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Abstract: Deployment flexibility, low development cost, and value-adding tools are some of the features that 

developers are looking for in ERP systems. Modularization through software agents is one way of achieving 

these objectives. In this sense, the present paper proposes the planning, implementation and integration of a 

software agent for association rule mining into an ERP system. The development and use of tools for all 

Knowledge Discovery in Databases (KDD) phases (pre-processing, data mining and post-processing), will 

be presented. This includes input data, file loading for the agent processing, use of the Apriori association 

rule mining algorithm, generation of output files with association rules, use of agent outputs for database 

storage and use of the stored data by the item recommendation tool. Experiments were carried out focusing 

the assessment of the running profile for databases of different sizes and using different computational 

architectures. 

1 INTRODUCTION 

The use of agents, more specifically intelligent 

agents, in the development of ERP systems has been 

discussed in the literature and the benefits of 

adopting this technology are demonstrated both in 

the business and developer sides (Botta-Genoulaz et 

al., 2005 Bih-Ru et al., 2006; Kishore et al., 2006). 

Benefits include lowering development costs, 

flexibility in business matching (made possible by 

weak coupling), increased use of ERPs, and the 

integration of intelligent decision-making processes 

into the system itself. These benefits bring a high 

success rate in deployments and make the systems 

accessible to a wide range of businesses (Yi and Lai, 

2008; Al-Mudimigh and Saleem, 2008; Al-

Mudimigh et al., 2009; Botta-Genoulaz et al., 2005). 

As described by Russell and Norvig (2010), 

software agents or software robots (softBots) are 

programs capable of interacting with the proposed 

environment using sensors to gather information and 

return their processing by means of actuators, 

according to previously specified performance 

measures. 

This paper proposes the development of a data 

mining software agent (Lea, Gupta and Yu, 2005; 

Papazoglou, 2001; Fox, Barbuceanu and Teigen, 

2000), called RecBot, to perform association rule 

mining using the Apriori algorithm (de Castro and 

Ferrari, 2016, Kotsiantis and Kanellopoulos, 2006, 

Kantardzic, 2003, Agrawal, Imielinski and Swami, 

1993). Association rules allow the agents to create 

intelligent recommendations for products and 

services within the ERP itself, facilitating the 

decision-making process of its users, increasing the 

conversion rate and maximizing results. To illustrate 

this development, the proposed agent will be 

integrated into a real ERP and applied to a database 

of business transactions in the health sector. 

Furthermore, a study on the computational 

performance of RecBot will be made to investigate 

how this application behaves i) as a function of the 

growth of the transactional database, and ii) when 

run in different platforms. 
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The paper is organized as follows. In Section II a 

review of association rule mining is made and the 

proposed RecBot agent will be presented. Section III 

presents the materials and methods for evaluating 

the proposal and Section IV brings an analysis of the 

execution profile. The work is concluded in Section 

V with a general discussion on the proposal and 

future work perspectives. 

2 ASSOCIATION RULE MINING 

AND THE RECBOT AGENT  

There are several practical applications in which the 

objective is to find relationships among attributes (or 

variables), not objects. The association analysis, also 

known as association rule mining, corresponds to the 

discovery of association rules that present attribute 

values that occur concomitantly in a database 

(Agrawal, Imielinski and Swami, 1993; de Castro 

and Ferrari, 2016; Han, Kamber, and Pei, 2012). 

This type of analysis is typically used in marketing 

actions and for the study of transactional databases. 

There are two central aspects in the mining of 

association rules: the efficient construction of 

association rules and the quantification of the 

significance of the proposed rules. That is, a good 

association rule mining algorithm needs to be able to 

propose associations of items that are statistically 

relevant to the universe represented by the database. 

More formally, association rules have the form X → 

Y: 

 

A1 and A2 and ... and Am  B1 and B2 and ... and Bn, 

 

where Ai, i = 1, ..., m, and Bj, j = 1, ..., n, are pairs of 

attribute values. 

The X → Y association rules are interpreted as 

follows: database records that satisfy the condition 

in X also satisfy the condition in Y. 

The significance of the proposed rules is 

established on the basis of statistical arguments. 

Rules that involve mutually exclusive items or that 

cover a very small number of transactions are of 

little relevance. Thus, it is possible to objectively 

propose measures of interest that evaluate such 

features of the rules, such as support and trust 

(Agrawal, Imielinski and Swami, 1993). 

The support, or coverage, of a rule is an 

important measure, since rules with very low 

support values occur only occasionally. Rules with 

low support are also of little interest from the 

business perspective, since it does not make much 

sense to promote items that customers buy little 

together. For this reason, support is typically used to 

eliminate uninteresting rules. 

The support of an association rule, A → C, indicates 

the frequency of occurrence of the rule, that is, the 

probability of this rule being found in the total set of 

transactions of the base: 

 

 
(1) 

 

where (A∪C) is the rule support count, which 

corresponds to the number of transactions that 

contain a particular set of items, and n is the total 

number of transactions in the base. 

Mathematically the support count of a set of 

items A is given by: 

 

(A) = | {ti | A ⊆ ti, ti ∈ T} | 

 

The confidence, or accuracy, verifies the 

occurrence of the consequent part of the rule in 

relation to the antecedent: 

 

 
(2) 

 

where (A) is the support count of the antecedent. 

While confidence is a measure of the rule’s 

accuracy, support corresponds to its statistical 

significance. Together, these are the most commonly 

used measures of interest in the association rule 

mining literature (Al-Mudimigh and Saleem, 2008; 

Al-Mudimigh, Saleem and Ullah, 2009; Han, 

Kamber, and Pei, 2012; de Castro and Ferrari, 

2016). During the association rule mining process, 

criteria based on minimum values of support and 

confidence are established so that a rule is part of the 

final set of rules. However, many potentially 

interesting rules can be eliminated by a minimum 

support criterion, just as confidence is a measure that 

ignores the support of the set of items. 

One way to reduce the computational cost of 

association rule mining algorithms is to decouple the 

support and confidence requirements from the rules. 

Because rule support only depends on the item set, 

infrequent item sets can be deleted early in the 

process without having to calculate their confidence. 

Thus, a common strategy adopted by association 

rule mining algorithms is to decompose the problem 

into two subtasks: generation of the frequent itemset; 

and rule generation. 
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Table 1: PEAS (Performance, Environment, Actuators, Sensors) description of RecBot. 

Agent Type Predictive Performance 
Computational 

Performance 
Environment Actuators Sensors 

Association rule 

mining 

Know and attend the 
customers needs, 

increase sales and 

maximize return 

Computational 

performance in 
different platforms  

Sales, 

customers and 
salesmen 

Output files Input files 

 

The work of Agrawal (1993), and Agrawal and 

Srikant (1994) were pioneers in proposing an 

association rule mining algorithm, named Apriori, 

whose objective is to discover product associations 

in large transactional databases. The Apriori 

algorithm is the best-known method for association 

rule mining and employs depth-first search (Russell 

and Norvig, 2010) to generate candidate itemsets of 

k elements from sets of items with k1 elements. 

The non-frequent candidate items are deleted, and 

the entire database is tracked and the frequent 

itemsets obtained from the candidate itemsets. This 

paper uses the Apriori algorithm to generate the 

RecBot rules. 

Table 1 presents the PEAS (Performance, 

Environment, Actuators, Sensors) description of the 

implemented RecBot agent. 

Each KDD task, or even its sub-tasks, can be 

performed by agents and in the most varied forms of 

interaction, ranging from competition - where each 

agent competes for information and the winner 

forces the loser to become symbiotic - to mutual 

cooperation, which leads to the evolution of all 

agents of the system (Steels 1998, Eguchi, Hirasawa, 

Hu and Ota, 2006). 

The integration of the proposed model occurs in 

a cooperative way, using sales data preprocessed by 

the ERP system and in specific format as the agent 

data entry. The output of the agent processing also 

occurs in a specific format presented in the 

following sections, and all post-processing (such as 

persistence and use of association rules) will be 

performed again by the ERP system (Fig. 1). 

 

Figure 1: KDD responsibilities. Adapted from (Liu and 

Motoda, 2002).  

 

 

 

3 ERP RECBOT INTEGRATION  

To illustrate the KDD and its use in business, as also 

described by Bendoly (2003), a data preprocessing 

interface was initially developed. This step can also 

be performed by an agent, but here it was done by 

the ERP system itself, which is responsible for 

making the RecBot agent data file available and 

running it. The agent developed here has the task of 

receiving sales data previously processed by the 

ERP system and mining the association rules, 

allowing the recommendation of items. 

RecBot was developed using the Object Pascal 

language (Lazarus/Delphi), aiming to run on Linux 

platforms. The development of this agent took 

approximately 26 days, since it was necessary to 

develop all the methods that involve data processing.  

To reduce the development and total execution 

time, a version of this agent was developed in C++ 

with support from the Data Analytics Acceleration 

Library (DAAL), which offers computationally 

optimized methods for all stages of the KDD 

process. Its implementation, maintenance and 

optimization is done by Intel® and can be purchased 

together with Intel Parallel Studio or in a free 

version available on Github. With the support of this 

library it was possible to reduce the development 

time, which previously was 26 days, to only 3 days. 

The results generated by these implementations are 

presented and discussed in Section IV. The input 

files and outputs, such as item groups, association 

rules, and runtimes, for parameterizations used in 

both implementations of the same agent, are 

available for online access in the RecBot Project 

within the Mendeley Data platform, in directories 

Inputs and Outputs, respectively (Souza, 2018). 

As this is a software agent, the communication 

pattern between agents has been defined through 

execution parameters that must meet the following 

sequence: Number of Load Threads, Confidence 

Factor, Support Factor, File with input data and 

folder for output files. An example of an agent call is 

shown below: 
 

./recbot 10 0.03 0.3 /data/inputs/db3k.csv/data/outputs/ 
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In this example, 10 threads are defined for input file 

processing, a confidence factor of 3%, a support 

factor of 30%, the input file is db3k.csv, which is in 

the /data/inputs/directory, and the directory to store 

the output files is /data/outputs/.  

There is a peculiarity in the agent developed in 

the C++ language. The DAAL library dynamically 

defines the number of threads that will be used 

during the agent processing, so the first parameter is 

omitted for this version to run. 

The algorithm performs a combinatorial analysis 

of the items to construct the rules, counts the 

transactions containing the items in order to 

determine the support (frequency of occurrence) and 

confidence (accuracy) of the rules. The aim is to find 

rules that satisfy minimum values of support and 

confidence, pruning all candidate rules that have not 

reached the pre-defined minima (Agrawal, 

Imielinski and Swami, 1993; Nath, Bhattacharyya1 

and Gosh, 2012; de Castro and Ferrari, 2016). 

An interface for transactional data processing 

was developed in the ERP to select the filtered 

transactions and allow the export of the file used for 

communication with the agent. The data entry files 

must be in the Comma-Separated Values (CSV) 

standard and contain the preprocessed transactional 

data in the "id, item" format, where id is a sequential 

code used to represent the transaction and item is the 

transaction, as illustrated in Figure 2. 

 

Figure 2: Partial Input file structure. 

The agent starts by loading the minimum support 

and confidence values chosen for the execution and 

loading the input data file. From this a matrix 

composed of N transactions is fed, indicating 1 when 

the item is present in the transaction, and 0 

otherwise. Thus, the frequency of occurrence of each 

item is calculated and those that meet the minimum 

support are evaluated in pairs, until there are no 

possibilities of combinations that meet the minimum 

support (de Castro and Ferrari, 2016; Kantardzic, 

2003). The support calculation is done by Eq. (1). 

All subsets with support less than the minimum 

support are excluded (pruned) from the next step, 

and so the algorithm continues until there are no 

more possible combinations. 

With the subsets that meet the minimum support 

properly selected, the next step is to use this result to 

build the rules a → c (if a, then c), and these new 

combinations must meet the minimum confidence 

(Eq. (2)). Rules that do not meet the minimum 

confidence will be pruned and the process is 

repeated until all rules have been evaluated. The 

complete process is shown in Figure 3. 

 

Figure 3: How the agent works. 

Thus, three outputs are created by the agent: 

1) one with the subsets that meet the minimum 

support and its respective support value 

(outpuItemSet file), as shown in Figure 4; 2) another 

file with the association rules that meet the 

minimum confidence (outputRules file); and 3) one 

with the running time of each agent process, as 

described in Figure 4. 

The association rules are loaded by the ERP 

system and stored in a database for later use. 

Determining the most flexible format for recording 

these data in a relational database has been one of 

the challenges of this work, because it was necessary 

to consider various combinations of items made in 

the sale (antecedents), and to use SQL queries to 

find the items to recommend (consequents). As a 

proposed solution, two tables were created, one to 

record the antecedent items and their confidence 

values and another to record the consequent items. 

Each rule is assigned an ID. 

Thus, to select the most relevant rules, a query is 

made with the existing items of the current 

transaction and all rules that have existing 

combinations are selected. The consequent items of 

these rules that do not exist in the current transaction 

are selected and presented to the user as 

recommendations. 
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            (a)                                   (b) 

 
(c) 

Figure 4: (a) Frequent itemset. (b) Association rules. 

(c) Running time. 

4 PERFORMANCE 

EVALUATION 

This section presents an analysis of the execution 

profile of the Apriori algorithm implemented in two 

versions: 1) one in Object Pascal (Lazarus/Delphi); 

and 2) another in C++ with DAAL library support, 

as described previously. 

Two computer systems of shared memory 

architecture and with the support of SIMD (Single 

Instruction Multiple Data) type flows were used. 

The first computer system consists of two 1.83 MHz 

Dual Core Xeon processors and 12 GB of RAM, two 

SATA 2.0TB and Linux Ubuntu Server 18.04 LTS. 

The second computer system consists of two Intel 

Xeon Platinum 8160 @ 2.10 GHz processors, each 

with 24 physical cores (48 logical) and 33 MB cache 

memory, 190 GB RAM, two Intel S3520 Series 

1.2Gb and 240TB SSDs GB capacity and CentOS 7 

operating system with kernel version 3.10.0-

693.21.1.3l7.x86_64. For reasons of ease of 

identification, the first computer system was named 

Woodcrest and the second one Skylake. 

Therefore, to improve the use of the 

computational systems available for our experiments 

the algorithm was transcribed from the Object Pascal 

language into the C++ language using the DAAL 

library methods. The two computer systems have 

microarchitecture processing units developed by 

Intel that have made efforts to apply computational 

optimization and parallelism techniques to both the 

C++ language compiler and DAAL, both available 

in the Intel Parallel Studio XE (Intel, 2018a). In the 

shared memory systems, DAAL supports thread-

level parallelism using Threading Building Blocks 

(Intel, 2018b), which is a runtime-based parallel 

programming model for C/C++ code, and supports 

vectorization, which is the programming model for 

the SIMD architecture. Thus, there is the guarantee 

of using all resources available by the system. 

Table 2: Number of itemsets and rules in RecBot. 

Dataset size 

103 

Support 2% 

Confidence 20% 

Support 3%  

Confidence 30% 

Item sets Rules Item sets Rules 

3 178 91 70 18 

6 142 38 55 9 

12 150 41 60 10 

24 139 45 61 10 

48 126 36 56 7 

96 127 37 55 10 

192 124 37 54 8 

384 118 30 53 6 

768 111 26 49 6 

1536 121 30 55 7 

3072 131 39 61 8 

Samples of varying sizes from the same real-

world database were used for the experiments. The 

initial sample has a size of 3,000 (3K) records, and it 

doubles up to 3,072,000 records (Table 2). We also 

tested the following minimum support (minsup) and 

minimum confidence (minconf) values: minsup = 

2%, minconf = 20%; and minsup = 3%, minconf = 

30%. As previously explained, the higher the 

support and confidence, the greater the correlation 

between the items. Their configuration depends on 

business demand of data, since the higher the value 

of these parameters, the less itemsets will be 

generated and, therefore, the less items will be 

recommended to the user application. 

Table 2 shows the number of items in the 

frequent itemset and the number of rules generated 

for each dataset size. It can be noted that increasing 

the database does not imply increasing the number 

of frequent items or the number of rules. While this 

may seem counterintuitive, the explanation lies in  
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Table 3: Performance evaluation of the RecBot agent implementations in the Woodcrest and Skylake architectures for 

exponentially growing databases. 

Dataset size 

103 
Server 

C++ Object Pascal 

minsup 2% 

minconf 20% 

minsup 3% 

minconf 30% 

minsup 2% 

minconf 20% 

minsup 3% 

minconf 30% 

ET ET ET ET 

3 
Woodcrest  112 89 200 127 

Skylake 45 31 57 31 

6 
Woodcrest 121 99 376 244 

Skylake 47 35 114 67 

12 
Woodcrest 160 119 938 425 

Skylake 51 37 242 133 

24 
Woodcrest 182 155 2040 957 

Skylake 53 39 516 323 

48 
Woodcrest 244 226 4465 2319 

Skylake 59 48 1140 762 

96 
Woodcrest 420 370 9670 4600 

Skylake 71 64 3246 1889 

192 
Woodcrest 729 661 31615 13355 

Skylake 100 91 8110 4835 

384 
Woodcrest 1345 1270 110160 70671 

Skylake 150 141 17933 10721 

768 
Woodcrest 2540 2421 225943 154344 

Skylake 254 236 36104 21856 

1536 
Woodcrest 5032 4768 459691 309819 

Skylake 461 432 80123 47075 

3072 
Woodcrest 10122 9583 - - 

Skylake 826 815 237129 191673 

 

the fact that the increase in the database also 

increases the denominator of the coverage 

calculation and the support of a rule, causing fewer 

frequent items to meet the minimum support 

criterion and fewer rules satisfying the minimum 

confidence level. 

As the Apriori algorithm is deterministic, a 

single experiment was performed for each 

configuration and the results presented in Table 3 

are the total Execution Time (ET) of the two 

implementations, for the different combinations of 

minsup and minconf, and increasing dataset sizes. 

Figure 5 shows that the C++ version provided a 

98.46% reduction in execution time when compared 

with the Object Pascal implementation. It can also 

be observed that for the 3072K dataset the Object 

Pascal version could not converge, because there 

was not enough RAM space to store the data 

structures and the program was shut down by the 

operating system. By contrast, the C++ version 

finished execution and the running time still 

complies with the previously observed pattern. 

Figure 5 plots the execution time (ET) of the 

Woodcrest architecture for both implementations: 

Object Pascal and C++. It is noted that the ET 

increase is exponential, like the dataset increase, but 

the increase for Object Pascal occurs at a 

significantly higher rate than the increase for C++. 

A similar behavior can be observed in Figure 6 

for the Skylake architecture. The difference between 

the execution time of the C++ version in relation to 

the Object Pascal version comes to be 190858ms 

faster for largest dataset (3072K objects), a 99.57% 

reduction in execution time. The average growth rate 

of the C++ runtime is approximately 1.37 and for the 

Object Pascal version it is approximately 2.32. This 

shows that by doubling the dataset size, the Object 

Pascal time more than doubles, while the C++ 

version has an increase of approximately 44%.  

Figure 7 summarizes the gain in performance when 

comparing both implementations in both 

architectures. It can be observed that the C++ 

version had a gain of 286.94 times to minsup = 2% 

and minconf = 20% and a gain of 235.18 times to 

minsup = 3% and minconf = 30% in the Skylake for 
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(a) 

 
(b) 

Figure 5: Growth rate comparison between each 

implementation in the Woodcrest archtiecture. First 

Column of dataset: C++; Second Column of dataset: 

Object Pascal. (a) minsup = 2% and minconf = 20%; (b) 

minsup = 3% and minconf = 30%. 

the dataset with 3072K objects. The gain is obtained 

from the ratio between the execution time of the 

Object Pascal version and the execution time of the 

C++ version. By analyzing the pattern of gain 

growth, it can be observed that it is very close to 

stabilizing in the Woodcrest environment, whilst in 

the Skylake environment the gain still seems to be 

growing. This reinforces the conclusion that the C++ 

version is best suited for database scalability. This 

result also demonstrates the efficiency of the 

Skylake architecture since the operations performed 

by the algorithm are the same in all environments. 

5 CONCLUSIONS 

This paper introduced an association rule mining 

agent to be integrated with an ERP system as an 

alternative to implement a microservice structure. 

For this, the agent was developed in two different 

languages, Object Pascal (Delphi/Lazarus) and C++, 

 
(a) 

 
(b) 

Figure 6: Growth rate comparison between each 

implementation in the Skylake archtiecture. First Column 

of dataset: C++; Second Column of dataset: Object Pascal. 

(a) minsup = 2% and minconf = 20%; (b) minsup = 3% 

and minconf = 30%. 

making use of different programming techniques. In 

the first implementation (Object Pascal) the Apriori 

algorithm was fully coded using object orientation, 

which led to a programming time 8 times greater 

than the second one (C++), which was done using 

third party libraries (DAAL Intel). The use of Intel 

DAAL also provided considerable performance 

gains.  

The performance of these agent 

implementations was compared in two distinct 

computational architectures: Woodcrest and 

Skylake. In the performance analysis presented, a 

real transactional database was used with 3,072,000 

objects, presented in increasing subsets from 3,000 

objects, doubling at each experiment. Two distinct 

configurations of minimum confidence and support 

thresholds were also tested, allowing empirically 

investigating the application scaling with the dataset 

size. 

In the time analysis, it was obtained a reduction 

in the total execution time of 99.57% in the Skylake 

and 98.46% in the Woodcrest for the database with 
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(a) 

   

(b) 

Figure 7: Reduction in times of the execution time of the C++ version in relation to the Object Pascal in the (a) Skylake and 

the (b) Woodcrest architecture. 

3072K objects. It has also been observed that the 

C++ version is more suited to dataset scalability, 

presenting a runtime increase rate of approximately 

1.37 times as opposed to 2.32 times of the Object 

Pascal version. 

With this, the efficiency of the presented 

technique is determined, since its flexibility of 

languages and environments demonstrated the 

viability of the solution for different operating 

platforms and computational architectures. 

As further works it is proposed the use of the 

implemented agent in real-world ERP systems and 

the assessment of its business improvement, such as 

the number of sold items and billing volume 

(considering seasonalities and possible outliers). 
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