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Abstract: An automated vehicle is supposed to merge into the major street of a T-intersection, while disturbing the 

ongoing traffic as little as possible. At the same time, different requirements regarding its driving strategy 

have to be fulfilled with respect to safety, comfort and energy conditions. It is desirable to enable a fluent 

automated drive and to avoid stopping during the approach at all. We implemented an agent-based simulation 

using the Kerner-Klenov model in framework of the three-phase traffic theory. Using a high number of 

interacting vehicles leads to a multi-agent system (MAS). A normal distributed free flow parameter based on 

empirical traffic data is introduced and serves as an input parameter to the simulations. The simulations output 

yield temporal headway development-statistics, which enables a prediction of the traffic situation on the major 

street. This allows the automated vehicle to adjust its speed in preparation of merging into the best possible 

gap considering the above-mentioned requirements. Hence, taking these statistics into account helps to 

optimise the driving strategy of the automated vehicle.

1 INTRODUCTION 

Automated vehicles are expected to play a major role 

in road traffic within the next decades. Thus, it is 

necessary to manage the oncoming heterogeneous 

traffic between classical and automated vehicles. 

Especially human behaviour represents a factor of 

uncertainty in this context. That is why we choose a 

statistical approach to make different driving 

behaviour as predictable as possible.  

This work describes an approach that allows 

automated vehicles to interact with common road 

traffic in a safe and efficient way. 

At first, an overview is given about the most 

important theories and agent-based models which are 

used to describe road traffic (subsection 1.1 to 1.3). 

Finally, subsection 1.4 describes the specific 

application. 

1.1 Nagel-Schreckenberg Model 

In 1992 Kai Nagel and Michael Schreckenberg came 

up with the idea of using cellular automata (CA) to 

simulate freeway traffic (Nagel and Schreckenberg, 

1992). Using this microscopic approach, they were 

able to model a phase transition from laminar flow to 

congested traffic with increasing vehicle density. 

Hence, the Nagel-Schreckenberg model 

distinguishes two phases of traffic (Kerner, 2017). 

Several advancements of the model were suggested 

since then; to name just a few: (Rickert, 1996), 

(Hafstein, 2004), (Chmura, 2014). 

1.2 Three-phase Traffic Theory 

However, in three-phase traffic theory (Kerner, 2004) 

one more phase of traffic is taken into account. The 

theory divides congested traffic into the synchronized 

flow phase S and the wide moving jam phase J by 

introducing a so-called synchronisation space gap 𝑔 

between consecutive vehicles.  

The synchronisation space gap is a direct 

consequence of humans accepting different distances 

to the preceding vehicle as long as this gap is not 

getting smaller than the safe space gap 𝑔safe. The safe 

space gap is related to the safe speed 𝑣safe (Krauss et 

al., 1997). Due to the associated speed adjustment, the 

synchronised flow phase S is explained.  

By contrast, the wide moving jam moves 

downstream through any other traffic phase, while 
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maintaining its downstream front’s mean velocity. 

This is the characteristic feature of phase J.   

Last but not least, there is the non-congested 

traffic phase, which is called the free flow traffic 

phase F. It usually occurs when there is a low traffic 

density, i.e. when interactions between single 

vehicles are negligible. Consequently, they are free to 

choose their speed as long as it is in conformity with 

underlying road limitations like speed limits.  

Usually, through an increase in density, e.g. at a 

bottleneck (Kerner, 2000), a phase transition from 

free flow F to synchronized flow S can occur.  

The classical flow instability (Chandler and 

Herman, 1958) has been taken over by the three-

phase traffic theory. Within Kerner’s Theory, it is 

responsible for the spontaneous emergence of wide 

moving jams leading to a phase transition from S to J. 

1.3 Kerner-Klenov Model 

The related microscopic and stochastic model version 

of the three-phase traffic theory is known as Kerner-

Klenov model. Single vehicles are supposed to be the 

simulation’s agents. Due to the high number of 

interacting vehicles, it is a multi-agent system (MAS). 

In this work, we use the model version that is discrete 

in space and time (Kerner and Klenov, 2009). All 

containing parameters and functions are adapted to 

urban traffic (Kerner, 2013). Although this model is 

not cellular automaton-based, some of its behaviour 

is quite similar to (Nagel and Schreckenberg, 1992). 

In addition, the used assumptions are based on 

empirical traffic data. As it is shown in Chapter 1, 2 

and 4 in (Kerner, 2017), the model’s underlying 

three-phase traffic theory is best suited to describe 

traffic.  

For a detailed view on the underlying 

mathematics and the high complexity of the model, 

please see (Kerner, 2017). 

The spatial headway 𝑔𝑛 of a vehicle for time step 

n is defined as follows (Kerner, 2017): 
 

𝑔𝑛 = 𝑥𝑙,𝑛 − 𝑥𝑛 − 𝑑, (1) 

 

where 𝑥𝑛 is the position of the vehicle, 𝑥𝑙,𝑛 the 

position of its preceding vehicle and 𝑑 the vehicle 

length including the mean space gap between vehicles 

that are in standstill. Furthermore, the temporal 

headway 𝜏𝑛 is obtained by dividing equation (1) by 

the vehicle speed 𝑣𝑛: 
 

𝜏𝑛 = 𝑔𝑛 𝑣𝑛⁄ = (𝑥𝑙,𝑛 − 𝑥𝑛 − 𝑑) 𝑣𝑛⁄  (2) 

 

The time step of the simulation is always marked 

by the index 𝑛. 

As mentioned above, vehicles being in the free 

flow traffic phase F are capable of choosing their 

speed largely free. The related parameter within the 

Kerner-Klenov model is called 𝑣free. 

1.4 Application  

Usually, the Kerner-Klenov model is applied to 

analyse macroscopic properties like phase transitions 

at bottlenecks. The predictions made by the three-

phase traffic theory are matching empirically 

observed traffic patterns (Kerner, 2017, pp. 73-81).  

However, the present case is about a microscopic 

analysis of vehicle headway development and brings 

a new application to the model.  

 

Figure 1: T-intersection with common road traffic on its 

major street (yellow boxes). An automated vehicle (red 

box) is approaching from below and tries to merge into the 

ongoing traffic (purple marked headway). The question is 

how the marked headway has developed, when reaching the 

intersection point 𝑥int. There is a speed limit of 30 km/h. 

Within one realisation, all containing vehicles are initialised 

at 𝑥0 using the same temporal headway 𝜏init. 

The specific application contains a T-intersection 

(figure 1) without traffic lights but high numbers of 

common vehicles. An automated vehicle (red box) is 

approaching the intersection point aiming at merging 

into the ongoing traffic (yellow boxes). When the 

current traffic situation on the major street is provided 

to the automated vehicle, a statistical analysis based 

algorithm can predict the best gap for merging into 

the street. In terms of safety, comfort and energy 

conditions, the approach to the intersection should not 

be interrupted by a stop. That is why, it is necessary 

to carry out a statistical analysis of how the headway 

between two consecutive vehicles on the major street 

develops, first.  

Following this guideline, we implemented a 

simulation based on the Kerner-Klenov model 
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adapted to urban traffic using open boundary 

conditions. Within one simulation, all containing, 

identical vehicles were initialised at 𝑥0 with the same 

initial temporal headway 𝜏init. Different simulations - 

with thousands of cars each - were realised by using 

the following values: 
 

𝜏init =  {2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0} s (3) 

 

When the middle of the marked space gap in 

figure 1 reaches the intersection point 𝑥int, the 

temporal headway  is buffered. Whenever this 

condition is met, we call the set of the corresponding 

time steps 𝑁. Doing so with a large number of cars 

enables a statistical evaluation. The related temporal 

headway 𝜏𝑛 is called 
 

𝜏̃ = 𝜏𝑛|𝑛 ∈ 𝑁. (4) 

 

In this work, we choose the distance 𝑑int between 

the point, where the cars are initialised 𝑥0 and the 

intersection point 𝑥int as 100 meters. 
 

𝑑int = 𝑥int − 𝑥0 = 100 m. (5) 

 

The publically funded project “MEC-View” aims 

at collecting vehicle data from an urban major street 

using an infrastructure-based sensor system. Like in 

this work, the sensor system monitors approximately 

100 meters of the major street. That is why this value 

is used for the parameter 𝑑int. The collected data is 

provided to an automated vehicle approaching the 

concerned T-intersection. Using this information 

supports the automated vehicle to merge into the 

ongoing traffic.  

2 RESULTS 

2.1 Constant Free Flow Parameter  

To our best knowledge, the Kerner-Klenov model is 

always used with a constant free flow parameter. This 

means in particular, that the same free flow speed 

𝑣free is assigned to all vehicles. Due to the speed limit 

on the current T-intersection, it is set to 30 km/h. 
In figure 2, the concerning results are shown for 

the usual case (𝑣free = const.). Sharp peaks are 
resulting for the PDF, which reflects the temporal 
headway distribution. That means 𝜏̃ seems to stay 
practically constant within the distance 𝑑int = 100 m 
and is not changing significantly. Thus, for the initial 
temporal headway applies: 
 

 

Figure 2: Probability density function (PDF) against the 

temporal headway 𝜏̃ at the intersection point 𝑥int for 

different initial temporal headways 𝜏init. For the free flow 

parameter of each vehicle applies 𝑣free = 30 km/h. All 

vehicles are initialised at 𝑥0 (see figure 1). Due to only 

slight model fluctuations, sharp peaks are seen, i.e. the 

temporal headway is not changing significantly within the 

range from 𝑥0 to 𝑥int (100 meters). 

𝜏init ≈  𝜏̃ (6) 

 

This fact is also confirmed by a very small 

variance in combination with an almost equal mean 

value (see Table 1). Because these results do not seem 

to be realistic, we present a collected empirical 

dataset in the following subsection 2.2 to justify a 

different approach in subsection 2.3. 

Table 1: Mean, variance and skewness of the distributions 

shown in figure 2. Please note: due to the peak-like shape 

of the underlying distributions, the variance is specified in 

10-5 s. 

𝜏init  

[s] 

Mean  

[s] 

Variance 

[10-5 s²] 

Skewness 

[s³] 

2.0 1.979 0.50 -3.69 

3.0 2.981 0.41 -14.15 

4.0 3.980 0.73 -14.75 

5.0 4.979 1.33 -13.63 

6.0 5.979 1.41 -14.97 

7.0 6.978 1.98 -15.46 

8.0 7.977 2.97 -13.94 

9.0 8.997 3.57 -13.85 

2.2 Free Flow Speed in Empirical 
Speed Data  

In order to obtain reliable vehicle speed data, we 

performed a camera-based measurement on an urban 

straight road in Duisburg, Germany with a speed limit 

of 50 km/h. The decision for this road was made 

because there is no influence on passing vehicles e.g. 

through traffic lights, speed cameras or obstructed 
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view. Consequently, all road users can choose an 

appropriate personal speed taking into account the 

speed limit. 

During the evaluation, only vehicle speeds in 

flowing traffic were taken into account. The related 

empirical speed histogram is shown in figure 3 (light 

blue boxes). The single vehicle speeds are distributed 

widely, which stays in contrast to the former 

assumption 𝑣free = const. It seems like the histogram 

has an asymmetric shape. Due to the relatively small 

dataset of 432 vehicles, this could also have been a 

coincidence. That is why we chose a normal 

distribution to fit the underlying data. With regard to 

a simple solution on the one hand and taking into 

account the basic characteristics of the dataset on the 

other hand, the distribution adapts satisfactorily. 

 

Figure 3: Empirical speed histogram of 432 vehicles in free 

flow on an urban road in Duisburg, Germany. There is a 

speed limit of 50 km/h. A normal distribution (red line) 

satisfactorily fits the data. The underlying parameters for 

mean 𝑣̅ and standard deviation 𝜎𝑣 are shown in the upper 

right corner. The error (±2 km/h) of the measured speed 

dataset is of the same size as the histogram’s bin width. 

2.3 Normal Distributed Free Flow 
Parameter  

Motivated through the empirical speed histogram in 

figure 3, we randomised the value of the free flow 

parameter 𝑣free. It is now following a normal 

distribution.  

As a result, every car is initialised with its own 

individual free flow speed. Of course, fluctuations are 

still possible through the underlying stochastic 

model. Mapping the empirical distribution from 

subsection 2.2 to a speed limit of 30 km/h, delivers a 

mean of approx. 29 km/h. However, the standard 

deviation is expected to remain the same (~6 km/h). 

Subsequently, the same procedure as in 

subsection 2.1 takes place following the rules of the 

Kerner-Klenov model.  

 

Figure 4: Probability density function (PDF) against the 

temporal headway 𝜏̃ at the intersection point 𝑥int for 

different initial temporal headways 𝜏init. For each vehicle, 

the free flow parameter 𝑣free is not constant, but is 

randomised following a normal distribution. All vehicles 

are initialised at 𝑥0 (see figure 1). Due to this empirically 

motivated modification, more softened distributions are 

resulting, i.e. the statistical temporal headway scatters 

within a wider range. 

However, for this case, we obtain fundamentally 

different distributions (figure 4) in comparison to the 

previous case (figure 2). Now, they are much more 

softened and the peak-like behavior is gone, i.e. the 

statistical temporal headway 𝜏̃ scatters within a wider 

range. With regard to a more quantitative explanation 

mean, variance and skewness of the distributions are 

listed in Table 2.  

Table 2: Mean, variance and skewness of the distributions 

shown in figure 4. 

𝜏init  

[s] 

Mean  

[s] 

Variance 

[s²] 

Skewness 

[s³] 

2.0 1.91 0.07 7.26 

3.0 2.96 0.29 5.28 

4.0 4.04 1.31 3.20 

5.0 5.17 2.87 2.54 

6.0 6.18 3.64 2.45 

7.0 7.28 5.23 2.35 

8.0 8.18 5.27 1.33 

9.0 9.45 7.88 1.09 

3 DISCUSSION 

Although the Kerner-Klenov model exhibits 

stochastic components, the fluctuations for a 

moderate traffic flow are very slight, obviously. Only 

when the model is applied to bottleneck situations, the 

characteristics of real traffic are reproduced 

realistically and the fluctuations of the model 
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increase. Due to the slight model fluctuations, sharp 

peaks are resulting (figure 2), i.e. the temporal 

headway 𝜏̃ is not changing significantly within the 

range from 𝑥0 to 𝑥int. This behaviour does not seem 

to be realistic at all. In Table 1 mean, variance and 

skewness are listed to enable a quantitative point of 

view.  

Compared to other works, where often only 

averaged empirical data over many cars is shown, our 

dataset consists of single vehicle information. The 

measurement took place on a bright day without any 

precipitation in April 2018 on a straight road in 

Duisburg, Germany exhibiting a speed limit of 50 

km/h. Only vehicle speeds in flowing traffic were 

taken into account. In order to make sure that the 

driving behaviour of individual cars was not affected 

by the measurement, the cameras were placed hidden. 

Two road markings with a distance of 20 meters in 

between served as an aid to determine speeds of 

passing vehicles. Due to the associated averaging 

process of the vehicle speeds within a range of 20 

meters, an error of ±2 km/h should be taken into 

account. This corresponds to the bin width of the 

histogram shown in figure 3. 

In order to obtain a more realistic behaviour 

within the framework of a microscopic simulation, a 

randomised free flow parameter 𝑣free was chosen for 

different initial temporal headways 𝜏init (figure 4). 

When comparing the different distributions of 𝜏̃, it is 

noticeable that they are getting wider (increasing 

variance) with increasing 𝜏init (table 2). However, the 

skewness is continuously decreasing. This is due to 

the safe space gap 𝑔safe of the Kerner-Klenov model, 

which represents the lower limit of the gap between 

two consecutive vehicles. If the gap is already small, 

there are many more possibilities for an increase. The 

bigger it becomes, the more balanced options there 

are for the underlying agent leading to a more 

symmetric shape of the related distribution. The mean 

value of the temporal headway 𝜏̃ stays very close to 

the initial value 𝜏init. 

It is interesting to see, that the results of 

subsection 2.1 and subsection 2.3 differ not only in 

variance, but also in their skewness (compare table 1 

to table 2). Whereas a negative skewness is obtained 

for a constant 𝑣free, the skewness becomes positive 

for a free flow parameter following a normal 

distribution. A comparision of the mean values 

shows, that both are systematically smaller than the 

underlying initial value 𝜏init. 

For the following qualitative discussion, we now 

turn to figure 5 showing a single distribution of 𝜏̃ from 

figure 4 (𝜏init = 6 s). It seems that the mode of the  

 

Figure 5: Qualitative discussion on the PDF for 𝑣free 

following a normal distribution. As an example, the 

distribution for the simulation of 𝜏init = 6 s has been chosen 

(see figure 4), which is representative of all. Compared to 

the PDF’s heavy tail towards larger temp. headways 𝜏̃  (c), 

the distribution has a steep slope towards shorter 𝜏̃ (a). The 

mode (b, black dashed line) is systematically smaller than 

the underlying initial temp. headway 𝜏init (red dashed line). 

distribution is systematically smaller than the 

underlying initial temporal headway 𝜏init, i.e. most of 

the cars within the analysed ensemble tend to close 

the gap to their preceding vehicle. The distribution 

has got a steep slope on its left-hand side. It looks as 

if there is a lower limit relating to short temporal 

headways 𝜏̃ for a given 𝜏init, whereas the heavy tail’s 

range towards larger temporal headways 𝜏̃ cannot be 

determined clearly. 

4 CONCLUSIONS 

We found out that the typical probability density 

function (PDF) describing the temporal headway 

development do not have a symmetrical shape. A 

heavy tail behaviour towards larger temporal 

headways 𝜏̃ occurs, if the free flow parameter 𝑣free of 

the underlying Kerner-Klenov model follows a 

normal distribution. This shape seems to be 

qualitatively independent of the initial temporal 

headway 𝜏init. Providing this information to an 

automated vehicle helps to find the most efficient 

driving strategy for merging into the ongoing traffic. 

We would like to compare our results to real 

traffic temporal headway distributions. With regard to 

the described scenario, we are developing a stationary 

infrared sensor system including multiple units to 

detect a large number of passing vehicles. Using the 

generated data helps us to adjust the model’s 

underlying functions and parameters in order to 

describe real traffic more reliable. Furthermore, this 

research is going to be shared within the “MEC-
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View“-project. The aim is to optimise the algorithm 

finding the most efficient driving strategy for the 

involved automated vehicle approaching the project’s 

T-intersection. 
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