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The demand for automatic systems for action recognition has increased significantly due to the development

of surveillance cameras with high sampling rates, low cost, small size and high resolution. These systems
can effectively support human operators to detect events of interest in video sequences, reducing failures and
improving recognition results. In this work, we develop and analyze a method to learn two-dimensional (2D)
representations from videos through an autoencoder framework. A multi-stream network is used to incorporate
spatial and temporal information for action recognition purposes. Experiments conducted on the challenging
UCF101 and HMDB51 data sets indicate that our representation is capable of achieving competitive accuracy

rates compared to the literature approaches.

1 INTRODUCTION

Due to the large availability of digital content captu-
red by cameras in different environments, the recogni-
tion of events in video sequences is a very challenging
task. Several problems have benefited from these re-
cognition systems (Cornejo et al., 2015; Gori et al.,
2016; Ji et al., 2013; Ryoo and Matthies, 2016), such
as health monitoring, surveillance, entertainment and
forensics.

Typically, visual inspection is performed by a hu-
man operator to identify events of interest in video
sequences. However, this process is time consuming
and susceptible to failure under fatigue or stress. The-
refore, the massive amount of data involved in real-
world scenarios makes the event recognition impracti-
cable, such that automatic systems are crucial in mo-
nitoring tasks in real-world scenarios.

Human action recognition (Alcantara et al., 2013,
2016, 2017a,b; Concha et al., 2018; Moreira et al.,
2017) is addressed in this work, whose purpose is to
identify activities performed by a number of agents
from observations acquired by a video camera. Alt-
hough several approaches have been proposed in the
literature, many questions remain open because of the
challenges associated with the problem, such as lack
of scalability, spatial and temporal relations, com-
plex interactions among objects and people, as well
as complexity of the scenes due to lighting conditi-
ons, occlusions, background clutter, camera motion.

Most of the approaches available in the literature
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can be classified into two categories: (i) traditional
shallow methods and (ii) deep learning methods.

In the first group, shallow hand-crafted features
are extracted to describe regions of the video and
combined into a video level description (Baumann
et al., 2014; Maia et al., 2015; Peng et al., 2016; Pe-
rez et al., 2012; Phan et al., 2016; Torres and Pedrini,
2016; Wang et al., 2011; Yeffet and Wolf, 2009). A
popular feature representation is known as bag of vi-
sual words. A conventional classifier, such as sup-
port vector machine or random forest, is trained on
the feature representation to produce the final action
prediction.

In the second group, deep learning techniques ba-
sed on convolutional neural networks and recurrent
neural networks have automatically learned features
from the raw sensor data (Ji et al., 2013; Kahani et al.,
2017; Karpathy et al., 2014; Ng et al., 2015; Ravan-
bakhsh et al., 2015; Simonyan and Zisserman, 2014a).

Although there is a significant growth of approa-
ches in the second category, recent deep learning stra-
tegies have explored information from both to prepro-
cess and combine the data (Kahani et al., 2017; Kar-
pathy et al., 2014; Ng et al., 2015; Ravanbakhsh et al.,
2015; Simonyan and Zisserman, 2014a). Spatial and
temporal information can be incorporated through a
two-dimensional (2D) representation in contrast to a
three-dimensional (3D) scheme. Some advantages of
modeling videos as images instead of volumes is the
use of pre-trained image networks, reduction of trai-
ning cost, and availability of large image data sets.
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In a pioneering work, Simonyan and Zisserman
(2014a) proposed a two-stream architecture based
on convolutional networks to recognize action in vi-
deos. Each stream explored a different type of fe-
atures, more specifically, spatial and temporal infor-
mation. Inspired by their satisfactory results, several
authors have developed networks based on multiple
streams to explore complementary information (Gam-
mulle et al., 2017; Khaire et al., 2018; Tran and Che-
ong, 2017; Wang et al., 2017a,b, 2016a).

We propose a spatio-temporal 2D video represen-
tation learned by a video autoencoder, whose encoder
transforms a set of frames to a single image and then
the decoder transforms it back to the set of frames. As
a compact representation of the video content, this le-
arned encoder serves as a stream in our multi-stream
proposal.

Experiments conducted on two well-known chal-
lenging data sets, HMDBS51 (Kuehne et al., 2013)
and UCF101 (Soomro et al., 2012a), achieved accu-
racy rates comparable to state-of-the-art approaches,
which demonstrates the effectiveness of our video en-
coding as a spatio-temporal stream to a convolutional
neural network (CNN) in order to improve action re-
cognition performance.

This paper is organized as follows. In Section 2,
we briefly describe relevant related work. In
Section 3, we present our proposed multi-stream ar-
chitecture for action recognition. In Section 4, expe-
rimental results achieved with the proposed method
are presented and discussed. Finally, we present some
concluding remarks and directions for future work in
Section 5.

2 RELATED WORK

The first convolutional neural networks (CNNs) pro-
posed for action recognition used 3D convolutions to
capture spatio-temporal features (Ji et al., 2013). Kar-
pathy et al. (2014) trained 3D networks from scratch
using the Sports-1M, a data set with more than 1 mil-
lion videos. However, it does not outperform traditio-
nal methods in terms of accuracy due to the difficulty
in representing motion.

To overcome this problem, Simonyan and Zis-
serman (2014a) proposed a two-stream method in
which motion is represented by pre-computed optical
flows that are encoded with a 2D CNN. Later, Wang
et al. (2015b) further improved the method, especially
using more recent deeper architectures for 2D CNN
and taking advantage of the pre-trained weights for
the temporal stream. Based on this two-stream fra-
mework, Carreira and Zisserman (2017) proposed a
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3D CNN which is an inflated version of a 2D CNN
and also uses the pre-trained weights, in addition to
training the network with a huge database of action
and achieving significant higher accuracies. These
improvements show the importance of using well-
established 2D deep CNN architectures and their pre-
trained weights from ImageNet (Russakovsky et al.,
2015).

Despite the advantage of the two-stream approach,
it still fails to capture long-term relationships. There
are several approaches that attempt to tackle this pro-
blem. There are two primary strategies for this pro-
blem: work on the CNN output by searching for a
way to aggregate the features from frames or snip-
pets (Diba et al., 2017; Donahue et al., 2015; Ma et al.,
2018; Ng et al., 2015; Varol et al., 2016; Wang et al.,
2016a) or introduce a different temporal representa-
tion (Bilen et al., 2017; Hommos et al., 2018; Wang
et al., 2017b, 2016b). Our work fits into this latter
type of approach.

Wang et al. (2016b) used a siamese network to
model the action as a transformation from a precondi-
tioned state to an effect. Wang et al. (2017b) used
a handcrafted representation called Motion Stacked
Difference Image that is inspired by Motion Energy
Image (MEI) (Ahad et al., 2012) as a third stream.
Hommos et al. (2018) introduced an Eulerian phase-
based motion representation that can be learned end-
to-end, but it is showed as an alternative for optical
flow and does not improve further on the two-stream
framework. The same can be said in the work by Zhu
et al. (2017) that introduced a network that computes
an optical flow representation that can be learned in
an end-to-end fashion.

The work that most resembles ours is based on
Dynamic Images (Bilen et al., 2017), which is a 2D
image representation that summarizes a video and is
easily added as a stream for action recognition. Ho-
wever, this representation constitutes the parameters
of a ranking function that is learned for each video
and, although it can be presented as a layer and trai-
ned together with the 2D CNN, this layer works simi-
larly to a temporal pooling and the representation is
not adjusted. On the other hand, our method learns a
video-to-image mapping with an autoencoder and is
incorporated into the 2D CNN, allowing full end-to-
end learning.

Autoencoders are not a new idea for dimensiona-
lity reduction that more recently gained attention as a
generative model. It is trained in order to copy the
input to the output, but with constraints that hope-
fully will reveal useful properties in data (Goodfellow
et al., 2016).

Video autoencoders are used for anomaly de-
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tection in video sequences, where the reconstruction
error threshold given training with normal samples
indicates the abnormality (Kiran et al., 2018). The
architectures vary from stack of frames submitted to
2D (Hasan et al., 2016) or 3D convolutions (Zhao
et al., 2017b) and Convolutional LSTMs (Chong and
Tay, 2017). In addition, the intermediate represen-
tation is not the ultimate goal and presents low spa-
tial resolution and high depth, which is not useful for
classification with the target CNNs for action. To the
best of our knowledge, there are no approaches that,
similar to ours, use a video autoencoder to map a vi-
deo into a 2D image representation that maintains the
spatial size of the frames.

3 PROPOSED METHOD

In this section, we describe the proposed action re-
presentation based on a video autoencoder that pro-
duces an image representation for a set of video fra-
mes. This representation can be learned for end-to-
end classification. Furthermore, we coupled it with
a different stream in a multi-stream framework for
action recognition.

3.1 Video Autoencoder

An autoencoder is an unsupervised learning approach
that aims to learn an identity function, that is, the in-
put and the expected output are equal. The goal is
to reveal interesting structures in the data by placing
constraints in the learning process.

Figure 1 shows our proposed architecture for a vi-
deo autoencoder, in which a set of N grayscale fra-
mes is arranged as an N dimensional image for input.
This image is passed through an encoder, whose out-
put is a three-dimensional image. This image is then
passed to the decoder, where the output is again N
dimensional and represents the reconstructed video.
The purpose of this autoencoder is to shrink the vi-
deo to a single image representation by learning how
to reconstruct a set of frames using only a 3-channel
tensor.

The main advantage of our video representation as
an image is that it can be used in any of the many well-
established 2D CNN architectures with pre-trained
weights from the ImageNet competition. The use of
these deep convolution networks achieved state-of-
the-art results in many computer vision tasks.

Unlike some other handcrafted representations,
ours provides end-to-end learning. It can be easily di-
rectly linked to any 2D CNN, where the encoder will
have its weights updated with respect to loss of action
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classification, which would make the representation
specifically improve for the desired problem and this
is, in fact, what we observe in the experiments descri-
bed in Section 4.

3.1.1 Encoder

The encoder is a simple block with a 33 convolution
layer with 3 filters followed by a batch normalization
and a hyperbolic tangent activation function. In order
to maintain the image size, zero padding is applied
and no strides are used.

The choice of an activation function was guided
by the goal to easily link the encoder to a 2D CNN.
Using the hyperbolic tangent imposes an output in the
range of [—1, 1], which is the standard input normali-
zation for CNNs pretrained in ImageNet such as In-
ception (Szegedy et al., 2016).

3.1.2 Decoder

The decoder is even simpler, consisting of only a 3x3
convolution layer with linear activation and N filters,
where N corresponds to the same number as the fra-
mes in the input. The lack of batch normalization and
anon-linear activation forces the model to concentrate
most of the reconstruction capacity on the intermedi-
ate representation.

Maintaining a simple decoder causes the encoder
output to be encapsulated more clearly the structures
of the input data, so the generated images still make
sense and resemble the original video frames, as illus-
trated in Figure 2.

3.1.3 Loss

We analyze two types of losses for the autoencoder.
They are defined for images and we extend it to video
by computing the average of all frames.

The most common loss function is the mean
square error (MSE) expressed in Equation 1.

MSE =3 }\(/(i./) - 8(i. /))* O
ij

where f and g are the images and i and j the verti-
cal and horizontal coordinates respectively. It corre-
sponds to the L2 norm and is the standard for image
reconstruction problems (Zhao et al., 2017a).

The second loss function tested is based on the
structural similarity index metric (SSIM) (Wang et al.,
2004). It is a quality measure that computes on two
image windows x and y of the same size, each in a dif-
ferent image f and g. Equation 2 expresses the SSIM
metric.
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Figure 1: Video autoencoder architecture and its use in action classification.

where u, is the mean of X, u, is the mean of y, o2
is the variance of x, G% is the variance of y, and Gy,
is the covariance of x and y, C; and C; are constants
that stabilize the equation (C; = 0.01 2552 and G, =
0.03%2552).

The final index between f and g is the average

of all windows for each pixel. Since we need a loss

1 —SSIM
function, the DSSIM is simply (T)

The DSSIM loss corresponds more to a percei-
ved human difference than the MSE. The latter will
further penalize the differences in contrast and brig-
htness, whereas the first will focus on the structure of
the image, which is more interesting to our problem.
A comparative analysis is shown in Section 4.

3.2 Multi-stream Architecture

We propose to add our representation as a third stream
in the common two-stream architecture for action re-
cognition (Gammulle et al., 2017; Simonyan and Zis-
serman, 2014a; Wang et al., 2015b). It is also com-
posed of a spatial stream (formed by a single RGB
image) and a temporal stream (formed by a stack of
optical flow images).

Our stream can be thought as a spatio-temporal

encoding since it encapsulates the contextual infor-
mation and also temporal differences. Figure 3 shows
our framework with multiple streams, whose final re-
sult is a weighted average among the softmax pre-
dictions.

The 2D CNN is basically the same in all streams,
the main difference relies on the inputs. The spatial
CNN receives a 3-channel image, whereas the tempo-
ral CNN receives as input a stack of 20 optical flow
images, 10 for each direction. Our proposed spatio-
temporal stream receives 10 grayscale images that are
passed through the encoder outputting a 3-channel
tensor which in turn is passed to a spatio-temporal
CNN similar to the spatial.

Each CNN is trained separately and the streams
are combined only for the classification in which they
generate the predictive confidences for each class. A
weighted average produces a final prediction, where
the action label is the one with the highest confidence.

4 EXPERIMENTAL RESULTS

In order to evaluate our proposed method, experi-
ments were conducted on two challenging UCF101
and HMDBS51 data sets. In this section, we describe
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(b) “HulaHoop” action

Figure 2: Examples of the images generated by the encoder of our video autoencoder network.
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Figure 3: Our action recognition architecture composed of spatial, temporal and spatio-temporal streams.

the data sets used in the experiments, relevant imple-
mentation details, results for different configurations
of our method and a comparison with some approa-
ches available in the literature.

4.1 Data Sets

The UCF101 (Soomro et al., 2012b) data set contains
13,320 video clips collected from YouTube, with 101
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action classes. The videos are grouped into 25 ca-
tegories. The sequences have a fixed resolution of
320 x 240 pixels, a frame rate of 25 fps and diffe-
rent lengths. The protocol provides three splits into
approximately 70% of samples for training and 30%
of samples for testing.

The HMDBS51 (Kuehne et al., 2013) data set is
composed of 6,766 sequences extracted from various
sources, mostly from movies, with 51 classes. It pre-



sents a variety of video sequences, including blurred
videos or with lower quality and actions from dif-
ferent points of views. The protocol provides three
splits of the samples, where each split contains 70%
of samples for training and 30% for testing for each
action class.

4.2 Implementation Details

The Inception V3 (Szegedy et al., 2016) network was
the 2D CNN selected to use in our experiments. It
achieved state-of-the-art results in the ImageNet com-
petition, such that we started with trained weights
from it in all cases.

We fixed the autoencoder input in 10 consecutive
frames (N = 10). It was trained using Adadelta (Zei-
ler, 2012) optimizer with the default configuration,
zero as initial decay and initial learning rate equal one
(Ir=1.0).

Data augmentation was applied using random
crop and random horizontal flip. The random crop
scheme is the same as in the work by Wang et al.
(2015b) that uses multi-scale crops of the 4 corners
and the center. The complete autoencoder was trai-
ned using only the first split of UCF101 with a maxi-
mum of 300 epochs saving the weights with the best
validation loss.

The multi-stream approach is inspired by the
practices described by Wang et al. (2015b). The data
augmentation is the same as for the autoencoder. The
spatial stream uses a 0.8 dropout before the softmax
layer and 250 epochs, whereas the temporal stream
uses a 0.7 dropout and 350 epochs. Finally, the pro-
posed spatio-temporal stream uses a 0.7 dropout and
250 epochs. In all of them, the stochastic gradient
descent optimizer is used with decay zero, Nesterov
momentum equal to 0.9. For all tests, the used ba-
tch size is 32 and the learning rate starts at 0.001 and
drops by a factor of 0.1 — until the bottom limit of
1719 _if the validation loss does not improve in more
than 20 epochs.

The final classification of each testing video is an
average of the predictions for 25 frames considering
the augmented version — four corners, the center and
the horizontal flip — adding up to 10 predictions per
frame.

The weights for the fusion between streams fol-
lows 8 for temporal, 3 for spatial and 3 for our third
stream.

The method was implemented in Python 3 pro-
gramming language using Keras library. All experi-
ments were performed on a machine with an Intel®)
Core™ i7-3770K 3.50GHz processor, 32GB of me-
mory, an NVIDIA GeForce R GTX 1080 GPU and
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Ubuntu 16.04.
4.3 Results

Initially, we analyze the effects of the loss functions
applied to the encoder with respect to the action clas-
sification. It can be pre-trained in the autoencoder
with MSE or DSSIM functions and additionally be
re-trained when linked to the 2D CNN (end-to-end)
using the classification loss. One last possibility is to
train the encoder only for classification, what discards
the autoencoder training. Table 1 shows the accuracy
for action classification in the first split of HMDBS51
considering these different scenarios.

Table 1: Action classification accuracy for HMDBS51 (Split
01).

Loss Accuracy (%)
MSE 46.80
DSSIM 48.89
Only classification loss 50.52
MSE + classification loss 47.19
DSSIM + classification loss 51.18

It is noticeable that further training the encoder
along with the Inception V3 considering the classi-
fication loss is beneficial, as well as training with the
autoencoder previously. The best result was obtained
with DSSIM on the autoencoder with a considerable
difference from MSE, this highlights the importance
of the loss function. From now on, the results of our
method refer to the training first with DSSIM and la-
ter with the action classification loss.

Table 2 reports the results for the separated stre-
ams, the two-stream baseline that combines spatial
and temporal information and, finally, the results for
our multi-stream architecture including our spatio-
temporal encoder.

Individually, the temporal stream obtains the best
results and our proposed spatio-temporal approach
has similar results from the spatial only. Nonethe-
less, the fusion of the three streams offers the highest
accuracies improving from the traditional two-stream
fusion. This shows that our method adds important in-
formation, for action recognition, that is not captured
by RGB or optical flow images.

Figures 4 and 5 show the accuracy rates per class
for our stream, what allows us to investigate the ty-
pes of actions where it performs better or worse. For
the UCF101 data set, “nunchucks” (56) and “Jum-
pingJack” (47) classes present the worst results, whe-
reas “pick” (25), “shoot_ball” (35), “cartwheel” (2)
and “swing_baseball” (44) classes achieve the lowest
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accuracies in the HMDBS51 data set. As common cha-
racteristics, these categories have their independence
from context, differing mainly in motion. Our method
still captures too much information from the scene
background, which can be a disadvantage in these ca-
ses.

In order to validate our action recognition method,
comparative results with state-of-the-art approaches
are presented for HMDBS51 and UCF101 data sets in
Table 3.

The method that presents higher accuracies make
use of different strategies for better sampling and late
fusion of features and/or streams or perform training
with larger data sets. All of which our method can
benefit and further improve. In comparison to simi-
lar methods that employ an action representation, our
approach is competitive.

S CONCLUSIONS

This work presented and analyzed a proposal to learn
2D representations from videos using an autoencoder
framework, where the encoder reduces the video to
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Figure 5: Class-wise accuracy for HMDBS51 data set (Split 01).

a 3-channel image and the decoder uses it to recon-
struct the original video. Thus, the encoder learns a
mapping that compresses video information into an
image, which allows input to 2D CNN, providing end-
to-end learning for video action recognition with re-
cent deep convolutional neural networks.

Experiments conducted on two well-known chal-
lenging data sets, HMDBS51 (Kuehne et al., 2013) and
UCF101 (Soomro et al., 2012b), demonstrated the im-
portance of prior training of the autoencoder with a
proper loss function. The use of the structural dis-
similarity index for the autoencoder and subsequent
training of the encoder for action classification pre-
sented the best results. We included our representa-
tion as a third stream and compared it with a strong
two-stream baseline architecture that it reveals to add
complementary information. This multi-stream net-
work achieved competitive results compared to appro-
aches available in the literature.

Future directions include the investigation of dee-
per autoencoders that could make use of 3D or LSTM
convolutions. Recurrent frameworks are interesting
as they allow inputs of variable size for the prediction
without the need for retraining and changing the net-
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Table 3: Accuracy results for different approaches on HMDBS51 and UCF101 data sets.

Method Accuracy (%) Accuracy (%)
Liu et al. (2016) 48.40 -
Jain et al. (2013) 52.10 -
Wang and Schmid (2013) 57.20 -
Simonyan and Zisserman (2014b) 59.40 88.00
Peng et al. (2016) 61.10 87.90
Fernando et al. (2015) 61.80 -
Wang et al. (2016b) 62.00 92.40
Shi et al. (2015) 63.20 86.60
Lan et al. (2015) 65.10 89.10
Wang et al. (2015a) 65.90 91.05
Carreira and Zisserman (2017) 66.40 93.40
Peng et al. (2014) 66.79 -
Zhu et al. (2017) 66.80 93.10
Wang et al. (2017c) 68.30 93.40
Feichtenhofer et al. (2017) 68.90 94.20
Bilen et al. (2017) 72.50 95.50
Carreira and Zisserman (2017) (additional training data) 80.70 98.00
Proposed method 64.51 92.56
Table 2: Performance of multi-stream network on three dif- ACKNOWLEDGMENTS

ferent splits for the UCF101 and HMDBS1 data sets

— | Accuracy (%)

‘ Split 1 Split2 Split 3 ‘ Average
Spatial Stream
UCF101 | 85.57 83.64 8525 | 84.82
HMDBS1 | 48.69 49.87 50.26 | 49.61
Temporal Stream
UCF101 | 86.17 88.56 87.88 | 87.54
HMDBS51 | 57.97 59.08 58.43 | 58.50
Spatio-Temporal Stream
UCFI101 | 84.88 85.22 84.63 | 84.91
HMDBS51 | 51.18 49.54 50.07 | 50.26
Two Streams
UCFI101 | 91.65 92.07 92.59 | 92.10
HMDBS51 | 63.59 6529 64.12 | 64.34
Three Streams
UCFI101 | 92.07 92.82 9278 | 92.56
HMDBS51 | 64.12 65.03 64.38 | 64.51

work architecture. The main challenge is to maintain
the spatial size of the frames as the deep learning li-
terature goes in the opposite direction, increasing the
depth and decreasing the image size.
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