Dataflow-based Heterogeneous Code Generator for IoT Applications

Gibor Paller!, Endri Bezati2, Neboj$a TauSan', Gabor Farkas' and Gdbor El6!
LSzéchenyi Istvan University, Information Society Research & Education Group, Egyetem tér 1. Gyér, Hungary

2streamgenomics Sarl, EPFL Innovation Park, Bdtiment C, Lausanne, Switzerland

Keywords:

Abstract:

Dataflow, Code Generator, IoT, Eclipse, IDE, Orcc.

The latest wave of connected digital systems, nowadays called Internet of Things (IoT) promises various

gains, especially in terms of significant ease of data access. A large number of different platforms for IoT
applications, however, makes their development difficult and time-consuming leading to projects that are failed
to be on time, on budget or fully completed. To address the platform heterogeneity, this paper presents the
ongoing work on development environment called Orcc-IoT. Orcc-1oT facilitates the development of IoT by
combining dataflow modelling language, heterogeneous code generator and the library of ready-made IoT
actors. The utilisation of Orcc-IoT in development is expected to increase the quality, and to reduce the
development costs and time-to-market of IoT applications.

1 INTRODUCTION

The adoption of connected digital systems (com-
monly known as Internet of Things, IoT) is still slow
due to their high complexity. Factors contributing
to the complexity include security, energy efficiency,
immaturity of communication technologies and het-
erogeneity of platforms. None of the hundreds of dif-
ferent IoT platforms reached the sufficient footprint
so that a dominant platform can be identified. This
heterogeneity makes application development a costly
and time-consuming enterprise with the constant risk
that the application must be ported from one platform
to another.

The heterogeneous platform problem of IoT appli-
cations can also be argued with the findings from the
scientific literature. For example, the (Tausan et al.,
2016) study reveals heterogeneous platforms as one
of the requirements for the development of modelling
languages in embedded systems domain. The (Giang
et al., 2015) study suggests that there are two dimen-
sions of the platform heterogeneity in IoT application
domain. These are:

e vertical - shows the amount of resources the de-
vice has. For example a certain device may have
more computing power or memory than the other.

e horizontal - shows differences in services pro-
vided by the device. For example a certain device
may have an embedded A/D converter or a certain
network adapter (e.g. WiFi).

426

Paller, G., Bezati, E., Tausan, N., Farkas, G. and EI8, G.
Dataflow-based Heterogeneous Code Generator for loT Applications.
DOI: 10.5220/0007496804260432

An overview of IoT challenges presented in
(Gazis et al., 2015) reveals two aspects of device in-
teroperation. The first is technical and denotes how
to enable the interoperation of heterogeneous devices.
Second is semantic and denotes how to enable the
seamless exchange of information among heteroge-
neous devices. Besides technical and semantic in-
teroperation of heterogeneous devices, the (Yaqoob
et al., 2017) study also identifies the pragmatic as-
pect. The pragmatic aspect concerns with the capa-
bility to observe the intention of heterogeneous par-
ties involved in the interoperation.

To address the heterogeneity problem of IoT ap-
plication development, this paper presents the on-
going work on Integrated Development Environment
(IDE) called Orcc-IoT. The Orcc project (Yviquel
et al., 2013; Sourceforge, 2014) has started in 2010
and it targets signal-processing applications. Our
project, Orcc-1oT builds on Orcc with additional fea-
tures that are specific for the IoT problem domain.
The features include the improvements of the graphi-
cal Data-Flow Language (DFL), novel code generator
for heterogeneous platforms and the library of ready-
made IoT components or actors.

A motivational example for the selection of
dataflow paradigm for our DSL is presented in Figure
1. This example shows an Air Handling Unit (AHU)
IoT system with sensors and actuators designed with

In Proceedings of the 7th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2019), pages 426-432

ISBN: 978-989-758-358-2

Copyright (© 2019 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

the popular Niagara IoT workbench !. The AHU con-
trols supply and return air flows and several character-
istics of each flow are measured. The measurements
are typically cyclically collected, analysed and actua-
tor values are computed. The calculations often fol-
low the flow of material in the system (in this case,
the flow of air).

One example application for the AHU engine is
depicted in Figure 2. This shows the flow of data
from one processing element to another passing the
control among the devices indicating that the dataflow
paradigm can be used efficiently for these types of ap-
plications.

This flow-like nature of IoT data is indicated in
scientific sources. Several realistic use cases in differ-
ent application domains are presented in (Yasumoto
et al., 2016) to argue for the dataflow paradigm. In
the domain of high-speed computing, the dataflow de-
sign environments are most widely used, according
to (Milutinovi¢ et al., 2015). Finally, (Giang et al.,
2015) use distributed dataflow for their framework
where each device executes only part of the full ac-
tor network. All these characteristics indicate that the
dataflow paradigm can be used efficiently for IoT ap-
plications.

An approach alternative to the dataflow model
is the component-based model, illustrated here by
ThingML (Harrand et al., 2016). The component-
based model concentrates on the components, their
interfaces with each other and their functional de-
scription which is often state machine-based. The
component-based model is not able to expose the par-
allelism existing in the system to the degree provided
by the dataflow model. While IoT systems are rarely
as demanding with regards to processing performance
as signal processing applications which is the main
use case for the dataflow model, the extreme scala-
bility required by the large amount of endpoints (e.g.
sensors, actuators, etc.) often makes server imple-
mentation challenging. Automatic generation of par-
allel implementation facilitated by the dataflow model
may simplify these server implementations signifi-
cantly.

This paper is structured as follows. Section 2 de-
scribes the base system we chose for our dataflow-
based IoT design environment and how we propose
to extend it. Section 3 discusses a key component
of the extended system, the heterogeneous dataflow
compiler. Conclusions and further work are proposed
in section 4.

Uhttps://www.tridium.com/

Dataflow-based Heterogeneous Code Generator for IoT Applications

2 Orcc IoT EXTENSIONS

Today, there are literally hundreds of IoT platforms
proposed. These software stacks offer data inges-
tion/sending from/to the endpoints, data management,
visualisation and device management features, in-
cluding alarms. Some are offered as installable soft-
ware packages, some are cloud services. So far no
dominant player emerged in the field, making appli-
cation development a risky investment.

The approach to IoT application development,
presented in this paper, is to take a high-level ap-
plication model and generate code from this model
for the target platforms. Following the considerations
presented in section 1, we have chosen the dataflow
paradigm as high-level application model and devel-
oped the DFL to represent the applications.

Instead of developing the environment from
scratch, existing dataflow/component design environ-
ments were analysed. The following environments
were studied: Node-RED, Internet of Things Work-
bench (IBM), Spacebrew, TASTE, Caméléon, Vorto,
ANKHOR FlowSheet and Orcc. The analysis re-
sulted in the selection of the open RVC-CAL Com-
piler (Orce) (Yviquel et al., 2013; Sourceforge, 2014)
as base development environment. The main advan-
tages of Orcc over the evaluated systems are the fol-
lowing:

e [t is completely open-source under the BSD li-
cense.

e Its compiler backends are able to generate code
for a wide variety of targets from FPGAs to rel-
atively high-end runtimes like Java. Orcc does
not enforce any mandatory runtime unlike sys-

tems like Node-RED enforces web runtime. 2.

e [t is based on the Eclipse platform that makes it
highly extensible.

e Its data formats have been standardised (ISO/IEC,
2012). This standard describes the dataflow net-
work’s representation in XML format that Orcc
implements.

After having selected Orcc as base system, a gap
analysis was performed among the features required
for the IoT dataflow and those offered by Orcc. The
most relevant gaps were the following:

e Orcc backend code generation is strictly homoge-
neous. When code is generated for an application
dataflow network, one backend is selected and all
the code is generated by that backend. This does
not satisfy the heterogeneity requirement of IoT
systems. The IoT version of Orcc must be able

Zhttps://nodered.org/

427

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

| B Logoff | ‘ Scheduller | | Alarm

| | Histories | ‘ Home |

Glams Charts

Frost Alarm

27.9°C Healthy
0.0%RH 1782.0 =C

Room Conditions AHU Main Controls

32,8 %RH

Return Pressure
0Pa

Air Quality CO2
0 ppm

40.5 “%RH
Hurn, Cutput 21.3°C

0% 0 %
%

0Pa
Supply Pressure

Figure 1: Air Handling Unit IoT system designed with Tridium Niagara (source: CC North Ltd. ©)2015).

return_air_temperature

outdoor_air_temperature

Out weighted_average

operand 1 result
operand_2

weather_forecast_temperature

Out

‘ cold_room_power_estimator

‘ Cut

Out

operand_1 result
operand_2

operand_1 result
operand_2

Figure 2: Example dataflow application for the AHU unit.

to assign parts of the dataflow graph to different
backend code generators and generate code for
each IoT system elements.

e The current public Orcc version is very strong
in code generation for low-end devices like FP-
GAs or embedded computers.This is the result
of dataflow paradigm’s strong focus on high-
speed computing. IoT system components in-
clude server backends, with a different set of pro-
gramming languages. Orcc used to have a Java
backend but it was obsoleted. We plan to include
into the IoT version a Java backend with server
flavour like Spring Boot 3.

e An Orcc application currently must define all the

3https://spring.io/projects/spring-boot

428

actors in the graph. The requirement is that IoT
system designers be able to select a wide variety
of actors so that IoT applications can be composed
quickly. This requires an actor library support.

3 HETEROGENEOUS CODE
GENERATION FOR IoT

The heterogeneous compiler is the main difference
between the traditional dataflow applications opti-
mized for high-speed computing and the IoT appli-
cations. Heterogeneous dataflow has been a major
research topic (e.g. (Bezati et al., 2014)) but prior
research mainly concentrates on multiple processing

cores (of same type like multicore or of different types
as CPU-GPU) integrated into the same computing
hardware, often on the same chip. As discussed in
section 1, IoT applications are inherently heteroge-
neous and distributed with communication links that
can be unreliable (like short-range communication
links) and/or slow (like low-power WANS).

Figure 3 demonstrates, how the heterogeneous
code generator backend fits into the Orcc architec-
ture. The heterogeneous backend knows, which parts
of the dataflow application are assigned to which ho-
mogeneous backend, partitions the graph and hands
parts of the graph to their associated homogeneous
code generators.

Heterogeneous
backend interface

. | Embedded ——
. | C backend
: Server
Java
backend

Original backend interface

Heterogeneous
backend

Orcc compiler ||

Figure 3: Heterogeneous code generator architecture.

3.1 Architecture

The basic principle of a heterogeneous platform is
that they contain multiple processing elements with
different kinds of computational units. We can de-
scribe the architecture of an heterogeneous platform
with three components: Processing element (PE),
Medium and Link.

A PE models the processing element type, it is
used to describe the main properties of a computa-
tional unit available on a given platform. A PE may
refer to any element in the IoT architecture that is ca-
pable of being part of the dataflow network, i.e. can
produce or consume data items (tokens in dataflow
parlance). A PE therefore can be a sensor that can
produce tokens, an embedded computer or IoT appli-
cation gateway that can run part of the dataflow net-
work or a server instance.

A Medium models a communication channel or a
memory, it is used to describe the kind of communi-
cation that a PE communicates with another PE or an
external communication channel. A Link describes
the properties of the interface between a PE and a
Medium.

A PE might be represented as nested PE in or-
der to represent a multi-core or many-cores comput-
ing device. As an example the architecture of the

Dataflow-based Heterogeneous Code Generator for IoT Applications

usB
ARM_1

Bluetooth

Figure 4: Architecture of the Raspberry Pi 3B+.

Rasberry Pi B+ is depicted in Figure 4. A Rasberry
Pi B+ contains a Broadcom A-53 ARM processor
(BCM2837B0) with four processing units and variety
of media that can be interconnected with it. In addi-
tion, the architecture on Figure 4 represents the de-
vice as a standalone platform without any other plat-
form connected to it. Furthermore, this architecture
is sufficient for describing a Raspberry Pi that runs an
operating system that controls all the interfaces and it
provides four processing cores. A dataflow applica-
tion can map actors to each ARM core.

Temp Bluettoth

Sensor

RISC M “

o ﬂ ﬂ
m o E

Figure 5: An heterogeneous architecture thats contains a
server and an embedded device that receives the tempera-
ture data.

Figure 5 depicts an heterogeneous platform com-
posed of a server that contains a Xeon processor with
six PEs, an embedded Raspberry Pi that communi-
cates with the server via WiFi and a RISC IOT device
that captures the ambient temperature and sends its
data to the Raspberry Pi through Bluetooth. The me-
dia present in Figure 4 but not used by this dataflow
application is omitted in Figure 5.

Using this architecture representation the dataflow
application will map its actors to each processing ele-
ment and the actor FIFOs are mapped to links which
are connected to the defined media.

429

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

3.2 Mapping Configuration

Orcc supports the mapping of actors to different PEs
on a platform that supports POSIX threads for the C
backend, but it does not provide a mechanism to rep-
resent the architecture of a platform or to generate
code for heterogeneous platforms. The current map-
ping configuration in Orcc is called XCF for XML
configuration file.

I <?xml version="1.0" encoding="UTF-8"?>
2| <Configuration>

3 <Partitioning>

4 <Partition id="1">

5 <Instance id="source"/>
6 </Partition>

7 <Partition id="2">

8 <Instance id="sink"/>

9 </Partition>

10 </Partitioning>

11 </Configuration>

Figure 6: Example XCF of ORCC C backend file with two
partitions.

The XCF represented in Figure 6 indicates that the
generated code has to place actor source to partition
1 and actor sink to partition 2. In the context of the
Orcc C backend, it means that two threads on system
that supports POSIX threads are going to be created
and the actors source and sink are going to run in par-
allel. Furthermore this format does not specify which
network is being used for this dataflow application.

This format in its current form can only be used
for assigning runtime actors to different threads. In-
stead of using XCF just for partitioning, here we pro-
pose an extended version of the XCF format that can
be used as input for Orcc to generate source code for
heterogeneous platforms and can inherently describe
the architecture of a platform.

As it can be seen, the XCF configuration file in
its current format can not be used for heterogeneous
computing and therefore the format has to be ex-
tended. First, the XCF needs to describe which is
the top Network of the application that is going to
be used. Thus, the XCF is coupled with a dataflow
network or even multiple such networks. Second, it
needs to give explicit information about the Parti-
tioning of the application to an heterogeneous plat-
form. The XCF file also needs to describe which PE
this partition is going to be associated to and the back-
end that is going to be used to generate the code.

The XCF file also includes the notion of a host.
A host can describe a platform that contains differ-
ent PEs with the same processing core architecture
(e.g a PC with multicore Intel processor) or different

430

1 < ?xml version="1.0" encoding="UTF—8"7>
2 < Configuration>
3 <Network file—format="xdf” qualified—id="AHU _Unit"/>
4 < Partitioning >
5 < Partition id="server_0” pe="x86_0" backend—id="Java Server” host="
intel_server” >
6 <Instance id="weather_forecast_temperature”/>
7 <Instance id="weighted_average™/>
8 <Instance power_attenuator”/>
9 <Instance id="cold_room_power_estimator”/>
10 </Partition>
11 < Partition id=""server_1" pe="x86_1" backend—id="Java Server” host="
intel_server”>
12 <Instance id="pid_controller”/>
13 </Partition>
14 < Partition id="air_temp-0" pe="ARM” backend—id="Java 0" >
15 <Instance id="return_air_temperature”/>
16 </Partition>
17 < Partition id="air_temp_1" pe="ARM” backend—id="Java 0" >
18 <Instance id="outdoor_air_temperature™/>
19 </Partition>
20 < Partition id="fan_power” pe="ARM” backend—id="Java 1>
21 <Instance id="supply_fan_power”/>
22 </Partition>
23 </Partitioning>
24 <Backends>
25 <Backend id="Java Server” backend="Java Server”/>
26 <Backend id="Java 0" backend="Java Vanilla”>
27 < Parameter key="Board” value="BeagleBone Black Wireless”/>
28 </Backend>
29 < Backend id="Java 1" backend="Java Vanilla”>
30 <Parameter key="Board” value="BeagleBone Black Wireless/>
31 </Backend >
32 </Backends>
33 <Media>
34 <Interface id="wifi” medium="Wifi" >
35 < Parameter key="Server IP Address” value="192.168.0.1"/>
36 </Interface>
37 </Media>
38 < Connections >
39 < Fifo—Connection src="return_air_temperature” src—port="Out” dst="
pid_controller” dst—port="operand.1" size="512" medium—id="
wifi”/>
40 < Fifo—Connection src="weighted_average” src—port="Out” dst="
pid_controller” dst—port="operand 2" size="512" medium—id="
wifi”/>
41 < Fifo—Connection src="pid_controller” src—port="Out” dst="
power_attenuator” dst—port="operand_1"" size="512" medium—
id="wifi"/>
42 <Fifo—Connection src="outdoor_air_temperature” src—port="Out” dst="
weighted_average” dst—port="operand_1" size="512" medium—
id="wifi"/>
43 < Fifo—Connection src="power_attenuator” src—port="result” dst="
supply _fan_power” dst—port="In" size="512" medium—id="wifi
1>
44 </Connections >
45 </Configuration>

Figure 7: AHU XCF file.

ones (e.g. the Zynq 7000 is composed with two ARM
processors and an FPGA). Thirdly, it needs to pro-
vide a set of Backends and how they are configured.
Fourthly, it needs to describe the different Media used
for this configuration and its attributes. And finally, it
needs to describe the Connections between the PE
and the Media.

Figure 7 represents the XCF file of the AHU unit
dataflow application of Figure 2. The dataflow appli-
cation is mapped onto 5 partitions: server_0, server_I,
air_temp_0, air_temp_I and fan_power. The server_0
contains four instantiated actors and server_1 con-
tains one instantiated actor. Both those partitions run
in parallel on the same machine as indicated by the
host intel_server. All other partitions run in differ-
ent embedded platforms and contains one instanti-

Backends

e “

outdoor_air_temperature

Out (

o

weighted_average

()operand_1

weather_forecast_temperature

Out (=

Media

cold_room_power_estimator

Out (=

return_air_temperature

Out |

server_1

Joperand 2

power_attenuator

(_Joperand_1

Joperand_2

Dataflow-based Heterogeneous Code Generator for IoT Applications

.7

server_1
pid_controller

j——> Joperand_1
Out (

e Joperand_2

—{

Out (=0

fan_power
supply_fan_power
Out |

—) In

Figure 8: Visualization of the XCF defined in Figure 7.

ated actor. Three backends have been defined: one
for Java server-based applications and two for plain
java code generation. Here we should mention that
the proposed XCF format permits the same backend
with different parameters such as the backends with
ids Java 0 and Java 1. All the PEs communicate
through one medium called "Wifi”. The ip address
of this medium can be passed as a parameter, as indi-
cated in line 34 of Figure 7. The three embedded de-
vices are connected to the server via FIFOs under the
medium “Wifi”, as defined in lines 40, 41 and 42 of
Figure 7. Finally, the connections of the result port of
weighted_average and result port of pid_controller are
omitted and should not be defined in the XCF because
there are internal FIFOs and server_0 and server_I
partitions are Java threads that run in parallel.

nm

“

Figure 9: V the XCF defined in Figure 7.

Figure 8, visualizes the XCF of the Figure 7. The
five partitions are subnetworks of the original network

of Figure 2. Three backends have been defined with
different colors, every parition is colored with a cor-
respoding backend. For this example only one Media
has been used. The same color as the Media has been
used for depicting the interconnection among the par-
titions. Finally, given the proposed XCF file structure,
the architecture of a platform can be extracted directly
as depicted in Figure 9. Thus, this extended XCF file
describes how different heterogeneous platforms are
interconnected and configured but also represents the
architecture of the overall heterogeneous systems.

4 CONCLUSIONS AND FURTHER
WORK

This paper presented an ongoing work to extend an
open-source dataflow environment with IoT features.
We argue that the dataflow application model suits
a wide variety of IoT systems, providing a solution
to the IoT heterogeneity platform problem, bridg-
ing the gap between the physical engineering system
(like an industrial process) and its associated 10T pro-
cess chain and even improving the security. There
are some differences, however, between the usage of
dataflow model in its established, high-speed comput-
ing use cases and the proposed IoT use cases. The
most important difference is the inherent heterogene-
ity of IoT systems and the presence of the short-range
and wide-area network links that come with this het-
erogeneity. Our proposed extensions address this is-
sue.

The feasibility of Orcc-IoT’s dataflow approach

431

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

and heterogeneous code generation for IoT will be de-
moed in an air conditioning system for aircraft sim-
ulators. Orcc-IoT will be published as open-source
software under the original Orcc license (BSD).

REFERENCES

Bezati, E., Thavot, R., and et al., G. R. (2014). High-level
dataflow design of signal processing systems for re-
configurable and multicore heterogeneous platforms.
J Real-Time Image Proc (2014) 9: 251.

Gazis, V., Goertz, M., Huber, M., Leonardi, A., Math-
ioudakis, K., Wiesmaier, A., and Zeiger, F. (2015).
Short paper: Iot: Challenges, projects, architectures.
In 2015 18th International Conference on Intelligence
in Next Generation Networks, pages 145-147.

Giang, N. K., Blackstock, M., Lea, R., and Leung, V. C.
(2015). Developing iot applications in the fog: A dis-
tributed dataflow approach. In 2015 5th International
Conference on the Internet of Things (10T), 2015 Oct.,
Seoul, South Korea. IEEE.

Harrand, N., Fleurey, F., Morin, B., and Husa, K. E. (2016).
Thingml: A language and code generation frame-
work for heterogeneous targets. In Proceedings of the
ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems, MOD-
ELS 16, pages 125-135, New York, NY, USA. ACM.

ISO/IEC (2012). ISO/IEC 23001-4, Information technology
MPEG systems technologies Part 4: Codec configu-
ration representation.

Milutinovi¢, V., Salom, J., Trifunovic, N., and Giorgi, R.
(2015). Guide to DataFlow Supercomputing: Ba-
sic Concepts, Case Studies, and a Detailed Example.
Springer.

Sourceforge (2014). Orcc : Dataflow programming made
easy, http://orcc.sourceforge.net/.

TauSan, N., Markkula, J., Kuvaja, P, and Oivo, M.
(2016). Choreography modelling in embedded sys-
tems domain: Requirements and implementation
technologies. In 4th International Conference on
Model-Driven Engineering and Software Develop-
ment, MODELSWARD 2016, pages 75-86, Rome.
IEEE.

Yaqoob, I., Ahmed, E., Hashem, I. A. T., Ahmed, A. L. A.,
Gani, A., Imran, M., and Guizani, M. (2017). Internet
of things architecture: Recent advances, taxonomy,
requirements, and open challenges. IEEE Wireless
Communications, 24(3):10-16.

Yasumoto, K., Yamaguchi, H., and Shigeno, H. (2016). Sur-
vey of real-time processing technologies of iot data
streams. In Journal of Information Processing Vol.24
No.2 195202 (Mar. 2016). IPSJ.

Yviquel, H., Lorence, A., Jerbi, K., Cocherel, G., Sanchez,
A., and Raulet, M. (2013). Orcc: Multimedia de-
velopment made easy. In Proceedings of the 21st
ACM International Conference on Multimedia, MM
’13, pages 863—-866, New York, NY, USA. ACM.

432

