions of visibility. Currently, conventional numerical models are insufficient to produce accurate visibility predictions, e.g., (Clark et al., 2008), due to the complexity and inability to fully quantify the influence of many factors. In (Deng et al., 2019), LSTM has been used to learn to predict the visibility based on local meteorological measurements such as wind and humidity. A promising extension would be to combine weather and air quality predictions with current measurement data to further improve the visibility forecast accuracy. Yet another auspicious application of the integrated framework is to use machine learning techniques to estimate errors of (physics-based) numerical models. It is known that an error quantification of the numerical model is essential for the success of data assimilation. However, there is usually little knowledge about these errors. Machine learning can be applied to estimate of an error model using measurement data and twin-experiments. A quality-assured error model can further enhance the effectiveness of the data assimilation.

REFERENCES

