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Abstract: Assessing cognitive workload using functional near-infrared spectroscopy (fNIRS) in labs is well established. 

However, fNIRS sensors useful during normal activities in real-world environments are only recently 

emerging. We validated a small, portable fNIRS sensor (the fNIRS Pioneer ™) against a larger sensor with 

coverage of a larger cortical area, the NINScan developed at Massachusetts General Hospital. We used a gold-

standard working memory task (n-back; (Kirchner, 1958)) and a more complex multi-attribute task battery 

(MATB) (Santiago-Espada et al., 2011). Twenty healthy adult (21.5 ± 3.3 years; 9 males) students at Brown 

University completed all three experimental visits. Fitting with previous research, on the n-back task, we 

found a significant effect of difficulty level on blood oxygenation (HbO2) in dorsolateral prefrontal cortex 

(dlPFC) HbO2 (p<.01), but not medial PFC HbO2 with the fNIRS Pioneer. For the NINScan, we observed 

increases in HbO2 from 1- to 2- to 3-back in two channels corresponding to the border between ventrolateral 

PFC (vlPFC) and dlPFC in both hemispheres (p<.05). When we aggregated MATB data across subtasks, and 

after accounting for time-on-task, we found a significant (p<.01) effect on HbO2 for the Pioneer and the 

NINScan. In all cases, the significant HbO2 findings were negative relationships, indicating less brain 

activation with better performance. While prior literature of functional brain imaging with MATB is not 

available, this finding is at least broadly consistent with the role of lateral PFC’s role in working memory. 

This indicates that both the fNIRS Pioneer and the NINScan sensor, when combined with appropriate data 

analytic techniques were useful for detecting changes in HbO2 that correlate with cognitive workload and 

behaviour, and that the fNIRS Pioneer is able to assess cognitive workload similarly to more larger, more 

expensive, and more established devices. 

1 INTRODUCTION 

Assessing cognitive workload using functional near-

infrared spectroscopy (fNIRS) in labs is well 

established. Increased workload corresponds with 

increase in prefrontal blood oxygenation (HbO2) 

correlated with increased task engagement. Once the 

task becomes too difficult, HbO2 decreases as does 

task engagement and performance (Ayaz et al., 2012; 

Bunce et al., 2011). However, fNIRS sensors useful 

for assessing cognitive workload during normal 

activities in real-world environments are only 

recently emerging (Bracken et al., 2017; Bracken et 

al., 2013; McKendrick et al., 2015). Standard sensors 

are large (e.g., full-head), expensive (~$10K) and 

require heavy equipment (e.g., batteries, laptops).  

Under this NASA-funded effort Cognitive 

Assessment and Prediction to Promote Individualized 

Capability Augmentation and Reduce Decrement 

(CAPT PICARD), we validated our fNIRS Pioneer 

sensor, a sensor that is more portable, rugged, and 

cost-effective than other devices on the market, 

against the NINScan developed at Massachusetts 

General Hospital. We used a gold-standard task 

known to affect cognitive workload (n-back; 

(Kirchner, 1958)) and a more complex multi-attribute 

task battery (MATB) (Santiago-Espada et al., 2011). 

NINScan supports 32 channels (with one channel 

representing on LED pair and a detector), with 8 

channels per hemisphere in this test. Because our 

fNIRS Pioneer sensor only includes one source-

detector pair, we further validated our findings by 
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collecting data at two locations: the dorsolateral 

prefrontal cortex (dlPFC) known to exhibit changes 

in HbO2 with increasing cognitive workload, and the 

medial PFC, which does not exhibit changes in HbO2 

due to cognitive workload. We expected to see a 

change in HbO2 with each increase in difficulty level 

for both the n-back and the MATB over dlPFC but 

not medial PFC, indicating that fNIRS is useful for 

assessing cognitive workload in these tasks, and that 

our more portable fNIRS Pioneer is able to assess 

cognitive workload similarly to more established 

devices. 

2 METHOD 

2.1 Participants 

Twenty-three healthy adults (age: 21.3 ± 3.0 years; 

education: 14.5 ± 1.9 years; 10 males) were recruited 

from the student population of Brown University. 

Three participants withdrew from the study prior to 

completion of all three sessions: one due to a 

headache from the electroencephalography (EEG) 

cap and the other two because of the length of the test 

sessions. All participants were native English 

speakers with reported normal or corrected-to-normal 

vision and hearing. Participants were right-handed 

with the exception of one who reported being 

ambidextrous. There was one active and one prior 

smoker. None of the participants reported any history 

of learning disabilities. However, one participant 

reported a diagnosis of depression and another a 

diagnosis of anxiety. No other psychological 

disorders were reported. Four participants reported 

prior concussions or head injuries. Ethnicity consisted 

of eleven Caucasian, five Asian, four 

Hispanic/Latino, one African-American, and two not 

reported. All individuals received monetary payment 

for their participation. 

The 20 participants (age: 21.5 ± 3.3 years; 

education: 14.6 ± 2.0 years; 9 males) who completed 

the study reported sleeping 6.9 ± 0.8 hours/night over 

the past week. Reported weekly alcohol intake 

(drinks per week) was reported as zero for five 

participants, <1 for one participant, 1-5 for eleven 

participants, 6-10 for two participants, and 11-15 for 

one participant. Weekly caffeine intake (drinks per 

week) was reported as zero for two participants, <1 

for three participants, 1-5 for five participants, 6-10 

for seven participants, 11-15 for two participants and 

15+ for one participant. 

Cognitive performance and the attentional state of 

healthy young adults were monitored across an array 

of computerized tasks varying in workload demands. 

To minimize learning effects across sessions, 

participants first completed a practice session in 

which shortened versions of each cognitive task were 

administered, along with several standardized 

neuropsychological measures of executive function, 

demographic/medical history questionnaires, and a 

visual acuity eye test. Within each of the following 

two sessions, physiological sensors (NINScan or 

fNIRS Pioneer + EEG) were used to monitor brain 

activity while participants performed the battery of 

tasks twice in identical order with a boredom 

induction task (see Section 2.2.1) administered 

between the two runs. Two minutes of resting brain 

activity (eyes-closed) was also collected at the start 

and end of each session and before and after the 

boredom induction task. 

2.2 Experimental Tasks 

2.2.1 Boredom Induction Task 

The boredom induction task was a computerized 

version of a peg turning task (shown in Figure 1) that 

has been shown to be successful in inducing boredom 

(Markey et al., 2014). Participants were presented 

with two rows of four discs each with a radius vertical 

line. Each disc was highlighted in sequence, and 

participants were asked to click as quickly as possible 

on each of the highlighted disc until the line rotated 

clockwise back to its original position. Each mouse 

click rotated the line a quarter turn. Participants 

performed this task continuously for five minutes. 

Participants then completed a questionnaire to 

confirm that boredom was induced. 

 

Figure 1: Peg turning task screen. 

2.2.2 n-Back Sequential Letter Memory 

The n-back task was designed to be similar to the 

paradigm used in a neuroimaging study to investigate 

the role of the prefrontal cortex (PFC) in working 

memory (Braver et al., 1997). It was created and 

administered with e-Prime 2.0.10.353 Professional 
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software. See Figure 2 for the n-back protocol. 

Participants were shown a series of letters at the 

centre of the display, and were instructed to indicate 

on each trial whether or not the letter shown matched 

either 1, 2, or 3 letters back in the sequence across 

separate blocks of trials. Participants indicated their 

choice by pressing the left mouse button for a match 

and the right mouse button for a non-match. Stimuli 

consisted of 20 capitalized English letters (I, M, O, Q, 

V and W excluded) presented in a different 

randomized sequential order. Each letter was 

presented three times within each block (1-, 2-, 3- 

back) for a total of 60 trials. Within each block, each 

letter served as a prime (stimulus to which a 

subsequent letter would be a match), a target 

(stimulus that matched a prior stimulus), and a filler 

(a stimulus that neither matched a prior stimulus nor 

served as a prime for a subsequent stimulus). Each 

letter was presented for 500ms followed by an inter-

stimulus interval of 2500ms. Participants had to 

respond within 2500ms after the onset of the stimulus 

for the response to be recorded. Response time and 

accuracy was recorded for each trial. 
 

 

Figure 2: n-Back protocol. 

2.2.3 Multi-Attribute Task Battery (MATB) 

The multi-attribute task battery (MATB) is a 

computerized task battery developed by NASA to 

assess human performance under highly-demanding 

multitasking conditions. MATB was first released in 

1992 (Comstock and Arnegard, 1992), and revised in 

2011 (Santiago-Espada et al., 2011). MATB was 

designed through NASA to evaluate operator 

performance and workload. Performance measures 

from this battery have been shown to be sensitive to 

changes in cognitive workload and attentional state 

(e.g., sleep deprivation). To manipulate cognitive 

effort, the performance demands can be 

systematically increased by increasing the speed at 

which events occur within each task to which the 

participant must respond. Based on task parameters 

from work at the Air Force Research Lab (AFRL) 

(Nelson, 2016), we chose three levels of difficulty 

(easy: 0.8 baud rate; medium: 1.6 baud rate; hard 2.2 

baud rate), and each was administered for four 

minutes in increasing order of difficulty both pre- and 

post-boredom induction at visits two and three. 

MATB consists of four individual tasks that are 

performed simultaneously in a pilot user-interface 

environment: a system monitoring task, a tracking 

task, a communications task, and a resource 

management task. The included subjective 

questionnaire is the NASA task load index (NASA-

TLX; (Cao et al., 2009; Hart and Staveland, 1988)). 

Figure 3: shows a screenshot of the MATB task. 

 

Figure 3: Multi Attribute Task Battery (MATB). 

In the system monitoring task, the participant 

must monitor the green and red lights and the blue 

bars below. If the green or red light goes off, the 

participant must click it. If the dark blue squares 

move away from the centre of the bar, the participant 

must click on the centre of the bar. For scheduling 

task, the participant uses a joystick to keep the target 

at the appropriate position in the grid. The 

communications task requires the participant to listen 

for audio messages. When the audio message pertains 

to that participant’s aircraft, s/he must tune the radio 

to the frequency specified by the message. To do this, 

the participant clicks on the appropriate radio then 

clicks the arrows until the correct frequency is shown. 

For the resource management task, there are eight fuel 

pumps (1-8) and six fuel tanks (A-F), each of which 

has a different capacity. The green colour indicates 

the amount of fuel in each tank. The participant must 

maintain the appropriate amount of fuel in each tank 

by transferring fuel from the supply tanks (A and B) 

into the appropriate lower tank (C-F). To do this, the 

participant clicks on the appropriate pump to turn it 

on (turning the pump green), then clicks again to turn 

it off. The flow rate for each pump is shown at the 

bottom right.  
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2.2.4 Sensors 

The fNIRS Pioneer sensor (shown in Figure 3) 

consists of a single source and a detector. Two such 

sensors (separate devices) were positioned on the 

scalp with the EEG cap to measure brain activity in 

the right dorsolateral prefrontal cortex (dlPFC) at 

electrode position F6 and right medial frontal gyrus 

(MFG) at electrode position AF4. EEG recordings 

were measured in conjunction with the fNIRS Pioneer 

sensors for 32 electrodes in the standard 10-20 

positions.  

  

  

Figure 4: fNIRS Pioneer sensor alone (top left), mounted 

inside a helmet (top right), worn during jump roping 

(bottom left), and worn during a medical training 

simulation (bottom right). 

The NINScan sensor (as shown in Figure 5; 

Strangman et al., 2018) was designed as a two-pad 

device that recorded brain activity from both left and 

right regions of the prefrontal cortex. Each pad 

contained two sources and four detectors with 36mm 

SD-separations, including measurements centred 

over the AF4 location. In addition, peripheral sensors 

were attached to record heart rate, respiration, 

temperature, and head movement. EEG was also 

recorded with the NINScan sensor from AF7 and AF8 

electrode sites. 
 

  

Figure 5: NINScan front (left) and side (right). 

3 RESULTS 

3.1 Behavioural Results and Subjective 
Workload Ratings 

For the n-back task, the mean response time and 

accuracy for the different trials types (target, prime & 

filler) in the increasing working memory load 

conditions (1-, 2-, & 3-back) pre- and post-boredom 

induction are presented in the Figure 6. In order to 

directly compare to the event related potential (ERP) 

data, only behavioural data from the visit with EEG + 

the fNIRS Pioneer sensors are shown. No significant 

learning effects were found for the performance 

measures across the visits. As expected, both 

performance measures showed a decline (increased 

response time as shown in Figure 6 top & decreased 

accuracy as shown in Figure 6 bottom) with 

increasing working memory load. Only small 

improvements in performance were found post-

boredom induction for the prime and filler trials. 
 

 

 

Figure 6: n-Back behavioral results. 

For the MATB task, we analysed behavioural 

results for each task separately. In the tracking task, 

performance decreased across all three measures as 

task difficulty increased. For the distance measures, 

as shown in Figure 7, performance improved slightly 

across visits and declined slightly after boredom 

induction in visit 3. 

In the resource management task, performance 

decreased as task difficulty increased for the time and 

distance outside target measures. For both distance 

measures, performance improved across visits and 

after boredom induction at both visits (Figure 8).  
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Figure 7: MATB tracking task behavioral results. 

 

Figure 8: MATB resource management task behavioral 

results. 

In the communication task participants had five 

seconds to respond to each event in this task. 

Dependent measures examined in this task included: 

(1) the accuracy or hit rate; (2) response time to 

complete the modification; and (3) errors in 

adjustment. As shown in Figure 9 hit rate decreased 

as task difficulty increased, while response time 

showed an inverted u-shape function with slower 

performance at the medium difficulty level. Errors 

were minimal, but there was an overall increase with 

increased task difficulty. Boredom induction showed 

no effect on hit rate or errors, but reduced response 

time measures. Learning effects across visits are 

apparent in hit rate and response time. 
 

 

Figure 9: MATB resource communication task results. 

In the system monitoring task, participants had 

five seconds to respond to each event in this task. 

Dependent measures examined in this task included: 

(1) the accuracy or hit rate; (2) response time to the 

event; and (3) number of unnecessary adjustments. 

As shown in Figure 10 similar to the communications 

task, hit rate decreased as task difficulty increased, 

while response time showed an inverted u-shape 

function with slower performance at the medium 

difficulty level. Both measures improved over the 

visits with unnecessary adjustments increasing over 

the visits, suggesting a strategy to improve task 

performance. Boredom induction showed 

improvement on hit rate, but also increased the 

number of unnecessary adjustments. 

 

Figure 10: MATB system monitoring task behavioral 

results. 

The TLX scale consists of seven questions rated 

on a 21-point scale with higher ratings indicating 

greater workload effort. Rating values for the 

questions were summed for each condition. Mean 

summed values at pre- and post-boredom induction 

for both visits are shown in Figure 11. Perceived 

effort increased with MATB task difficulty for both 

visits, suggesting that the chosen task parameters 

were sufficient to elicit a systematic increase in 

cognitive workload. The reduction of reported effort 

across all MATB conditions from visit 2 to 3, 

however, suggests that performance was also being 

influenced by task learning effects, despite providing 

practice during the baseline visit. Therefore, the 

reduction of effort post-boredom induction in visit 2 

likely reflects task learning effects rather than 

boredom effects per se. Reported effort across the 

three difficulty levels are comparable pre- and post-

boredom induction in visit 3, suggesting that learning 

had reached asymptote by this visit and that boredom 

induction had no impact on reported cognitive 

workload in this task battery. 

 

Figure 11: NASA TLX results. 

3.2 fNIRS Pioneer 

To validate the fNIRS Pioneer sensor, we first analys- 

Validation of the fNIRS PioneerTM, a Portable, Durable, Rugged functional Near-Infrared Spectroscopy (fNIRS) Device

525



 

ed whether the fNIRS-measured concentration of 

HbO2 in dlPFC was correlated with the difficulty 

level of the n-back task. Because n-back blocks were 

not counterbalanced (blocks were in order of 

difficulty), we were concerned that differential HbO2 

correlated with n-back level might be due to time-on-

task effects or sensor drift. To mitigate this risk, we 

normalized HbO2 within each block by subtracting 

the mean HbO2 during the first 10 seconds of the 

block from the mean HbO2 during the block. 

We then used a mixed model to evaluate if n-back 

level modulated this normalized HbO2 response. 

Specifically, our model used n-back level as a 

categorical fixed effect (we used categorical instead 

of continuous to avoid making assumptions about the 

linearity of the relationship) and subject as a random 

intercept. We found that there was a significant, 

positive effect of increasing n-back level from level 1 

to 2 on normalized HbO2 (p<.05). The effect from 

level 1 to 3 was also positive, but was not significant 

(p<.1). These effects were found for the lateral 

location (situated over dlPFC). Similar analyses 

performed on the more medial location (situated over 

MFG) failed to find any effect of n-back level on 

HbO2.  

The n-back analysis showed that the fNIRS 

Pioneer is capable of detecting workload-related 

signals, however we did notice a large inter-subject 

variability even on this simple task. The effect in the 

dlPFC location can be seen in Figure 12 where the 

normalized HbO2 response increased as the difficulty 

level increased in many of the subjects. However, 

note that there is a great deal of variability in this 

trend, with some subjects’ normalized HbO2 actually 

decreasing from the 1-back to the 3-back. This might 

be due to the significant variance observed in subject 

performance. For some subjects, it is possible that the 

3-back was too difficult, and so, becoming 

disengaged from the task due to the task difficulty, the 

subjects produced HbO2 signals that were no longer 

correlated with task difficulty. However, this also 

may be due to individual differences in HbO2 

response to different levels of cognitive workload, a 

hypothesis that is backed up by our NINScan results 

(see next Section) and our modelling work. 

We next sought to determine whether these 

signals were modulated similarly with the more 

ecologically-valid MATB task. Specifically, we 

wanted to know if MATB difficulty level was 

correlated with the dlPFC HbO2 signal. Performing a 

similar mixed model to that used to analyse the n-

back data yielded no significant effects. That is, we 

found no evidence that MATB difficulty level was 

correlated with dlPFC or MFG responses (the beta 

value for the effect of difficulty level on blood 

oxygenation was not significantly different from zero, 

p>.1). This lack of effect was not due to the task being 

overly difficult or easy, or lacking a sufficient range 

in difficulty to produce a modulation of workload. 

The subjects showed high performance on the easy 

level, and decreased, but still non-chance 

performance on the hardest level. For example, on the 

communication subtask, the percent of correct 

responses fell from 95% on the easiest level, to 78% 

on the hardest level, and the percent of cues to which 

the subjects did not respond (misses) increased from 

2% on the easiest level to 19% on the hardest level. 

 

Figure 12: dlPFC HbO2 varies with n-back difficulty level, 

but subject-level variability predominates. 

One hypothesis was that the lack of correlation 

between dlPFC HbO2 signal and MATB difficulty 

could be due to the specific strategy subjects used to 

respond to increasing task difficulty. To explore this 

hypothesis, we analysed how subject performance on 

the MATB varied with the difficulty level. We 

analysed two of the subtasks with clear response 

accuracy metrics (the communication and system 

monitoring subtasks). The data suggested that as the 

task became more difficult, subjects increasingly 

ignored task cues; there is a significant correlation 

between difficulty and the percentage of no response 

events (misses, Table 1). This strategy can be 

contrasted with a strategy in which subjects continue 

to attend to the tasks, but as workload increases with 

increased frequency of task cues, the percentage of 

incorrect responses would also increase. There is no 

evidence that subjects used this strategy, as there is 

no significant correlation between MATB difficulty 

and the percentage of incorrect responses (see Table 

1). Furthermore, this lack of significant correlation 

was not due to a nonlinear correlation or violation of 

Pearson’s correlation assumptions (such as 

normality), as Spearman’s rank coefficient is also low 

(0.14 for the communications subtask). 
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Table 1: MATB difficulty level is not correlated with 

accuracy of responses, but is correlated with miss/no 

response rates. ** indicates correlation is significantly 

different from 0 at the .01 level. 

Subtask 

Pearson’s r 

(Difficulty ~ % 

Incorrect) 

Pearson’s r 

(Difficulty ~% 

No Response) 

Communication  0.064 0.470 ** 

System 

Monitoring  
-0.007 0.291 ** 

 

Our next hypothesis was that rather than 

participants experiencing the increased difficulty 

with more complex levels as planned, and thus 

decreasing performance accuracy across all tasks 

equally as we expected, they are instead 

compensating for increased difficulty by ignoring 

some tasks to perform better on others. In other 

words, participants could be regulating their cognitive 

workload, electing to ignore subtasks or cues as the 

difficulty increased, rather than respond to the 

increased rate of stimulus presentation by increasing 

the amount of information stored in working memory. 

Indeed, as MATB difficulty increases, the percentage 

of misses (when a stimulus occurred but the subject 

gave no response) increases. At the same time, the 

ratio of correct responses to incorrect responses (i.e., 

the subjects correctly performs the action indicated by 

the cue vs. the subject performs a different, erroneous 

response) had no discernible trend. 

If this were true, we could not simply use reaction 

time and accuracy for each sub-task separately, but 

must instead aggregate performance across tasks to 

get a realistic output. If subjects regulate cognitive 

workload in this way, it is possible that a combined 

metric, pooling information across tasks, might 

capture moment-to-moment changes in workload. 

For example, if a subject focused on certain subtasks 

at different times, looking at any single subtask would 

not truly reflect workload (as often the subject might 

be working on a different task), but a combined 

metric would still be able to reflect overall workload 

despite transient focus on only a few subtasks at a 

time. 

We first performed aggregation of MATB 

behavioural data across subtasks to enable more 

accurate analysis of performance decrements and 

their relationship with physiological data. We began 

by tabulating windowed performance metrics on each 

subtask. Full details of this work are presented in 

Leather et al., 2018. These subtask performance 

metrics indicate the percentage of stimuli that 

subjects responded to (hit rate) within 20-second 

windows. This tabulation is nontrivial, as the default 

MATB performance logs produced by the 

experimental software only give block-level 

descriptions of performance (and as such do not allow 

analysis of moment-to-moment changes in MATB 

performance). To compute these subtask metrics, we 

analysed the master log of all stimuli and responses, 

and determined whether each stimulus in each 20-

second window received a correct response. Several 

subtasks (tracking and resource management) do not 

have discrete hit/miss events, as they consist of a 

continuous task. For these subtasks, the root mean 

squared deviation (RMS) (a typical metric used in the 

literature for these subtasks (Santiago-Espada et al., 

2011)) was used. 

Once the binned subtask performance metrics 

were calculated, we needed to combine these subtask 

metrics into a combined score that reflected global 

performance. It is important that no single subtask 

plays a larger role in this combined metric, so we 

adjusted the weighting of each subtask so that the 

correlation between each subtask metric and the 

combined metric was equal (in other words, no 

subtask has a stronger influence on the combined 

metric than any other). This combined metric shows 

reasonable properties. For example, it is high on the 

easy level of difficulty, and gets progressively lower 

on medium and hard levels. Subjects with a high 

combined metric on easy/medium difficulty tend to 

have a high combined metric on hard difficulty.  

Table 2: Model summary of mixed model relating HbO2 to 

difficulty with subject-level random intercept. 

N Observ-

ations 
60  Method REML  

N Groups 10  Scale 1.8307  

Min group size 6  Likelihood 
-

107.2453 
 

Max group size 6  Converged Yes  

Mean group 

size 
6     

      

 Coef. Std. Err. Z P>|z| 
0.025, 

0.975 

Intercept 0.815 0.383 2.129 0.033 
-1.565,  

-0.065 

1-back vs 2-

back 
0.858 0.428 2.006 0.045 

0.020, 

1.697 

1-back vs 3-

back 
0.708 0.428 1.655 0.098 

-0.131, 

1.547 

Subject RE 0.550 0.325    

 

We then investigated whether this final, global 

performance metric was correlated with HbO2 

variables. We hypothesized that since this global 

performance metric reflects the number of stimuli that 

a subject attended to in any given 20-second window, 

it should be correlated with the amount of working 

memory utilization, which would be indicated by 

HbO2 variables from the dlPFC sensor location. 

Initial analysis showed no correlation between the 
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global performance metric and the dlPFC HbO2 

variables. Specifically, a mixed effects model with 

linear fixed effects of dlPFC HbO2 as well as a by-

subject random intercept did not show significant 

fixed effects (see Table 2). 

We then performed additional exploratory 

analysis that revealed that regardless of difficulty, all 

subjects showed an increase in HbO2 levels over the 

span of each block. We hypothesized that the 

variability due to this time-on-task effect might have 

hidden a relationship between the behavioural 

performance metric and HbO2. To examine this 

hypothesis, we constructed an additional model in 

which time-on-task was included. Specifically, we 

used a mixed effects model to determine if the 

behavioural metric within each 20-second window as 

well as categorical regressors for time-on-task 

predicted the mean HbO2 within that 20-second 

window (again with a by-subject random intercept). 

After accounting for time on task, we found a 

significant (p<.01) effect of the metric on HbO2, as 

well as an effect of boredom induction (p<.001; Table 

2)). This suggested that if we accounted for time-on-

task, we would be able to predict behavioural 

performance given the current HbO2 levels. 

As time-on-task was represented as a set of 

regressors (one for each 20-second window), we 

could both visualize information about the trajectory 

of HbO2 during the task, as well as utilize the 

information contained in the regressor beta values to 

create predictive models that are able to account for 

time-on-task effects. The timecourse of HbO2 during 

the task is visualized in Figure 13. There, each 

successive 20-second window’s beta value is plotted 

in order, showing how HbO2 changes on average over 

the length of each block. Subjects showed an 

increasing and nonlinear trend in HbO2. 
 

 

Figure 13: HbO2 drift effects. 

Finally, we investigated individual variability in 

correlations between individual subtasks and neural 

activity, and included time on task in all future 

models based on this finding. We performed analyses 

to determine (a) whether individual subtasks are 

differently correlated with brain activity across 

individuals, and (b) whether the computed combined 

metric is more highly correlated with brain activity 

than the average subtask. 

To answer these questions, for each subject we 

computed the correlation between individual subtask 

scores and prefrontal HbO2 (computed using 10 

second windowed averages of the data to reduce 

variance), as well as the correlation between the 

combined metricand prefrontal HbO2. The results for 

eight representative subjects are shown in Figure 14. 

The correlation between each subtask and HbO2 

varies widely across subjects. However, within a 

single object, correlation between each subtask and 

prefrontal HbO2 is largely of the same sign (i.e., for a 

given subject there are not some subtasks that show 

increased performance with prefrontal HbO2, and 

others that decrease). Finally, the combined metric 

provides a larger correlation with HbO2 than the 

average subtask for all subjects, explaining an 

additional 10% of the variance in HbO2 than the 

average subtask. This indicates that prefrontal brain 

activity is more reflective of performance pooled 

across all tasks, rather than of any single task, fitting 

with our previous findings. 

 

Figure 14: Correlation between HbO2 and each MATB 

subtask for individual subjects. 
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3.2.1 NINScan 

Investigating the progression of 1-, 2-, and 3-back, a 

classic manipulation of task difficulty, we found 

substantial variability between subjects (similarly to 

the fNIRS Pioneer results reported above) as well as 

between channels (i.e., locations in prefrontal cortex). 

Locations of the NINScan optodes are shown in 

Figure 15. 
 

 

Figure 15: NIRS channel configuration in this study (facing 

subject, so the right hemisphere is on the left, nose is in the 

middle and the ears are most lateral). D =Detector, 

S=source, and numbered lines represent measurement 

channel numbers from specific source-detector pairs 

(total=32). 

Examining results by channel, we observed 

significant increases in HbO2 from 1- to 2- to 3-back 

in two channels (#2 and #8) corresponding to the 

border between ventrolateral prefrontal cortex 

(vlPFC) and dlPFC in the right hemisphere (mixed 

effects regression, grouping by subject, p<0.05). This 

same effect was observed in the corresponding 

location in the left hemisphere (channel #23; p<0.05). 

These were the only channels exhibiting significant 

effects of n-back difficulty, although channel #2 did 

correspond in location to the more posterior fNIRS 

Pioneer sensor position. 

In addition to the above, the left hemisphere also 

exhibited a significant effect of pre- vs. post-

boredom, where the HbO2 association with n-back 

difficulty was abolished after boredom induction 

(p<0.05). This was in contrast to a lack of significance 

pre- vs. post-boredom in the behavioural data. The 

results, pooled over all n=17 subjects, for channel #2 

(right hemisphere) and corresponding #23 (left 

hemisphere) appear below (error bars=bootstrapped 

95% confidence intervals). Figure 16 shows NINScan 

data from right lateral PFC (channel 2), with 

progressive increase in HbO2 pre-boredom. Large 

confidence intervals reflect inter-subject variability, 

which is substantially compensated for by the mixed-

effects modelling. 

 

Figure 16: NINScan data from right lateral PFC (channel 

2), with progressive increase in HbO pre-boredom. Large 

95% confidence intervals reflect inter-subject variability, 

which is substantially compensated for by the mixed-effects 

modelling. 

We next analysed data from the MATB tasks. 

Similar to n-back, the MATB experimental design 

provided three task blocks, differing by task 

difficulty. These blocks were always 240-sec long 

and presented in the same order: easy, then medium, 

then hard. Due to head motion between blocks (as per 

n-back), we used the first 5 seconds from each block 

as the baseline for that block and computed change in 

oxyhemoglobin (HbO2), deoxyhemoglobin (HbR) 

and total-Hb (tHb) relative to that baseline. Using 

mixed-effects linear regression, simple tests of 

Difficulty (easy, medium, hard) or Phase (pre- or 

post-boredom) were not significant. However, we 

also split each 240s block into 10s long segments. 

When we included all three factors in the model 

(Difficulty, Phase, and Segment) we found that the 

activation in certain areas of the brain increased 

slowly during the task—typically over the first 1-2 

minutes. In addition, modelling this Segment effect 

unmasked significant differences in Difficulty and 

Phase. Table 3 summarizes the findings across 

channels for HbO2 (findings for HbR were weak due 

to the typical 4x poorer signal to noise ratio (SNR); 

findings for tHb were stronger). Multiple channels 

demonstrated decreased brain function with 

increasing difficulty (negative relationship), 

particularly right and left vlPFC. The same channels 

tended to show decreased brain activation post-

boredom induction relative to pre-boredom. The 

positive interactions between phase and difficulty 

indicates there was a smaller decrease in brain 

activation with increasing difficulty post-boredom 

relative to pre-boredom. 
 

Pre-Boredom Post-Boredom

1-back 2-back 3-back 1-back 2-back 3-back

D
[H

b
] 

(u
M

)

HbR

tHb

HbO
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Table 3: NINScan HbO2 concentrations predicted from task 

parameters; Chan = channel; Diff = difficulty; Reg = 

region; neg = negative relationship; pos = positive 

relationship; n.s. = not significant; dlPFC = dorsolateral 

prefrontal cortex; vlPFC = ventrolateral prefrontal cortex; 

ant = anterior, post = posterior; cent = central. 

Chan Diff Phase Phase x Diff Brain Reg 

0 n.s. neg, p=0.25 n.s. R post-dlPFC 

1 pos, p<0.001 n.s. neg, p=0.004 R ant-dlPFC 

2 neg, p<0.001 neg, p<0.001 pos, p<0.001 R post-vlPFC 

3 neg, p<0.001 neg, p<0.001 pos, p<0.001 R ant-vlPFC 

8 n.s. n.s. pos, p=0.004 R cent- PFC 

9 neg, p=0.003 neg, p<0.001 pos, p<0.001 R ant-dlPFC 

10 neg, p=0.003 neg, p<0.001 pos, p=0.001 R post-vlPFC 

20 n.s. neg, p<0.001 pos, p<0.001 L ant-dlPFC 

21 n.s. n.s. n.s. L post-dlPFC 

22 neg, p=0.003 neg, p<0.001 pos, p<0.001 L ant-vlPFC 

23 n.s. neg, p<0.001 pos, p<0.001 L post-vlPFC 

28 n.s. n.s. n.s. L ant-dlPFC 

29 neg, p=0.028 neg, p=0.003 pos, p<0.001 L cent- PFC 

31 neg, p=0.004 neg, p<0.001 pos, p<0.001 L post-vlPFC 

 

In addition to examining the relationship between 

brain activation and task parameters, we examined 

the relationship between brain activation and MATB 

task performance. Being a complex, multi-

component task, “performance” was first reduced to 

a summary score for Tracking and Resource 

Monitoring, and then these were further reduced to a 

single overall (scalar) metric. A summary across all 

channels appears in Table 4. 

Table 4: NINScan HbO2 concentrations predicted from 

behavioural metrics; Chan = channel; Track = tracking task; 

Resource = resource management task; neg = negative 

relationship; pos = positive relationship; n.s. = not 

significant; dlPFC = dorsolateral prefrontal cortex; vlPFC 

= ventrolateral prefrontal cortex; ant = anterior, post = 

posterior; cent = central. 

Chan Track Resource 
Overall  

(w/ time) 
Brain Reg 

0 neg, p<0.001 neg, p=0.007 neg, p<0.001 R post-dlPFC 

1 n.s. neg, p=0.035 neg, p=0.001 R ant-dlPFC 

2 n.s. neg, p<0.001 n.s. R post-vlPFC 

3 neg, p=0.028 neg, p<0.001 neg, p<0.015 R ant-vlPFC 

8 n.s. n.s. n.s. R cent- PFC 

9 neg, p=0.01 n.s. n.s. R ant-dlPFC 

10 neg, p=0.035 neg, p=0.011 n.s. R post-vlPFC 

20 n.s. n.s. n.s. L ant-dlPFC 

21 n.s. n.s. n.s. L post-dlPFC 

22 n.s. neg, p<0.001 n.s. L ant-vlPFC 

23 neg, p<0.001 neg, p=0.03 neg, p<0.001 L post-vlPFC 

28 neg, p<0.001 n.s. neg, p=0.006 L ant-dlPFC 

29 n.s. n.s. n.s. L cent- PFC 

31 neg, p<0.001 neg, p<0.001 neg, p<0.001 L post-vlPFC 

 

In all cases, the significant HbO2 findings were 

negative relationships, indicating less brain activation 

with better performance. While prior literature of 

functional brain imaging with MATB is not available, 

this finding is at least broadly consistent with the role 

of lateral PFC’s role in working memory maintenance 

and error-detection. Findings were primarily in left 

vlPFC and right dlPFC. Note that for our NINScan 

data, positive relationships were consistently 

observed for HbR—consistent with a change in brain 

activation rather than a change in brain blood flow or 

volume—but the HbR changes almost universally 

failed to reach significance, perhaps due to lower 

sensitivity to HbR given our 780nm laser wavelength 

(Strangman et al., 2003). The overall metric by itself 

resulted in only two significant effects, in right 

posterior-dlPFC and left posterior-vlPFC. As with n-

back, however, when including Segment as a factor 

variable in the analysis in place of just the overall 

activity level during each block), more channels 

exhibited significant changes in brain activation (see 

Table 4). 

4 CONCLUSIONS 

In this study we validated a small, portable fNIRS 

sensor (the fNIRS Pioneer ™) against a larger sensor 

with coverage of a larger cortical area, the NINScan 

developed at Massachusetts General Hospital. We 

used a gold-standard working memory task (n-back; 

(Kirchner, 1958)) and a more complex multi-attribute 

task battery (MATB) (Santiago-Espada et al., 2011). 

As expected, on the n-back task we found a 

significant effect of difficulty level on dlPFC HbO2 

(p<.01), but not medial PFC HbO2 with the fNIRS 

Pioneer. For the NINScan, we observed increases in 

HbO2 from 1- to 2- to 3-back in two channels 

corresponding to the border between ventrolateral 

PFC (vlPFC) and dlPFC in both hemispheres (p<.05). 

When we aggregated MATB data across subtasks, 

and after accounting for time-on-task, we found a 

significant (p<.01) effect on HbO2 for the Pioneer and 

the NINScan. In all cases, the significant HbO2 

findings were negative relationships, indicating less 

brain activation with better performance. While prior 

literature of functional brain imaging with MATB is 

not available, this finding is broadly consistent with 

the role of lateral PFC’s role in working memory. 

This indicates that both the fNIRS Pioneer and the 

NINScan sensor, when combined with appropriate 

data analytic techniques were useful for detecting 

changes in HbO2 that correlate with cognitive 

workload and behaviour, and that the fNIRS Pioneer 
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is able to assess cognitive workload similarly to 

larger, more expensive, and more established devices. 
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