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Abstract: Cell morphology differs with cell physiology in general and with gene expression in particular. We 
investigate the degree to which these relationships differ with medium richness. Using Escherichia coli cells 
with fluorescently tagged β’ subunits, flow cytometry, and statistical analysis, we study at the single-cell 
level the correlation between parameters associated to cell morphology and composition (FSC, SSC, and 
Width channels) and GFP tagged RNA polymerase (RNAp) levels (FITC channel). From measurements in 
three media differing in richness (M63, LB, and TB) and, thus, cell growth rates, we find that the mean and 
cell-to-cell variability in RNAp levels are correlated to the mean values of FSC, SSC, and/or Width. 
Further, in all growth conditions considered, RNAp levels are positively correlated to FSC, SSC, and Width 
at the single-cell level, with the correlation decreasing for increasing medium richness. Overall, the results 
suggest that the mean and cell-to-cell variability in levels of RNAp, a master regulator of gene expression, 
are correlated to the mean values of the parameters assessing the cellular morphology and composition, as 
measured by flow cytometry, but they do not correlate to the degree of variability of these parameter values. 

1 INTRODUCTION 

In Escherichia coli, the concentration of RNA 
polymerases (RNAp) is a key regulator of the rate of 
transcription (McClure, 1980, 1985; Arkin, Ross and 
McAdams, 1998; Kærn et al., 2005; Browning and 
Busby, 2016). As this concentration differs even 
between sisters cells (Cabrera and Jin, 2003; 
Bratton, Mooney and Weisshaar, 2011; Yang et al., 
2014), it is an extrinsic factor for cell-to-cell 
variability in gene expression (Elowitz et al., 2002; 
Mäkelä, Kandavalli and Ribeiro, 2017).  

One source of cell-to-cell variability in RNAp 
numbers is the noise in the chemical processes 
responsible for the production of RNAp (see e.g. 
(Gillespie, 1977)). Other sources include variability 
in cells’ health, morphology, and components 
(Elowitz et al. 2002; Muthukrishnan et al., 2014; 
Oliveira et al., 2016).  

Here, we investigate the degree to which the 
morphology and composition of the cells of a 
population correlate with their mean and variability 
in RNAp numbers. Since the environment is known 

to affect the morphology and composition, we study 
how this correlation differs with medium richness.  

For this, we use E. coli strain RL1314 which has 
GFP tagged β’ subunits (Bratton, Mooney and 
Weisshaar, 2011). To assess both fluorescence levels 
as well as parameters associated to cells’ 
morphology and composition, we use Flow 
cytometry. Measurements are conducted in M63, 
LB, and TB media, where growth rates differ. From 
the measurements, we collect data on the cells’ 
green fluorescence intensity levels (a proxy for 
RNAp numbers), and on the cells’ morphology 
(size) and composition. Using the data, we searched 
for statistically significant correlations between the 
RNAp levels and morphology and composition, in 
media differing in richness.  
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2 METHODS 

2.1 Bacterial Cells, Chemicals, Growth 
Conditions, and Growth Rates  

We used E. coli RL1314 with fluorescently (GFP) 
tagged β’ subunits (Bratton, Mooney and Weisshaar, 
2011), generously provided by Robert Landick, 
University of Wisconsin-Madison, U.S.A.. For cell 
cultures, chemicals components for Luria-Bertani 
(LB), terrific broth (TB) and M63 media were 
purchased from LabM (UK) and Sigma-Aldrich. 
Casamino acids and vitamins were purchased from 
Gibco. LB medium components are 1 g tryptone, 0.5 
g yeast extract and 1 g NaCl (pH – 7.0). Meanwhile, 
the composition of TB medium per 100ml is 1.2 g 
tryptone, 2.4 g yeast extract, 0.4% glycerol and TB 
salts (KH2PO4 and K2HPO4). M63 medium was 
prepared using M63 salts supplemented with 0.4% 
glycerol, vitamins and 20% casamino acids. 

Prior to flow cytometry, RL1314 cells were 
grown overnight at  30 ºC with aeration and shaking 
in the appropriate medium, diluted 1:1000 into the 
fresh specific medium and allowed to grow at 37 ºC 
at 250 rpm until an optical density at 600 nm 
(OD600) of 0.4. Growth rates were measured by 
growth curves obtained from cells at 37°C in the 
appropriate medium (LB, TB and M63) with 
antibiotics, using a spectrophotometer (Ultrospec 10; 
GE Health Care). Cultures were grown overnight at 
30°C with aeration and shaking at 250 rpm. Next, 
overnight cultures were diluted into fresh medium to 
an initial OD600 of 0.01. The OD600 values were 
monitored every 20 min for 3.2 h. 

2.2 Flow Cytometry  

For flow cytometry (FC), cells from 5 ml of 
bacterial culture were diluted 1:10000 into 1 ml PBS 
vortexed for 10 seconds and a total of 50.000 cells 
were tested in each run. Prior to every day 
experiments, the analyzer was calibrated using 
ACEA NovoCyte particle QC beads 
(Cat.No.8000004). Data was collected using an 
ACEA NovoCyte Flow Cytometer (ACEA 
Biosciences Inc., San Diego USA) equipped with a 
blue laser (488 nm) for excitation and the 
fluorescein isothiocyanate channel (FITC) (530/30 
nm filter) for detecting emitted light at a flow rate of 
14 µl/minute and a core diameter of 7.7 µM. A PMT 
voltage of 417 was used for FITC. To avoid 
background signal from particles smaller than 
bacteria, the detection threshold was set to 5000 in 
FSCH analyses.  

From the flow cytometry data, we study: i) FITC, 
which measures the green fluorescence intensity 
from a cell (a proxy for the number of RNA 
polymerases in the cell); ii) Forward scatter (FSC), 
which measures the light scattered at less than 10 
degrees as a cell passes through the laser beam (a 
proxy for cell size); iii) Side scatter (SSC), which 
measures the light scattered at a 90 degree angle as a 
cell passes through the laser beam (a proxy for cell 
density); and, iv) Width (W), which measures the 
duration of the signal, not impacted by the PMT 
voltage, which also correlates with cell size. Except 
for the Width, the FC informs on both the ‘Height’ 
(H) and ‘Area’ (A) of the signals. The H is the 
maximum peak of the signal while the A is the 
integration of the H measures over time. 

Note that, in all conditions, we removed from the 
data any cell with a negative or abnormally high or 
low parameter value (which amounted to ~10-15% 
of the cells in each medium condition). This is 
necessary since, when ignoring one of the 
parameters, the correlation between this and the 
remaining ones cannot be obtained. 

2.3 Correlations 

Correlations between parameters extracted by FC 
are obtained by linear regressions using the least-
squares fit method (95% confidence intervals), 
applying the Matlab function fitlm that creates a 
LinearModel object. We obtain the coefficient of 
determination (R2) of the fitted regression line for 
each case, along with the P-value of statistical 
significance (derived from the F-test under the null 
hypothesis that all regression coefficients equal 
zero). If this P-value is smaller than 0.01, we reject 
the null hypothesis that the line is a constant i.e., that 
one variable does not differ with the other.  

3 RESULTS 

We investigate whether the cells’ morphology and 
composition parameters measured by FC (FSC, 
SSC, and Width channels) are correlated with RNAp 
levels (FITC channel), and whether these 
correlations differ with medium richness. 

3.1 Growth Rates  

We placed cells in LB (control), M63, and TB 
media. For differences between conditions to be 
significant, cells should differ significantly in mean  
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Table 1: Correlation (R2) between Height (H) and Area (A) for FITC, FSC and SSC in each medium.  

 M63 LB TB 

R2 P-value R2 P-value R2 P-value 
FITCA vs FITCH 0.86 <0.01 0.78 <0.01 0.73 <0.01 
FSCA vs FSCH 0.94 <0.01 0.84 <0.01 0.83 <0.01 
SSCA vs SSCH 0.98 <0.01 0.94 <0.01 0.96 <0.01 

 

growth rates. This differences were verified in this 
OD600 measurements. 

 

Figure 1: Growth curves of cells of the RL1314 strain in 
various media, as measured by OD600.  

From Figure 1, M63, the poorest medium, has 
the slowest growth rate, followed by LB and, finally, 
TB, the richest medium with the fastest growth rate, 
as expected from previous studies (see e.g. 
(Goncalves et al, 2018)). 

3.2 Correlation between Height (H) 
and Area (A) of the Flow 
Cytometer Parameters  

Using FC, we extracted the values for FITC, FSC, 
SSC and W for each cell. The flow cytometer also 
informs on the ‘Height’ (H) and ‘Area’ (A) of the 
signals, except for W. We evaluated the correlation 
between the H and A signals of FITC, FSC, and SSC 
by least-squares fits (Methods) to measure the R2 of 
fitted regression lines, along with the P-value of 
statistical significance (Table 1).  

In all cases we obtained ‘high’ positive R2 values 
indicating that the fit approximates well the data, in 
a positive fashion. Further, all P-values are smaller 
than 0.01, from which we conclude that the data is 
well explained by a linear least-squares regression fit 
between the pairs of variables. As such, from here 
onwards, we only use the parameters FITCH, FSCH 
and SSCH, along with W. 

 
 
 

3.3 RNA Polymerase Numbers as a 
Function of Medium Richness  

For this, we measured the single-cell fluorescence 
intensities of RNAp (FITCH channel) in each 
medium. Figure 2 shows the distribution of the 
number of cells with given FITCH values for each 
medium.  

 

Figure 2: Distribution of the number of cells with given 
values of FITCH in each medium, as measured by flow 
cytometry: Left: M63; Middle: LB; Right: TB.  

To assess if the distributions differ statistically, 
we performed Kolmogorov-Smirnov tests (KS-test) 
of statistical significance between all pairs of 
conditions (the null hypothesis is that the two data 
sets belong to the same distribution). In all cases, the 
P-value was smaller than 0.05, from which we 
conclude that they differ in a statistical sense.  

Table 2: Mean and coefficient of variation (CV) of the 
distributions of FITCH (proxy for RNAp numbers) in each 
medium condition.  

Medium Mean(FITCH) CV(FITCH) 
M63 2.6x103 0.47 
LB 2.4x103 0.40 
TB 2.8x103 0.37 

 
To assess the behavioral trend of RNAp levels 

with increasing medium richness, we first calculated 
the mean and coefficient of variation (CV) of each 
distribution. From Table 2, we find that the 
CV(FITCH) decreases with medium richness, while 
the mean(FITCH) is minimized in LB medium. 

 
 
 
 
 

BIOINFORMATICS 2019 - 10th International Conference on Bioinformatics Models, Methods and Algorithms

228



 

Figure 3: Top: Mean values of FITCH (proxy for RNAp numbers) plotted against the mean values of FSCH, SSCH and 
Width (proxies for cell size and composition), respectively, in the three media considered (M63, LB, and TB), along with 
the linear least-squares regression fits and confidence intervals. Bottom: coefficient of variation (CV) of FITCH values 
plotted against the mean values of FSCH, SSCH and Width, respectively, in the three media considered (M63, LB, and TB), 
along with the linear least-squares regression fits and confidence intervals. 

3.4 Cell Morphology and Composition 
as a Function of Medium Richness  

Next, we investigated how the morphology and 
composition as seen by parameters obtained by FC 
differ, at the population level, with medium richness. 
For this, we obtained the mean and CV of FSCH, 
SSCH, and W at the single-cell level, in each 
medium (Table 3). We find that, in general, the 
mean values of FSCH, SSCH, and W increase with 
increasing medium richness. Meanwhile, their CV 
do not exhibit (linear) relationships with medium 
richness. 

3.5 Correlation between Cell 
Morphology and Composition and 
RNAp Levels against Medium 
Richness 

To validate the above conclusions, we tested for the 
occurrence of linear correlations between the mean 
values of FSCH, SSCH and W with the mean and 
CV of RNAp levels as a function of medium 
richness. Figure 3 (Top), shows that there are no 
such statistically significant correlations.  

Similarly, from Figure 3 (Bottom), there are no 
statistically significant negative correlations between 
the cell-to-cell variability in RNAp levels and the 

mean values of FSCH, SSCH and W. However, if 
more conditions were considered (e.g. medium of 
intermediate richness between those tested), linear 
correlations might become statistically significant. 

Thus, we hypothesized that FSCH, SSCH and W, 
which differ with medium richness, are negatively 
correlated to the cell-to-cell variability in RNAp, but 
not to the mean. 

3.6 Correlation by Classes between 
Cell Morphology and Composition 
and RNAp Levels  

From the data, it is visible the presence of much cell-
to-cell variability in FSCH, SSCH and W, even 
within a given medium condition. This hampers the 
ability to detect correlations between these 
parameters and RNAp levels.  

However, if such correlations exist, they should 
become enhanced if, instead of analyzing the data 
based on the growth condition, one instead classifies 
the cells based on the values of FSCH, SSCH and W 
(top panels in Figure 4).  
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Table 3: Mean and coefficient of variation (CV) of FSCH, SSCH, and Width (proxies for cell size and composition) in each 
medium condition.  

 M63 LB TB 

Mean CV Mean CV Mean CV 
FSCH 2.26x104 0.27 3.62x104 0.21 3.61x104 0.15 
SSCH 9.98x103 0.27 1.26x104 0.28 1.30x104 0.21 

W 36.41 0.12 41.30 0.01 42.29 0.09 

 

Figure 4: Top: Distributions of FSCH, SSCH and Width (proxies for cell size and composition) values in individual cells 
from all media; Center: Division of the data sets into quartiles and scatter plots Mean(FSCH) and Mean(FITCH, proxy for 
RNAp numbers), Mean(SSCH) and Mean(FITCH) , and Mean(Width) and Mean(FITCH); Bottom: Division of the data sets 
into quartiles and scatter plots Mean(FSCH) and CV(FITCH), Mean(SSCH) and CV(FITCH) , and Mean(Width) and 
CV(FITCH). 

We expect that, if the mean values of SSCH, 
FSCH, and W can explain the CV(FITCH), then the 
linear correlations should be equal or stronger than 
when partitioning the data according to the medium. 
Further, the P-values should be smaller than 0.01, 
implying that the correlations are statistically 
significant. 

Figure 4 validates this hypothesis, i.e., when 
partitioning cells according to the values of SSCH, 
FSCH, and W, respectively, one finds strong, 
statistically significant, negative linear correlations. 

We conclude that the cell-to-cell variability in 
RNAp levels decreases for increasing mean values 
of FSCH, SSCH, and/or W, which are proxies for 
cell size and/or density. Meanwhile, also from 
Figure 4, mean RNAp levels increase with mean 
values of FSCH, SSCH, and W. 
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Figure 5: Scatter plots between single-cell values of FITCH (proxy for RNAp numbers) and FSCH, SSCH and Width 
(proxies for cell size and composition), respectively, in each medium. Top: M63; Center: LB; Bottom: TB. The solid red 
line is the linear least-squares regression fit.  

3.7 Correlation by Classes between the 
Cell-to-cell Variability in Cell 
Morphology and Composition and 
in RNAp Levels  

We searched for correlations between the cell-to-cell 
variability in cell morphology and composition and 
the mean and the cell-to-cell variability in RNAp 
levels. To obtain classes of cells with differing 
variability in these parameters, we made use of 
random sampling from the entire set of cells 
gathered from all conditions. Namely, for 
assembling the values for each class, we randomly 
selected 10000 cells and obtained the CV of this set. 
This was performed 1000 times. Next, from the 
1000 sets, we selected the 10 sets with minimal and 
the 10 sets with maximal cell-to-cell variability in 
FSCH, SSCH, and W, respectively. We obtained the 
CV of the parameter value for each set, and 
calculated the average CV of the 10 sets of cells. For 
each of these sets, we also obtained the mean and 

CV of the RNAp levels of individual cells. As we 
found no statistically significantly linear correlation 
(R2 values below 0.15), we conclude that, unlike for 
mean values, the cell-to-cell variability in SSCH, 
FSCH, and W, cannot explain the mean and cell-to-
cell variability in RNAp numbers. 

3.8 Relationship between Cell 
Morphology and Composition and 
the RNAp Levels at the Single-Cell 
Level  

Having found a correlation between the mean and 
cell-to-cell variability in RNAp levels and the mean 
values of FSCH, SSCH, and/or W of cell 
populations, we studied whether such correlations 
are significant at the single-cell level, i.e. in a 
population of cells in the same medium. 
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Table 4: Correlation (R2) between FITCH (proxy for RNAp numbers) and FSCH, SSCH, and Width (proxies for cell size 
and composition) in each medium. 

 M63 LB TB 

R2 P-value R2 P-value R2 P-value 
FITCH vs FSCH 0.39 <0.01 0.21 <0.01 0.13 <0.01 
FITCH vs SSCH 0.49 <0.01 0.36 <0.01 0.25 <0.01 

FITCH vs W 0.47 <0.01 0.34 <0.01 0.24 <0.01 
 

We searched for correlations between single-cell 
values of FITCH and the respective values of FSCH, 
SSCH and W (Figure 5), by performing fits by linear 
regression (least-squares fit method). Also, we 
obtained the P-values of statistical significance 
(Table 4), by applying F-tests (Methods). 

From Figure 5 and Table 4, in all media, the 
linear fits are statistically significant, as the P-values 
from the least-squares regression fits are smaller 
than 0.01 (Table 4). Meanwhile, from the R2 values, 
we find that the goodness of fit decreases for 
increasing medium richness.  

4 CONCLUSIONS 

Our results indicate that the mean and cell-to-cell 
variability in RNAp numbers in E. coli cells differs 
with parameter values associated to the cell size and 
composition, as measured by flow cytometry. In 
particular, the mean increases and the variability 
decreases as each of these parameter values 
increases. At the population level, these changes can 
only be detected by classifying cells according to the 
values of FSCH, SSCH and Width, respectively. 
Analyzing the data at the single-cell level, one also 
finds these correlations, being more pronounced in 
poor growth medium. 

We expect this knowledge to be relevant in 
studies of gene expression dynamics in various 
media, as the amount of RNAp is a key regulatory 
mechanism of transcription dynamics. Namely, our 
results suggest that the cell-to-cell variability in gene 
expression may differ not only due to intrinsic noise 
in gene expression and extrinsic factors, but also due 
to the medium-dependence of the mean values of 
FSCH, SSCH and Width. 

At present, we cannot explain why the cell-to-
cell variability in SSCH, FSCH, and Width are not 
correlated to the cell-to-cell variability in RNAp 
numbers, while being correlated to the mean RNAp 
numbers. An answer to this question may be of 
relevance, as the RNAp is a master regulator of gene 
expression in bacteria, and the answer may reveal 
aspects of how their numbers are regulated. Thus, 

the answers should contribute to a better 
understanding of the modifications that these 
organisms undergo following environmental 
changes. 
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