
Pre-Modelled Flexibility for Business Processes

Thomas Bauer
Hochschule Neu-Ulm, University of Applied Sciences, Wileystr. 1, 89231 Neu-Ulm, Germany

Keywords: Business Process, Process Modelling, Build-Time, Process Execution, Flexibility.

Abstract: At process-aware information systems (PAIS), sometimes, a flexible deviation from the rigidly designed

process becomes necessary. Otherwise the users would be restricted too much. This paper presents an ap-

proach that allows to define the expected flexibility requirements only once already at build-time and apply

them at run-time in the PAIS. Compared to dynamic changes during run-time, this has the advantage that

the usage of the pre-defined information reduces the effort for the end users at each deviation. In addition,

applying flexibility becomes saver; e.g., since user rights can be defined. This paper presents the corre-

sponding requirements, with a special focus on the kind of information that has to be pre-defined at build-

time. Thereby, all relevant process aspects were respected and the necessity of the requirements is illustrated

with examples from practice.

1 INTRODUCTION

An advantage of PAIS (Reichert and Weber 2012),

compared to traditional IT systems, is that the pro-

cess management system (PMS) guarantees the

adherence of the defined business process (BP).

Additionally, end users are unburdened from non-

productive tasks as searching the right function of

the application or the data required in the current

process step. With a PAIS, this is performed auto-

matically. PAIS, however, also have disadvantages:

Some users dislike their reduced freedom caused by

the active and automatic process control. Further-

more, in exceptional cases, restricting the possible

execution orders of the process activities may result

in situations where sequences are not possible which

would be advantageous for the business. This results

in disadvantages for the organization.
To avoid such disadvantages, it must be possible

to deviate flexibly from the rigidly modelled BP
(Schonenberg et al. 2007, Redding et al. 2009, Da-
dam et al. 2011). A special case of flexibility are
deviations that are pre-modelled already at build-
time in order to apply them at run-time of the pro-
cess instances (Pre-Designed Flexibility (Kumar and
Narasipuram 2006), Flexibility by Design (Scho-
nenberg et al. 2007)). Scientific literature, however,
only discusses this categorization. Details of the
corresponding requirements and approaches for their
realization are hardly content of existing research.

This aspect is the focus of the project CoPMoF
(Controllable Pre-Modelled Flexibility). Flexibility
of PMS shall be increased, but deviations shall not
be defined arbitrary (i.e. completely dynamic) by the
users. Instead, predictable flexibility (i.e. deviations
eventually required at run-time) is pre-modelled
already at build-time. Then, the BP-designer and the
BP-owner can evaluate such deviations with respect
to their consequences. Furthermore, the required
process reliability is guaranteed since only intended
deviations are possible and they may only be per-
formed by users with the required rights.

The main advantage of the presented approach,

however, is that performing a deviation causes less

effort for the end user compared to a dynamic

change (eventually it would be even too complicated

to define such a change dynamically). Assume, a

concept shall be normally controlled by a software

developer. But in difficult cases developers are over-

challenged with this task. Then, this process activity

shall be performed by a software architect of the

same project. For this purpose, an alternative actor

assignment for this activity was already pre-defined

at build-time. Furthermore, it was defined who is al-

lowed to activate this alternative actor assignment.
Dynamic changes (Reichert and Weber 2012) al-

low to insert new activities into a process instance.
Such a functionality is indispensable for the realiza-
tion of not predictable modifications. For predictable
exceptional situations, however, dynamic changes
are not well suited since they cause much effort for
the user at each single deviation. In the example

Bauer, T.
Pre-Modelled Flexibility for Business Processes.
DOI: 10.5220/0007524605470555
In Proceedings of the 21st International Conference on Enterprise Information Systems (ICEIS 2019), pages 547-555
ISBN: 978-989-758-372-8
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

547

explained above, the user would have to create a
correct actor assignment which uses (existing) ob-
jects of the organizational model. Here, it is more
meaningful to expend the effort only once already at
build-time; i.e., to pre-model the eventually required
actor assignment.

As already mentioned, with respect to pre-mod-
elled flexibility, scientific literature only defines the
corresponding category. Until now, this category
was not examined in detail. The sole exception is the
process aspect control flow. For this aspect, (Bauer
2017) and (Bauer 2018) discuss pre-modelling of
flexibility. That means, there exists no answer to the
following research question: Which scenarios (i.e.
requirements) exist for the other process aspects
(Jablonski 1997), where it is advantageous to pre-
model flexibility of a BP at build-time, and which
information must be provided for this purpose?

In the project CoPMoF, an approach with the fol-

lowing properties is developed:

▪ The requirements shall cover as many sce-

narios as possible. However, because of the re-

search design, completeness, cannot be

reached. In order to identify a large number of

requirements, several BP are analysed with re-

spect to their flexibility requirements. These

BP are known by the author because of his

long-term work in industry and research. Addi-

tionally, generally known processes and BP de-

scribed in scientific literature (e.g. credit appli-

cations) were respected.

▪ The resulting process templates are “enriched”

with pre-modelled flexibility. However, they

shall stay easy to understand for BP-designers

and “normal users”. This is especially im-

portant for semantic process models (the busi-

ness view), but also for technical models (pro-

cess implementation); e.g., to enable users to

detect errors in the process models.

▪ Despite the desired simplicity, the execution

semantics of the building blocks for pre-

modelled flexibility must be clear, since an

easy to understand but vague modelling tech-

nique would prevent the execution of process

instances by a process engine.

▪ Finally, only very little effort must result for

the end users to trigger a flexible deviation at

process execution (run-time).

To close the whole research gap, an approach has to

be developed that fulfils all these requirements. This

paper addresses the following part of the problem:

BP of different domains are presented and examined

with respect to the question, which scenarios of

predictable flexibility are contained (case studies).

Thereby, several requirements and facets are ex-

plained, in order to present the scenarios in an ex-

haustive and understandable manner. That means,

the necessity of the requirements is proven with

examples from practice. In this paper, the control

flow aspect is only mentioned shortly; i.e., the main

content are the other process aspects (Jablonski

1997). Detailed solution concepts for the realization

of the requirements are not covered in this paper.

Section 2 introduces basic principles of PAIS

and explains the challenges. The sections 3 to 5

describe the requirements for the different process

aspects. Section 6 discusses related work. The paper

concludes with a summary and an outlook.

2 BASICS AND PROBLEM

STATEMENT

The first subsection describes pre-modelled flexibil-

ity that is typically supported by most approaches

and commercial systems for process execution. In

Section 2.2 some problem statements are explained

at an example scenario from practice.

2.1 Modelling and Execution of
Business Processes

PMS consist of a build-time and a run-time compo-

nent. At build-time, a process template is created

that describes the BP. For this purpose, a process

graph is modelled which contains activities. Their

execution order is determined by edges and condi-

tions. This process template is used at run-time to

create process instances. A process engine controls

the execution of these process instances. For each

currently executable activity instance (often named

short: activity) it inserts corresponding items into the

worklists of the potential actors. One of these end

users selects the item and becomes able to perform

this activity (instance). For activity execution, often,

the actor has simply to fill a form.

The process aspect control-flow defines the exe-

cution order by means of a process graph (cf. Figure

1). Its nodes represent the activities (human tasks

performed by users), automatically executed pro-

gram code, or whole sub-processes. In addition, the

process graph contains gateways (rhombuses),

which represent Split and Join nodes. Commercial

PMS typically offer Split and Join nodes with XOR-

(one branch is selected because of its condition),

OR- (several branches), and AND-Semantics (all

branches are executed). Additionally, loops are sup-

ported. Branches as well as loops represent a simple

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

548

Figure 1: Change Management Process (CMP) for Product Modifications.

form of pre-modelled flexibility, since they have the

effect that the set of executed activities and their

execution order may differ at each process instance.

Often, process variables are used to realize the

data flow. They are connected with the input and

output parameters of activities (cf. NeighbourParts

in Figure 1). When starting an activity, the contents

of the variables are passed to the activity. After

completion of the activity, its results are stored in

process variables. Even complex data types may be

used. Typically, objects that are composed of (ele-

mentary) data types and lists (arrays) are supported.

Since the latter one have a variable length, they may

build a basis for flexible process execution.

There exist many requirements for the organiza-

tional aspect (Russell et al. 2005). Commercial PMS

typically allow to create organizational objects (e.g.

groups, roles, departments), but some PMS do not

distinguish between different types. Organizational

objects can be assigned to users. For each activity,

an actor assignment has to be defined. This is a

“formula” that uses organizational objects (e.g. “role

= software developer”). It is used by the process en-

gine to calculate the potential actors of this activity.

A corresponding entry is inserted into their worklists

or they are informed with an e-mail. One of these

persons selects this activity and performs it. Depend-

ent actor assignments offer some type of flexibility,

since the corresponding activity is not offered to the

same persons at each process instance. Assume, a

further inquiry in a business trip application process

shall be answered by that person, that has created

this application. This results in the dependent actor

assignment “same actor as previous Activity X”.

In addition, some PMS offer escalation mecha-

nisms. Whenever a pre-defined processing time is

reached for a specific activity, for instance, an e-

mail is sent automatically to a supervisor or the actor

of this activity is modified (automatic delegation).

Often, activities are executed using forms. Some

PMS allow to generate such forms automatically

based on the input and output parameters of activi-

ties. Afterwards they may be adapted manually. It is

also possible to realize self-implemented web forms

or rich client applications that use an application

programming interface (API) of the process engine.

Some process engines use web service calls to real-

ize the execution of automatic process steps. For the

integration of legacy applications, adapters may be

provided. Thereby, flexibility results only from the

variety of supported application types and the possi-

bility to use a powerful enterprise service bus (ESB)

at service calls.

2.2 Challenges Concerning
Pre-Modelled Flexibility

This subsection demonstrates the need for flexibility

at an example from practice. As mentioned in Sec-

tion 1, the focus of this paper is not on dynamic

changes used to react to unexpected events. Instead,

situations are inspected, which represent exceptional

cases, but are predicable. This allows to pre-model

an appropriate behaviour already at build-time.

Figure 1 shows a simplified Change Manage-

ment Process (CMP) as used to request product

changes in the automotive domain. The notation is

similar to BPMN 2.0 (but extended). With Act. A,

an arbitrary employee of the automobile manufac-

turer may request a change of a vehicle part (e.g. the

shape of the engine bonnet). Since the execution of a

CMP-instance causes much effort, it can be stopped

Pre-Modelled Flexibility for Business Processes

549

with Act. B by a manager. Act. C determines the

owner of the concerned part automatically by send-

ing a query to the product data management (PDM)

system. In Act. D, this owner rates the effort and the

benefits of the change from the viewpoint of the

development domain. Then, in Act. E he identifies

neighbour parts (e.g. car wing, radiator) that have to

be adapted because of the modified shape of the

engine bonnet as well. Act. F queries the corre-

sponding part details and part owners and stores

these data in the list NeighbourParts (the other pro-

cess variables were omitted to increase readability).

The rating from the viewpoint of the neighbour

parts happens in Act. G by the respective part owner.

This activity is instantiated multiple times (once for

each neighbour part). The same applies to the check

of the rating by another developer in Act. H. With

Act. I to K, clerks of several domains are rating (in

parallel) whether the change can be realized and

estimate the resulting costs. Act. L decides on the

approval of the change request and perhaps the parts

are changed in Act. M.

The execution of the CMP requires flexibility at

several points: The Act. G and H are included within

a Multi-Instance-Parallelism. That means, the -

Split creates a number of branches that corresponds

to the length of the list NeighbourParts. This list was

filled by Act. E and F with the required input data

and the intended actors. Afterwards, this list may be

extended by a user action performed at an arbitrary

point in time. However, this does only make sense

before the Multi-Instance-Parallelism is finished (i.e.

before the -Join). Later on, additional neighbour

parts cannot be respected by additional instances of

Act. K and L any more.

If the part owner detects during the identification

of the neighbour parts (Act. E) that he has made a

mistake earlier in Act. D, he may want to correct its

output data. For this purpose, he modifies the pro-

cess variable Rating despite this is not an output

parameter of the current Act. E. To allow this, for

this variable Rating, it has to be pre-defined with

which form or tool it can be modified.

The part owner requires a substitute for Act. D

and E, since for each part there exists only one part

owner. Without such a substitute, the whole process

may be delayed unacceptably if this person is on

holiday, for instance. This substitute, however, is not

the department leader as for other activities of the

part owner. This would not be appropriate since Act.

D and E are project tasks. Therefore, dependent on

the concerned vehicle project (respecting process

variable VehicleProject, e.g. contains Golf) a devel-

oper of the same project has to act as substitute.

The application program that is used for the rat-

ing by a production clerk (Act. I), has to be selected

in a flexible manner: Dependent on the person who

performs this activity and the software that is in-

stalled on his computer, different application pro-

grams shall be used. For instance, some users pos-

sess a viewer for CAD models, others use the rich

client of the production domain with a special visu-

alization of CAD models, some a web form with

part pictures, and others an “App” on a mobile de-

vice since they often are on the way in production

halls. When modelling this activity, it has to be

defined (at build-time), therefore, in which cases

which application program shall be used.

3 DATA ASPECT

As described in Section 2.1, PMS typically support

lists with a variable length that may be used within a

Multi-Instance-Parallelism to assign application data

and actors to the branches. Furthermore, the follow-

ing flexibility is required.

3.1 Modify Process Variables (DF-1)

Sometimes, a user shall be able to modify the con-

tent of a process variable despite there currently

does not exist a corresponding activity in the pro-

cess. This may be useful; e.g., to correct, supple-

ment, or provide data afterwards.

DF-1a: At build-time it has to be defined wheth-

er it is allowed to modify a specific process variable

at all and who is allowed to do this. Additionally, it

may be necessary to restrict the process area within

which such a modification is allowed. Assume that

the rating resulting from Act. D of the CMP (cf.

Figure 1) contains errors and the execution is pro-

ceeded until Act. F in the meantime. A backward

jump to Act. D and repeating the activities between

D and F would cause unnecessary effort. Instead, the

part owner may directly correct (i.e. modify) the

rating data. This, however, is only allowed before

the ratings of the other domains (Act. I to K) have

started since they use this rating as input data.

DF-1b: The change request created in Act. A

contains a sketch of the changed part; e.g., a Power-

Point figure or a CAD model. If such a sketch is

erroneous it is not sufficient to simply modify text

with a form. Instead, an appropriate application pro-

gram is required. It is necessary to define for each

(modifiable) process variable, which application

shall be used for subsequent modifications.

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

550

3.2 Modify Assignments of Activity
Parameters to Variables (DF-2)

The assignment of activity input and output parame-

ter data to process variables shall be changeable as

well. Assume that in the CMP currently no part

owner is defined for the part that has to be changed

(e.g., since he has left the company). The part own-

er, however, is absolutely necessary as input data for

Act. D and E. Otherwise, they cannot be assigned to

an actor. In order to solve this problem, for instance,

the activity input parameter TaskActorID shall get

its content from the process variable Department-

LeaderID instead from the variable PartOwnerID.

For this purpose, it has to be defined at build-time

who is allowed to perform such a modification.

Additionally, the set of process variables that may be

used as a specific input resp. output parameter of

this activity may be restricted.

4 ORGANIZATIONAL ASPECT

The PMS uses actor assignments to calculate the

potential actors of activities. Thereby, it shall be

possible to define powerful expressions. Addition-

ally, a PMS repeats this calculation periodically (re-

fresh) in order to respect changed or new member-

ships of persons in roles, groups, departments, etc.

If the functionality offered by a specific PMS is

insufficient to realize the actor assignment required

for an Act. X, the following work-around may be

used: The potential actors are calculated by an auto-

matically executed preceding Act. X'. Its output is a

list of UserIDs that is stored in a process variable.

This variable serves as input parameter of Act. X

and the task is offered to these users. A drawback of

this work-around is that, after completion of Act. X',

this list is not refreshed anymore. Therefore, the

following requirements shall be supported directly

by the PMS.

4.1 Flexible Mechanisms for Actor
Calculation (Org-1)

Org-1a (Calculate Actors using Process Data): It

shall be possible to use process variables in an actor

assignment. An example for this is Act. D of the

CMP (cf. Figure 1): The UserID of the part owner is

calculated by the automatically executed Act. C and

stored in a process variable. Its content is used to

assign Act. D to the right actor. Additionally to such

UserIDs, other data may be relevant for actor assign-

ments: The first activity of a credit application pro-

cess may store the concerned bank branch in the pro-

cess variable BranchID. The activity “tell decision to

customer” shall be performed by a clerk of the same

bank branch. This results in the actor assignment

“Role=Clerk AND OrgUnit=VALUE(BranchID)”.

At Multi-Instance-Parallelisms it may be neces-

sary to respect the sequential number i of the cur-

rently executed branch. Each rating by a part owner

(Act. G) has to be performed by that person, that

was determined by Act. F in the PDM system and

stored in the list NeighbourParts at index position i

(if currently the branch number i is executed). But

the determination of UserIDs by the automatically

executed Act. C and F has a disadvantage: Changes

of part owners that occur later than the execution of

these activities are not respected any more. There-

fore, service calls that determine UserIDs should be

triggered directly by the actor assignments of the

Act. D, E, and G; i.e., it shall be possible that an

actor assignment contains such a service call. These

actor assignments are re-calculated (refreshed) peri-

odically by the process engine. This, again, triggers

the service call with the result that the currently

valid potential actors are determined.

Org-1b (Alternative Actor Assignment): It

may be predicable that the regular actor assignment

is not appropriate for an activity in all exceptional

cases. For instance, the regular potential actors may

be overburdened sometimes, what shall be compen-

sated by involving additional actors from other busi-

ness domains. Another example is that an activity

shall be performed by different actors in special

cases; e.g., since the “regular actors” would be over-

challenged with this task (cf. Section 1). For such

activities, it shall be possible to define alternative

actor assignments already at build-time.

Additionally, it has to be defined who is allowed

to activate such an alternative. This may be the actu-

al actors of preceding activities, all potential actors

of the concerned activity, or the process owner (ad-

ministrator). Switching to an alternative actor as-

signment shall be even possible after the process

engine has inserted the corresponding items (that are

based on the original actor assignment) into the

worklists. Then, switching to the alternative actor

assignment automatically triggers a re-calculation

(refresh) of the potential actors. Therefore, it be-

comes effective immediately.

4.2 Substitutes (Org-2)

Only one single person (the part owner) is allowed

to perform Act. D, E, and G of the CMP. If he is ill,

Pre-Modelled Flexibility for Business Processes

551

on holidays, or on a business trip the whole process

execution will be delayed. Therefore, substitution

rules have to be defined for these activities.

Org-2a (Definition with Rules): Rules for the

calculation of substitutes are pre-modelled at build-

time. They shall offer the same powerful functional-

ity as actor assignments and may use organizational

objects (e.g. roles, departments). Therefore, changes

in the organizational model automatically result in

updated substitutes. The actor (i.e. the part owner) of

Act. D, for instance, may be substituted by all per-

sons with “Role = Developer AND member of the

same project as the regular actor”. It is not sufficient

that one single person can be defined as substitute,

since multiple substitutes may be required to distrib-

ute the work load. In case of a substitution, they all

become potential actors and one of these persons can

decide to perform the activity.

Org-2b (Substitution Dependent on Activity):

The substitutes of a person may Depend on the con-

cerned activity or activity type. The part owner is

substituted by a colleague of the same project (see

above). At project-independent tasks (e.g. ordering

of office supplies) his supervisor acts as substitute.

Therefore, the substitution rules have to be defined

at build-time as part of the process template; i.e., as

rule valid for a single activity (type) or the whole

process template. It is not sufficient to tell the pro-

cess engine (independent from the process context)

who are the substitutes of a person.

Org-2c (Configurable Behaviour): It shall be

possible to configure the behaviour of the substitu-

tion rules. This concerns the following topics:

▪ The process designer defines when a substition

shall be acitivated. This may happen i) if a

single regular actor is absent, ii) if all regular

actors are absent, or iii) if a given number or

quota of absent actors is reached. Here exists a

conflict of aims between the avoidance of

extrem work-loads for the remaining regular

actors and the requirement that the regular

actors shall perform their activities if this is

possible someway.

▪ It can be defined that a substitute may be

substituted himself. Then, multiple “stages” of

substitutions are applied by the PMS.

▪ It may be meaningful that a substitute is no

longer allowed to perform a specific activity if

the original (i.e. substituted) actor returns. This

may concern only not started or even already

running activities.

Many of these requirements cannot be fulfilled by

current commercial PMS (if they offer substitutions

at all).

4.3 User Actions (Org-3)

Users must be able to perform unplanned actions

that concern the organizational aspect. For instance,

the set of the potential actors of an activity has to be

modified. Such actions are partially described in

(Russell et al. 2005) as well. In the following, how-

ever, the focus is on the question, what has to be pre-

modelled for such a user action.

Org-3a (Delegation): With a delegation, the

regular actor transfers the activity to another person.

Thus, it appears in a different worklist. A PMS has

to offer powerful mechanisms for delegations: It

shall be possible to delegate a task to multiple per-

sons. For this purpose, some kind of “actor assign-

ment” may be used. Assume, for instance, that a

team leader wants to delegate an activity to some

team members which are very skilled in the given

context. Alternatively, he may delegate the activity

to all team members. The latter case causes only lit-

tle effort if a corresponding rule was already pre-de-

fined at build-time (“Role = Clerk AND same team

as regular actor”) that may be used for delegations.

At least, it must be possible to define at build-

time, whether a delegation for a specific activity is

allowed at all. Whenever this is necessary for pro-

cess safety (e.g. to respect compliance rules), the set

of target persons of the delegation may be restricted.

This restriction may be realized by an organizational

expression similar to an actor assignment.

Org-3b (Modification of Actor Set): The set of

potential actors of an activity may be modified by

adding or removing persons. All other potential

actors keep this function. Such a modification may

even occur, before the concerned activity is ready to

start.

At least, it has to be defined who is allowed to

perform such a modification. Similar as at Org-3a,

the set of persons that may be added can be restrict-

ed. Again, the usage of this function becomes very

comfortable if rules were pre-defined at build-time,

which may be used to add or remove persons at run-

time. Assume, a chief physician detects at a prior

interview with the patient that this is a very compli-

cated case. Therefore, for instance, he wants to re-

move all assistant physicians as potential actors of a

later treatment activity. Since such cases occur fre-

quently, the modification-rule “remove actors with

role Assistant-Physician” was pre-defined already at

build-time. At run-time, the chief physician simply

has to activate this rule.

Org-3c (Deallocation): Users select activities

(items) from their worklists for execution. Such an

actor may detect afterwards, that he does not want or

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

552

is not able to perform this activity. Then, he de-

allocates the activity; i.e., it can be selected by the

other potential actors from their worklists again.

For each activity it may be defined whether such

a deallocation is allowed at all. Furthermore, the

point in time, until that a deallocation is possible,

shall be configurable. The following activity states

are meaningful for this purpose:

▪ A deallocation is only possible before the exe-

cution of that activity starts.

▪ A deallocation is allowed after starting the

activity, but only before intermediate results

were created (and stored within the PMS). This

allows the actor to look at the activity input

data (the details) in order to decide whether he

wants to perform this activity. After starting

work on this activity and storing intermediate

results, a reallocation is no longer allowed.

▪ A reallocation is even allowed after partial

execution of the activity and transmission of

intermediate results to the PMS. In this case, it

has to be defined additionally i) whether these

intermediate results shall be discarded or ii)

whether the next actor may use the results as

input data of the activity; i.e., he may continue

the (already performed) work.

5 ACTIVITY EXECUTION

(Commercial) PMS normally contain a client imple-

mentation that displays the worklists of the users.

Additionally, this client displays the forms that are

used to perform the activities. Often, web clients as

well as rich clients are supported. It is also possible

to develop own clients that use the application pro-

gramming interface (API) of the process engine.

With respect to activity execution, the following

requirements are not fulfilled by many PMS.

5.1 Application Types (App-1)

Arbitrary types of applications shall be useable for

activity execution. Connecting them with the PMS

should cause only little effort. For this purpose, it

may offer adapters. Then, the only remaining effort

is to configure these adapters appropriately at build-

time.

App-1a: It may be necessary that a specific ap-

plication is usable for the execution of an activity.

Therefore, no type of application shall be excluded.

For instance, a specific document type must be pro-

cessed with a specific text processing program (e.g.

MS Word) or CAD tool. Normally, such “stand-

alone applications” cannot be integrated into the

given PMS client. Nevertheless, the stand-alone

application must be usable at activity execution. It

shall be started automatically (after selection of the

corresponding worklist item) and its input data are

transferred to the program. Finally, the results (out-

put data) have to be transferred back to the process

engine.1

App-1b: Functions that belong to an external

server system with separate data management (e.g.

SAP ERP) shall be usable as activity implementa-

tions as well. For this purpose, the process engine

sends a message with the input data to the external

server. Then, this server offers the task to the appro-

priate users; e.g., by notifying them with e-mails or

by realizing its own worklists. Additionally, an inte-

gration with the worklists of the PMS may be re-

quired. After completion of the activity, the external

server transmits the output data back to the process

engine.

App-1c: A PMS shall support mobile clients as

well. Mobile devices differ very much from each

other (compared to PCs). Therefore, the properties

of their mobile devices may influence the set of the

potential actors of an activity. These actors shall be

selected, for instance, based on the type of their

mobile device (smart phone, tablet computer, or

laptop), the size of the display, the current location,

or the state of charge. That means, the set of “all

possible” potential actors is restricted based on such

criteria. Therefore, for each activity, the required

properties of the mobile devices must be definable at

build-time.

5.2 Different Applications for the Same
Activity (App-2)

App-2a: It shall be possible to use multiple different

applications as implementation of one activity. All

of them have the same interface (i.e. input and out-

put data) but they differ in their behaviour (i.e. user

front end). The application program, that is used in

fact, shall be selected in a flexible manner, for in-

stance based on the skills of the current user, his

preferred or used client type (web or rich client), the

software installed on his computer (e.g. MS Word or

Open Office Writer), or his type of device (PC or

smart phone, cf. App-1c). The selection of this ap-

plication program shall be performed with rules

(expressions) that were pre-defined at build-time. At

1 The Program Execution Client of IBM MQ Series Workflow

(IBM 1996) proofs that this is possible in general.

Pre-Modelled Flexibility for Business Processes

553

run-time, they use process instance data and data

concerning the current actor.

App-2b: Even after deployment of the process

template, it shall be possible to create further imple-

mentations of an activity. Again, rules define their

usage; i.e., their connection with the process tem-

plate. Such implementations and rules shall be use-

able even for already running process instances

(Late Binding). Therefore, the deployment of the

activity implementations and the corresponding

selection rules must happen independently from the

business process (template). At build-time, it must

be possible to determine that they shall be deployed

immediately and shall be valid for an already de-

ployed process template as well.

App-2c: A special case of an activity is a com-

posed activity (subprocess). Even for composed

activities it shall be possible to select the subprocess

with rules at run-time (cf. App-2a), instead of as-

signing a fixed subprocess at build-time. Again, it

may be necessary that additional subprocesses are

created (i.e. modelled) after the deployment of the

(father) process and after the creation of process

instances (cf. App-2b). The corresponding selection

rules are defined afterwards and these rules and the

new subprocess must be deployed separately from

the father process template.

6 RELATED WORK

(Kumar and Narasipuram 2006) present different

categories of flexibility for BP. The category that

corresponds to the CoPMoF approach is called “Pre-

Designed Flexibility”. The categories are refined in

(Schonenberg et al. 2007) with the resulting catego-

ries “Flexibility by Design” and “Flexibility by

Underspecification”. A literature review2 has shown

that, until now, it was hardly examined what shall be

pre-modelled at build-time in order to reach much

flexibility and low effort for the users at run-time.

(Reichert and Weber 2012) suggests to use ex-

ception handling based on events and exception

handlers to treat special cases: An event is assigned

to single activities or whole process regions. If it

occurs at run-time (throw) an exception handler is

executed (catch). This is similar to a try-catch-block

2 The search was performed with the following terms, all in

combination with business process: flexibility by design,

pre-designed flexibility, flexibility build-time, flexibility

data flow, flexibility organization, flexibility activity. Fur-

thermore, (Reichert and Weber 2012) as “overview book

for flexibility in BP” was examined with respect to hints to

relevant approaches.

in programming languages and well suited to handle

technical errors; e.g., the crash of an activity pro-

gram. It may also be used to change a resource as-

signment; e.g., delegation of an activity to a more

appropriate actor (Org-3a) (Russell et al. 2005).

(Bauer 2009) concerns flexibility for the organiza-

tional aspect as well. It presents several require-

ments and concepts concerning substitution rules (cf.

Org-2).

Case Handling (Aalst et al. 2005) is an approach

for knowledge intensive BP, with the focus on data.

The users (Knowledge Workers) know all data and

have the possibility to change them at any time (cf.

DF-1). Changing data is performed with forms. The

state of a process instance results from the content of

its data objects. They determine the activities that

are currently executable; i.e., the control-flow is not

modelled explicitly. The users decide (autono-

mously) to execute, skip, or repeat activities.

Some publications address late binding resp. late

selection (cf. App-2). (Graml et al. 2008) allows to

select a subprocess with rules at run-time (App-2c).

Different pre-modelled subprocesses may contain

different realizations of an application program

(App-2a). (Adams et al. 2006) realizes activities by

“Worklets”. Dependent on the context of the process

instance, they define which activity implementation

shall be used. Worklets may be changed at run-time,

therefore, the application resp. GUI of a process step

may be adapted. A similar technique is used by

commercial PMS with service orientation; e.g. IBM

Business Process Server (IBM 2017): The execution

of an activity results in a service call, which triggers

an ESB flow (Erl 2005, Buchwald et al. 2009). This

flow may contain branches and conditions. There-

fore, it is possible to call different realizations of an

activity with a selection criterion that depends on the

context of the process instance. Since the deploy-

ment of the ESB flow happens independently from

the BP template, it may be substituted at any time

and the change becomes operative immediately.

Therefore, such PMS offer an appropriate basis for

the realization of App-2a to c. (Weber et al. 2008)

presents “Pattern for Predefined Change”. These

pattern allow to model that specific decisions or

definitions shall not happen until run-time. This en-

ables, for instance, late selection and late modelling

of process fragments (App-2c). (Pryss et al. 2016)

offers some flexibility at the selection of actors that

use mobile clients (App-1c). The potential actors of

an activity may be selected based on the type of the

mobile device, its current location, or its charging

state.

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

554

7 SUMMARY AND OUTLOOK

PMS must allow to deviate from the rigidly mod-
elled process. Otherwise, these systems are not usa-
ble in practice. Dynamic changes are one way to
realize such deviations. For predictable deviations,
however, this results in too much effort for the end
users and may cause errors. To avoid such disad-
vantages, predictable special cases and exceptions
should be pre-modelled already at build-time. This
paper presents corresponding requirements and ex-
amples from practice. An intended impact is to mo-
tivate tool manufacturers to support the described
scenarios in commercial BP modelling tools and
process engines.

The generalisability and relevance of the pre-

sented scenarios has to be verified with further prac-

tical examples from other domains. Furthermore,

they have to be complemented with additional re-

quirements for pre-modelled flexibility. Some of the

presented concepts are not available in today’s pro-

cess modelling languages (e.g. alternative actor

assignments). Therefore, such situations are proba-

bly not captured in existing process models, despite

they exist in reality. This problem may be solved by

the usage of different research methods (e.g. expert

interviews).

Detailed solution concepts still have to be real-

ized for the identified requirements. Furthermore, a

prototypical realization and a case study concerning

usability may be necessary.

REFERENCES

Aalst, W.M.P. van der, Weske, M., and Grünbauer, D.,

2005. Case Handling: A New Paradigm for Business

Process Support. Data & Knowledge Engineering, 53

(2), 129–162.

Adams, M., et al., 2006. Worklets: A Service-Oriented

Implementation of Dynamic Flexibility in Workflows.

Proc. 14th Int. Conf. on Cooperative Information Sys-

tems, 291–308.

Bauer, T., 2009. Substitution Rules for Task Actors in

Process-oriented Applications. Datenbank-Spektrum, 9

(31), 40–51 (in German).

Bauer, T., 2017. Requirements for Pre-modelled Flexibil-

ity for the Control-Flow of Business Processes. Proc.

Informatik 2017, Workshop zum Stand, den Heraus-

forderungen und Impulsen des Geschäftsprozessman-

agements, Chemnitz, 799–813 (in German).

Bauer, T., 2018. Execution Semantics for Jumps in Busi-

ness Processes. Datenbank-Spektrum, 18 (2), 99–111

(in German).

Buchwald, S., Bauer, T., and Pryss, R., 2009. IT Infra-

structures for Flexible, Service-oriented Applications.

Proc. 13. GI-Fachtagung Datenbanksysteme in Busi-

ness, Technologie und Web, 524–543 (in German).

Dadam, P., Reichert, M., and Rinderle-Ma, S., 2011.

Process Management Systems. Only a bit Flexibility

will not be enough. Informatik-Spektrum, 34 (4), 364–

376 (in German).

Erl, T., 2005. Service-Oriented Architecture - Concepts,

Technology, and Design: Prentice Hall.

Graml, T., Bracht, R., and Spies, M., 2008. Patterns of

Business Rules to Enable Agile Business Processes.

Enterprise Information Systems, 2 (4), 385–402.

IBM, 1996. FlowMark Installation and Maintenance: Ver-

sion 2, Release 2, Document Number SH12-6260-00.

IBM, 2017. Business Process Manager V8.6.0: 2017 [on-

line]. Available from: https://www.ibm.com/support/

knowledgecenter/en/SSFPJS_8.6.0 [Accessed Zugriff

am 25 Jan 2019].

Jablonski, S., 1997. Architecture of Workflow Manage-

ment Systems. Informatik Forschung und Entwick-

lung, Themenheft Workflow-Management, 12 (2), 72–

81 (in German).

Kumar, K. and Narasipuram, M.M., 2006. Defining Re-

quirements for Business Process Flexibility. Workshop

on Business Process Modeling, Design and Support,

Proc. of CAiSE06 Workshops, Luxemburg, 137–148.

Pryss, R., et al., 2016. Context-Based Assignment and

Execution of Human-Centric Mobile Services. Proc.

IEEE 5th Int. Conf. on Mobile Services, 119–126.

Redding, G., et al., 2009. Modelling Flexible Processes

with Business Objects. Proc. IEEE Conf. on Com-

merce and Enterprise Computing, Wien, 41–48.

Reichert, M. and Weber, B., 2012. Enabling Flexibility in

Process-Aware Information Systems: Challenges,

Methods, Technologies: Springer.

Russell, N., et al., 2005. Workflow Resource Patterns:

Identification, Representation and Tool Support. Proc.

Int. Conf. on Advanced Information Systems Engineer-

ing, 216–232.

Schonenberg, M.H., et al., 2007. Towards a Taxonomy of

Process Flexibility (Extended Version): Eindhoven

University of Technology.

Weber, B., Reichert, M., and Rinderle-Ma, S., 2008.

Change Patterns and Change Support Features - En-

hancing Flexibility in Process-Aware Information Sys-

tems. Data and Knowledge Engineering, 66 (3), 438–

466.

Pre-Modelled Flexibility for Business Processes

555

