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Abstract: This article seeks to study and solve a problem of profit maximization of a company by defining the location 

of an optimal number of facilities, allocation and routing of vehicles, and costs for home delivery to meet the 

demand of its customers. This study is based on an article in which, for the first time, a problem of location 

and routing and maximization of utilities with price-sensitive demands is integrated. This problem, unlike 

other studies that only minimize other metrics such as waiting times, route distances, and transportation costs, 

seeks a greater benefit by increasing profits by discriminating prices depending on the customer's location or 

adding an additional cost to retail sales. This paper presents a model for small instances based on the model 

proposed in the aforementioned article. Next, a two-phase heuristic is proposed that solves larger instances 

with a result close to that obtained in the previous article where a branch-and-price heuristic was used. 

1 INTRODUCTION 

In problems of transport and distribution, there are 

cases where decisions must be made that affect the 

supply chain in the long term, in the short term and 

daily; these are called strategic, tactical and 

operational decisions, respectively (Fazayeli et al., 

2017). The location and routing problem (LRP) 

includes two types of problems fundamental to supply 

chain management: the problem of facility location of 

and the problem of vehicle routing. Because both 

problems are related, LRP problems have recently 

become an interesting area of study (Archetti et al., 

2017).  

The classic problems of location and routing, 

where a set of potential distribution centers, opening 

costs, identical vehicles and a set of known demands 

are defined, consist of selecting which distribution 

centers will be opened, assigning customers and 

determining the route of each available vehicle. The 

objective is to minimize the total cost, which includes 

the cost of opening each center, the fixed cost of the 

vehicles and the total cost of transportation (Prodhon 

and Prins, 2014). Panicker et al. (2018) solve a 

location-routing problem using an ant-colony 

optimization heuristic, for instances generated by the 

authors. Ferreira and Alves de Queiroz (2018) solve 

a LRP using heuristics based on simulated annealing 

with good results for instances of up to 200 

customers. 

There are several extensions to the Location-

Routing Problem in the literature. Sarham et al. 

(2018) developed a column-generation approach to 

solve the LRP with time windows. Chen et al. (2018) 

investigate a LRP with full truckloads for designing a 

low-carbon supply chain. They developed a hybrid 

heuristic combining NSGA-II and Tabu Search. Guo 

et al. (2018) study a closed-loop supply chain where 

location, inventory, and routing decisions must be 

made. They propose the mathematical model and 

develop a hybrid heuristic that combines simulated 

annealing and genetic algorithms to solve several 

instances.  

Ahmadi-Javid et al. (2018) studied a problem that, 

unlike the classic problems of location and routing, 

besides minimizing costs, seeks to maximize profits 

managing delivery costs considering the demand and 

location of the customers. However, due to the 

complexity of this situation, in addition to proposing 

a mixed integer linear model (MILP), the authors 

developed a branch-and-price heuristic to obtain a 

feasible solution for large instances.  
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For this study, an alternate two-phase heuristic is 

presented to solve the problem proposed by Ahmadi-

Javid et al. (2018). The heuristic consists of pre-

grouping the customers, and assigning to the nearest 

centers to create small instances that can be solved 

with the MILP model. Despite its simplicity, this 

heuristic achieves results similar to those obtained 

with branch-and-price heuristics. 

2 LITERATURE REVIEW 

Ahmadi-Javid et al. (2018) made reference to Laporte 

(Albareda-Sambola et al., 2007), who has contributed 

to the study of this problem with different 

formulations, solution methods and computational 

results, as well as other authors (Nagy and Salhi, 

2007; Borges Lopes et al., 2013). In addition, they 

mentioned recent investigations of variants of this 

model, such as a model for a stochastic supply chain 

system (Ahmadi-Javid and Azad, 2010) and a 

location and routing model with production and 

distribution with risks of interruption in a supply 

chain network  (Ahmadi-Javid and Seddighi, 2013). 

 In most cases, the problems of location and 

routing establish that all customers must be visited 

and their demands must be met (Ahmadi-Javid et al., 

2018).  However, the problem seeks to maximize the 

total utility, minimizing the cost of transportation and 

the cost of establishing distribution centers without 

necessarily having to attend to all their potential 

customers. Likewise, there are other articles (Nagy 

and Salhi, 1998), where it is allowed to visit the 

customer more than once, others where some do not 

need to be visited (Averbakh and Berman, 1994; 

1995), and others where some randomly selected 

customers are not visited (Albareda-Sambola et al., 

2007). This is because sometimes the cost exceeds the 

income generated by serving them. 

Although the model of Ahmadi-Javid et al. 

(2018) is one of the few investigations on problems 

of location and routing with multi-objectives, there 

are other similar models such as the Traveling 

Salesman Problem (TSP) or Vehicle Routing 

Problem (VRP), which are among the most studied 

combinatorial optimization problems. In addition, 

there are extensions of these that make decisions 

based on the profits generated by visiting only certain 

customers, such as in the case of the traveler with 

profit (TSPPs), or the problem of vehicle routing with 

profits (VRPPs).   

Of the previously mentioned models, the one 

that most resembles maximization of profit for a 

problem of location and routing (Ahmadi-Javid et al., 

2018) is the problem of vehicle routing with profits. 

Unlike the classic problems, the customers that will 

be attended must be selected, since the set is not 

defined, and the route in which these customers will 

be served, taking into account how attractive the 

customer is for the profit that can generate (Archetti 

and Speranza, 2014).  

However, in this case of routing with profits, 

only one distribution center is available. The problem 

of routing vehicles with multiple deposits is a 

variation of VRP, which has the same objectives. 

However, it has several vehicles and potential 

distribution centers (Archetti et al., 2014). Aras et al. 

(2011) presented a selective model of vehicle routing 

with multiple deposits and prices, where only those 

customers that are profitable are served. 

Another particularity of the model proposed by 

Ahmadi-Javid et al. (2018) is that the known demand 

of each customer changes according to the assigned 

price. They mention that price sensitive demand has 

been integrated into different models. However, it is 

the first time that sensitive demands are taken into 

account for a location and routing problem. 

In addition, they mention that the model most 

similar to theirs is that of Archetti et al. (2014) who 

solve a VRP with profits, which consists of 

maximizing the difference of the obtained profits and 

the cost of transport, using a single distribution center 

and a fleet of identical vehicles. Unlike the study by 

Archetti et al. (2014), they model a problem with the 

same objectives, but with several potential 

distribution centers and with price sensitive demands, 

making their problem more complex since each 

center can offer different prices to each customer. 

3 PROBLEM DESCRIPTION AND 

MATHEMATICAL MODEL 

In this Profit-Maximization Location-Routing 

Problem (PM-LRP), we have a set of possible 

locations for distribution centers, with equal capacity 

and a set of locations for potential customers with 

their respective initial demands. Also, a number of 

available vehicles with equal capacity is defined. The 

objective is to maximize profits, minimizing the total 

cost of opening centers and transport. To achieve this, 

it is necessary to determine which centers to open, 

which customers to assign to each center with the 

possibility of not attending to all, the prices assigned 

to each customer taking into account the variation in 

demand based on the price assigned, the vehicles to 

each distribution center, and the route of each vehicle  
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by visiting the selected customers only once. 

 To decide the delivery prices for each customer, 

Ahmadi-Javid et al. (2018) use a space price policy, 

which consists of assigning an equal retail price for 

all customers adding an additional cost depending on 

their location. This added cost per delivery is an 

additional percentage of the retail price, which is 

called markup. For this model 6 or 11 levels of 

markup are used depending on the instance ranging 

from the percentages 𝑝𝑙  0.1 to 0.2, in intervals of 0.1 

for the instances of 6 markups, or in intervals of 0.05 

for instances of 11 Markups. Therefore, the pricing 

decision is to define the level of markup 𝑙 to add to 

overall price considering that initial claims assigned 

vary depending on the final price. This final price 𝑃𝑙  

is called the delivery price. This is a type of price 

discrimination that can only be applied if the exact 

location of the potential customers is known, and is 

given by 𝑃𝑙  =  𝑤 (1 +  𝑝𝑙), where 𝑤 is the retail 

price, and 𝑝𝑙  the extra percentage at the level of 

markup 𝑙. For the demands to be modified depending 

on the final price, the following negative slope 

function was used (Greenhut et al., 1975): 

𝑑𝑖𝑙 = 𝑓(𝑃𝑙) = 𝑑𝑖(𝑎 − 𝑏𝑃𝑙)
1

𝑣⁄ ,    𝑃𝑙  < a / b  

Where dil is the final demand of customer i with the 

level of markup l, 𝑃𝑙  the end price of the product with 

the markup level l, and a, b and v are positive 

parameters which for this model were established as 

10.1, 1.5, and 0.25, respectively. 

Mathematical model proposed by Ahamid-Javid et al. 

(2018) 

 

Sets 

𝐼  Set of potential customers 

𝐻 Set of potential distribution centers 

𝐿  Set of markup levels 

𝐾0   Set of Available Vehicles 

 

Auxiliary Sets 

𝑀  Set of all possible nodes (Distribution centers 

and customers), i.e., 𝑀 =  𝐼 ∪ 𝐻 

𝐾ℎ   Set of | 𝐾 | virtual vehicles assigned to the 

distribution center ℎ 

            𝐾ℎ  = {𝑣1
ℎ , … , 𝑣|𝐾0|

ℎ }, ℎ ϵ 𝐻 

𝐾          Union of | 𝐻 |  vehicle set𝑠 𝐾ℎ,i.e. 

𝐾 =  ⋃ 𝐾ℎ
ℎ∈𝐻

 

𝐴          Set of triple arcs (𝑖, 𝑗, 𝑘), where vehicle  
𝑘 ∈  𝐾  𝑐an travel from node 𝑗 ϵ 𝑀 

Parameters 

𝑐𝑖𝑗  Distance from node i to node j,  𝑖, 𝑗, ϵ 𝑀 

𝑠  Fixed cost per unit of distance 

𝐶𝑎𝑝𝑣  Vehicle capacity, same for all vehicles  

𝐶𝑎𝑝ℎ
𝐷𝐶  Capacity of Distribution Center ℎ,   ℎ  ϵ 𝐻 

𝑤  Base price of the product  

𝑝𝑙  Percentage associated with the level of 

markup l , 𝑙 ϵ 𝐿 

𝑃𝑙         Delivery price per unit of product associated 

with the markup level l, which is obtained 

by 𝑃𝑙 = 𝑤(1 + 𝑝𝑙), 𝑙 𝜖 𝐿     
𝑑𝑖𝑙  The demand of the customer i to which the 

extra percentage of the level is charged 

markup l,  𝑖 ϵ 𝐼, 𝑙  ϵ  𝐿 

𝐹ℎ  Fixed cost of establishing a distribution center 

ℎ, ℎ ∈ 𝐻 

ℎ𝑘  The distribution center to which the vehicle k 

is assigned, i.e., 𝑘 ϵ 𝐾ℎ𝑘
, 𝑘 ϵ 𝐾. 

Decision Variables  

𝑥𝑖𝑗𝑘   Binary variable that becomes 1 if node j is 

visited just after node i by vehicle k, or 0 

otherwise, (𝑖, 𝑗, 𝑘) ϵ A 

𝑦𝑖𝑘𝑙  Binary variable that becomes 1 if node i is 

visited by vehicle k  with the markup level l  

𝑡ℎ         Binary variable that is used, 1 if distribution 

center h is selected to be set or 0 otherwise. , 

ℎ ϵ 𝐻 

𝑢𝑖𝑘    Non-negative auxiliary for customer i used in 

MTZ sub-tour elimination constraint of the 

virtual path of 𝑘, 𝑖 ϵ 𝐼, 𝑘 ϵ 𝐾 

Objective Function 

Maximize: 

 

𝑤 ∑ ∑ ∑  𝑝𝑙𝑑𝑖𝑙𝑦𝑖𝑘𝑙 − ∑ 𝐹ℎ𝑡ℎ −ℎ∈𝐻𝑙∈𝐿𝑖∈𝐼𝑘∈𝐾

𝑠 ∑ (𝑐𝑖𝑗𝑥𝑖𝑗𝑘)(𝑖,𝑗,𝑘)∈𝐴   

(1) 

 

 
Subject to 

∑ ∑ 𝑦𝑖𝑘𝑙𝑙∈𝐿 ≤ 1 ;  𝑖 ∈ 𝐼𝑘𝜖𝐾   (2) 

∑ 𝑥ℎ𝑖𝑗 − ∑ 𝑋𝑖ℎ𝑘𝑖∈𝐼 = 0;  ℎ ∈ 𝐻 , 𝑘 ∈ 𝐾𝑖∈𝐼   (3) 

∑ 𝑥ℎ𝑖𝑘 ≤ 1; ℎ ∈ 𝐻, 𝑘 ∈ 𝐾𝑖∈𝐼   (4) 

∑ 𝑥𝑖𝑗𝑘 + 𝑥𝑖ℎ𝑘𝑘𝑗∈𝐼,𝑗≠𝑖 = ∑ 𝑥𝑗𝑖𝑘 + 𝑥ℎ𝑘𝑖𝑘𝑗∈𝐼,𝑗≠𝑖 =

∑ 𝑦𝑖𝑘𝑙; 𝑙∈𝐿 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾  
(5) 

∑ ∑ 𝑑𝑖𝑙𝑦𝑖𝑘𝑙≤𝐶𝑎𝑝𝑣; 𝑙∈𝐿  𝑘 ∈ 𝐾  𝑖∈𝐼   (6) 

∑ ∑ ∑ 𝐷𝑙∈𝐿 𝑑𝑖𝑙𝑦𝑖𝑘𝑙 ≤ 𝐶𝑎𝑝ℎ
𝐶𝐷𝑡ℎ; 𝑘∈𝐾ℎ𝑙∈𝐼 ℎ ∈ 𝐻  (7) 

∑ ∑ ∑ 𝑥ℎ𝑗𝑘 ≤ |𝐾0|𝑗∈𝐼𝑘∈𝐾ℎℎ∈𝐻   (8) 

1 ≤ uik ≤ |I|;  𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾  (9) 

ICORES 2019 - 8th International Conference on Operations Research and Enterprise Systems

416



uik − ujk + |I|xijk ≤ |I| − 1;  
 

𝑖, 𝑗 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗  (10) 

xijk ∈ {0,1};  (𝑖, 𝑗, 𝑘) ∈ 𝐴  (11) 

yikl ∈ {0,1};  𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾  , 𝑙 ∈ 𝐿  
(12) 

th ∈ {0,1};  ℎ ∈ 𝐻  
(13) 

The objective (1) is to maximize the profit, which is 

the profit generated by serving customers minus the 

cost of establishing the distribution centers and the 

cost of transportation of the routes. Restrictions (2) 

ensure that each customer can only be visited once. 

Restrictions (3) define that the times a vehicle enters 

a distribution center is equal to the times it leaves it. 

Restrictions (4) ensure that each vehicle can only 

make one route. Restrictions (5) determine the 

connectivity of each route by determining the 

assignment of customers to each vehicle. Restrictions 

(6) limit the capacity of the vehicles and (7) ensure 

that the demand covered by each distribution center 

does not exceed its capacity. Restriction (8) limits the 

number of vehicles available. Restrictions (9) and 

(10), are Miller-Tucker-Zemlin sub-tour elimination 

constraints published by Miller et al. (1960), and 

restrictions (11-13) make the decision variables 

binary. 

4 SOLUTION METHODS 

Ahmadi-Javid et al. (2018), proposed the MILP 

model of polynomial size previously described to be 

able to solve small instances. This was programmed 

in CPLEX 12.3. Several major instances were run 

which were stopped after a few hours in order to 

obtain a feasible result, although the global optimum 

was not reached. To improve these results, Ahmadi-

Javid et al. (2018), proposed a branch-and-price 

heuristic by previously creating an exponential size 

formulation of grouped sets using the decomposition 

of Dantzig-Wolfe, which simplifies the problem by 

dividing it into a master problem and several sub-

problems. This model was programmed in C++. 

4.1 Heuristic 

As an alternative to solving this problem, a two-phase 

heuristic is proposed that aims to create sub-problems 

to decrease and divide the number of variables and 

restrictions in each phase. Previously, the MILP was 

programmed in LINGO to be able to verify the correct 

interpretation. 

4.1.1 First Phase 

The first phase consists of creating routes with the 

minimum possible demand, that is, with the highest 

level of markup taking into account the capacity 

restriction of each vehicle and distribution centers, 

but without taking into account the number of 

vehicles available. This phase is started by selecting 

the distribution center with the lowest sum of the 

distance between the nearest potential customers. 

Starting with the previously selected distribution 

center, a subgroup is created using the nearest 

neighbor algorithm. The stopping criterion for the 

heuristic of the nearest neighbor is executed when the 

sum of the minimum demands (markup 6 or 11) of the 

selected customers exceeds the capacity of the vehicle 

of that route, or the capacity of the distribution center 

taking account the demand covered by the routes 

previously assigned to that center.  

Then the previously created group is taken to run 

a small instance with the MILP model, where it is 

established that only one vehicle is available to obtain 

a route. Due to the small number of variables, there is 

an optimal global solution for that combination, 

selecting the best route and the level of markup for 

each customer. Since the model in MILP is 

programmed to serve only those customers that are 

profitable, the customers that are not part of the result 

are taken into account for the pre-grouping of another 

possible route and the others that were assigned are 

eliminated. The creation of possible routes ends when 

all customers have been assigned to some route, when 

the capacities of all the distribution centers are to be 

exceeded by the sum of covered demands of the 

routes assigned to them, or when there are no longer 

profitable customers to attend. 

Input data for the first phase: 
𝐼 Set of potential customers  𝑖 ∈ 𝐼; 

coordinate x, coordinate y, initial 
demand 

𝐻  Set of Distribution Centers ℎ ∈ 𝐻 ; 
coordinate x, coordinate y 

𝐶𝑎𝑝_𝑣𝑒ℎ Capacity of vehicles  
𝐶𝑎𝑝_𝐶𝐷ℎ Capacity of distribution centers 
𝑀𝑎𝑟𝑘_𝑢𝑝_𝑙𝑣𝑙𝑠 No. of markup levels = {6,11} 
 
Calculations for the first phase: 

1. Distances between all possible nodes ϵ 𝑀 

These distances are calculated with the 
Euclidean formula. 
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𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √(𝑋𝑖 − 𝑋𝑗)2 + (𝑌𝑖 − 𝑌𝑗)2        (14)
      
2. Adjusted demands of all customers 𝑖 𝜖 𝐼 for all 

markup levels 𝑙 𝜖 𝐿,   

 𝑎 =  1.10 𝑏 =  1.5 𝑐 =  0.25  

 𝑑𝑖𝑙 = 𝑓(𝑃𝑙) = 𝑑𝑖(𝑎 − 𝑏𝑃𝑙)
1

𝑣     ,     
𝑃𝑙 < 𝑎/𝑏                                                               (15) 
 

3. Profit to cover customer demand 𝑖 𝜖 𝐼 in the 

mark up  𝑙 𝜖 𝐿  

𝑃𝑟𝑜𝑓𝑖𝑡𝑖𝑗 =  𝑎𝑗𝑑𝑢𝑠𝑡𝑒𝑑 𝑑𝑒𝑚𝑎𝑛𝑑𝑖𝑙   ∗ 𝑝𝑖𝑙           (16) 

4. Maximum number of customers to take into 

account for possible routes 

𝑄 =  𝑀𝑒𝑎𝑛 𝑠𝑢𝑚 𝑜𝑓 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑𝑠/
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒   

(17) 

PHASE 1. HEURISTICS-CREATION OF ROUTES  

START 

Input: set customers, set distribution centers, vehicle 

capacity, capacity distribution centers, initial demand, 

markup levels set 

r = 1 

Do Until | I | = 0 or | H | = 0  

1. Select distribution center ℎ using selection 

procedure Fig. 2 

2. Create subgroup using subgroup creation 

procedure Fig.3 

3. Solve MILP model, according to equations 1-13, 

with data from subgroup to generate r, with a 

single vehicle k   

4. IF profit of r = 0, delete selected center h from 

H, return to step 1.  

5. 𝐶𝑎𝑝_𝐶𝐷ℎ selected ℎ ∈ 𝐻=  

𝐶𝑎𝑝_𝐶𝐷ℎselected- demand covered in route 𝑟   

6.  IF 𝑖 ∀ 𝐼,     belongs to solution r, eliminate 

𝑖 𝑓𝑟𝑜𝑚 𝐼 

7. r=r+1 

LOOP 

Output: set of routes R, profit of routes   𝑈𝑟 ,  𝑟 ∈  𝑅   

Figure 1: Heuristic- creation of routes. 

SELECTION PROCEDURE DISTRIBUTION 

CENTER 

Input: coordinates set | I |, coordinates set | H |, Q 

START 

1. Calculate Euclidean distances of 𝒊 ∀ 𝑰, 𝒂 𝒉 ∀ 𝑯  
according to equation (14). 

2. IF Q (eq. 17) ≤  |I|, THEN add distances of Q 
nearest customers to 𝒉 ∀ 𝑯, 

ELSE add all distances.  
3. Select the center with the shortest distance 

added in step 2. 

Output: Selected center 

END 

Figure 2: Selection procedure for distribution centers. 

SUBGROUP CREATION PROCEDURE 
Input: coordinates set | I |, coordinates selected center, 

initial demand | I |, demand at mark level -up greater for 

set | I |, capacity distribution center selected  

Accumulated capacity = 0  

START 

1) IF 𝐶𝑎𝑝_𝐶𝐷ℎ selected ≤  𝐶𝑎𝑝_𝑣𝑒ℎ, 

 THEN 𝐶𝑎𝑝_𝑣𝑒ℎ = 𝐶𝑎𝑝_𝐶𝐷ℎ selected 

DO WHILE 𝐶𝑎𝑝_𝐶𝐷ℎ    selected <accumulated 

capacity 

1) Create selected center distance matrix a 𝑖 ∀ 𝐼 

2)  Starting at selected center, select nearest 

neighbor according to algorithm.  

3) Add nearest neighbor 𝑖 ∈ 𝐼 to subgroup 

4) Cumulative demand = cumulative demand + 

demand at the higher markup level of nearest 

neighbor from step 4 according to equation (15).  

LOOP 

END 

Output: subgroup set 

Figure 3: Subgroup creation procedure. 

4.1.2 Second Phase 

The second phase consists of a model that aims to 

maximize the profit by selecting routes 𝑟 created in 

phase 1 of the set 𝑅 having as the sole restriction the 

number of vehicles available. The other restrictions of 

the problem are taken into account for the creation of 

said routes and subtracting the opening cost of each 

center if at least one route is selected in said center. 

This problem contains disjunctive constraints, since 

the binary variable that multiplies the cost of 

establishing a center takes the value of 1 when there 

ICORES 2019 - 8th International Conference on Operations Research and Enterprise Systems

418



is at least one selected route from that distribution 

center as shown in the constraint (20). The second 

phase was solved using Excel solver. 

Input data for second phase: 
𝑟  Set of possible routes assigned to 𝐶𝐷ℎ 𝑟 ∈
𝑅 ,   ℎ ∈ 𝐻 
𝐻 Set of distribution centers ℎ 𝜖 𝐻  
| 𝐾 | Available vehicles 
𝑈𝑟  profit of each route 𝑔 ∈ 𝐺   ,     𝑟 ∈ 𝑅 
𝐹ℎ Fixed cost of establishing distribution centers             

Model Phase 2 

From the output of phase 1 (Fig 1.) the following 
model is solved: 

 
𝑏𝑟 binary which takes a value of 

1 𝑖f route 𝑟 is accepted  
𝑏𝑓 𝑏inary which takes a value of   

1 if at  least one DC ℎ route is accepted 
 
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒:                               

∑ 𝑈𝑟𝑏𝑟 − ∑ 𝐹ℎ𝑏𝑓ℎℎ∈𝐻𝑟∈𝑅 ; 

∀  𝑟 ∈ 𝑅 , ℎ ∈ 𝐻  
(18) 

Subject to 

∑ 𝑏𝑟 ≤ |𝐾|             𝑟    ∀  𝑟 ∈ 𝑅  (19) 

  

                         1     𝑖𝑓 ∑ 𝑏𝑟ℎ > 0𝑟 ;  ℎ 𝜖 𝐻                                                  

  𝑏𝑓ℎ =                

                             0    𝑖𝑓 ∑ 𝑏𝑟ℎ = 0;𝑟  ℎ 𝜖 𝐻    

(20) 

𝑏𝑟 = {0,1}     𝑟 ∈ 𝑅  (21)  

𝑏𝑓ℎ = {0,1}   ℎ ∈ 𝐻 (22) 

The objective (18) is to maximize the total profit; 

that is, the profit of the selected routes minus the cost 

to open the distribution centers. Restriction (19) 

ensures that the accepted number of routes is equal to 

the number of vehicles available. Restriction (20) 

gives the value of 1 if at least one route assigned to 

the distribution center ℎ ∀ 𝐻 was accepted, or 0 if 

none was accepted. Restrictions (21-22) ensure that 

the variables of accepting a route and opening a 

distribution center are binary. 

5 EXPERIMENTATION 

In the instances used, the number of potential 

customers and the number of distribution centers 

available are first defined. Then the coordinates in x 

and y, and the initial demands of the customers. Then 

the capacities of the centers and the cost of 

establishing them are presented. Finally, the capacity 

of the vehicles, the available number and the cost per 

unit of distance are shown. For all instances, the base 

price 𝑤 =  5  was established. Each instance was 

resolved with both levels of markup 6 and 11. To 

name the instances, the initial of the author of the 

instance was taken, followed by the number of 

available customers, the number of distribution 

centers and the level of markup. Table 1 shows the 

original names of the instances with their respective 

data. Since this problem is new, the instances were 

generated modifying LRP benchmark instances 

available in the literature. The original names of the 

instances are shown in Table 1. 

Table 1: Instances. 

Instance  

name 

Original 

name 

no. 

customers 

mark up 

levels 

Pe-12x2x6 Perl183-

12-2 

12 6 

Pe-12x2x11 11 

G-21x5x6 Gaskell67

-21x5 

21 6 

G-21x5x11 11 

G-22x5x6 Gaskell67

-22x5 

22 6 

G-22x5x11 11 

M-27x5x6 Min92-

27x5 

27 6 

M-27x5x11 11 

    

 Cap DC Fixed cost vehicle 

capacity 

Pe-12x2x6 280 100 140 

Pe-12x2x11 

G-21x5x6 15000 50 6000 

G-21X5X11 

G-22X5X6 15000 50 4500 

G-22X5X11 

M-27X5X6 9000 272 2500 

M-

27X5X11 

6 RESULTS 

Table 2 summarizes the best solution of the objective 

value, and the number of variables for the eight 

instances in the four proven methods: the MILP in 

CPLEX, the branch-and-price heuristic by Ahmadi-

Javid et al. (2018), the method in LINGO and the 

proposed two-phase heuristic. The last column shows 

the error percentage of the two-phase heuristic on the 

best solution found among the other methods.  
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For the smallest instance, the program was 

allowed to run until finding the global optimum; after 

12 hours with 30 minutes, the overall optimum was 

obtained, seven hours after the model in CPLEX. In 

the results, a difference of 0.60 is shown, which may 

be due to decimals considered in each engine used. 

For all other instances, a limit of ten hours was 

established, and the program was interrupted in Lingo 

in order to find a feasible solution. For the two-phase 

heuristic it was not possible to measure the time, since 

a part was done manually in Excel, and another in 

LINGO. 

Table 2: Results in objective value. 

Instance 

name 

CPLEX B & B 

ALG 

LINGO 

Pe-12x2x6 71.08 71.08 71.68 

Pe-12x2x11 96.66 96.66 87.9 

G-21x5x6 17775.06 17859 17535.97 

G-21x5x11 18290.59 18391.9 17595.64 

G-22x5x6 8667.44 8927.72 8706.022 

G-22x5x11 9097.83 9097.83 8873.885 

M-27x5x6 2927.16 2927.16 2633.36 

M-27x5x11 3543.58 3543.58 3207.085 

 TWO 

PHASES 

NO. OF 

VARIA

BLES 

% 

ERROR 

VS. BEST 

SOLUTIO

N 

Pe-12x2x6 65.28 1181 

 

8.929% 

Pe-12x2x11 91.09 1461 

 

5.762% 

G-21x5x6 17064.727 17168 

 

4.447% 

G-21x5x11 17520.293 19768 

 

4.739% 

G-22x5x6 8840.96 18368 

 

0.972% 

G-22x5x11 8936.687 21068 

 

1.771% 

M-27x5x6 2926.5927 24968 

 

0.019% 

M-27x5x11 3492.1874 28168 

 

1.450% 

For the percentage of error on the best solution 

found with the two-phase heuristic solution, it can be 

seen that the greater the number of variables, the 

percentage of error tends to decrease, behaving 

similarly when you have 6 or 11 associated markup 

levels. 

On the other hand, the improvement due to 

increasing the number of markup levels is positive in 

all cases for all the methods used. However, there is 

no trend associated with the number of variables but 

rather, with another particularity of each instance, 

since the smallest instance and the largest one, have a 

much more significant increase than the two median-

size instances. 

7 CONCLUSIONS 

The results of the heuristic were satisfactory. 

However, no result was better than that obtained in 

the heuristic proposed by Ahmadi-Javid et al. (2018). 

In spite of not being able to measure the time for the 

metaheuristic, it can be seen that a better result is 

obtained than in the MILP. As shown in Table 2, the 

percentage of errors decreases as the size of the 

instance increases. It may be that this method obtains 

better results with larger instances.   

As in the reference article, implementing the 

differentiation of prices for each customer when the 

demands are price sensitive increases significantly to 

a greater number of markup levels. That is, this policy 

can increase company profits, however, it would be 

difficult to predict the behavior of the demands for 

each customer, making the problem less feasible for 

real cases.  

For future research, we will code the heuristic in 

C++, in order to compare the execution times. 

Moreover, it is expected to analyze the effects of the 

sensitivity of the demand in the maximization of 

profit, to be able to apply a penalty according to those 

customers who should not be served. 

ACKNOWLEDGEMENTS 

This research was supported by Universidad 

Panamericana [grant number UP-CI-2018-ING-

GDL-06]. 

REFERENCES 

Ahmadi-Javid, A, Amiri, E, and Meskar, M, 2018. A Profit-

Maximization Location-Routing-Pricing Problem: A 

Branch-and-Price Algorithm. European Journal of 

Operational Research, vol. 271, no. 3, pp. 866-881.  

Ahmadi Javid, A, and Azad, N, 2010. Incorporating 

location, routing and inventory decisions in supply 

chain network design. Transportation Research Part E: 

Logistics and Transportation Review, vol. 46, no. 5, pp. 

582–597. 

Ahmadi-Javid, A, and Seddighi, A H, 2013. A location, 

ICORES 2019 - 8th International Conference on Operations Research and Enterprise Systems

420



routing problem with disruption risk. Transportation 

Research Part E: Logistics and Transportation Review, 

vol. 53, pp. 63–82. 

Albareda-Sambola, M, Fernández, E, and Laporte, G, 2007. 

Heuristic and lower bound for a stochastic location-

routing problem. European Journal of Operational 

Research, vol. 179, no. 3, pp. 940–955. 

Archetti, C, Bertazzi, L, Laganà, D, and Vocaturo, F, 2017. 

The Undirected Capacitated General Routing Problem 

with Profits. European Journal of Operational 

Research, vol. 257, no. 3, pp. 822–833. 

Archetti, C, and Speranza, M G, 2014. A survey on 

matheuristics for routing problems. EURO Journal on 

Computational Optimization, vol. 2, no. 4, pp. 223–

246. 

Archetti, C, Speranza, M G, and Vigo, D, 2014. Vehicle 

routing problems with profits. Vehicle Routing: 

Problems, Methods, and Applications, 2nd Edition, pp. 

273–297. 

Averbakh, I, and Berman, O, 1994. Technical Note—

Routing and Location-Routing p-Delivery Men 

Problems on a Path. Transportation Science, vol. 28, 

no. 2, pp. 162–166. 

Averbakh, I, and Berman, O, 1995. Probabilistic Sales-

Delivery Man and Sales-Delivery Facility Location 

Problems on a Tree. Transportation Science, vol. 29, 

no. 2, pp. 184–197. 

Borges Lopes, R, Ferreira, C, Sousa Santos, B, and Barreto, 

S, 2013. A taxonomical analysis, current methods and 

objectives on location‐routing problems. International 

Transactions in Operational Research, vol. 20, no. 6, 

pp. 795-822. 

Chen, C, Qiu, R, and Hu, X, 2018. The Location-Routing 

Problem with Full Truckloads in Low-Carbon Supply 

Chain Network Designing. Mathematical Problems in 

Engineering, vol. 2018, no. 1, Article ID 6315631, 13 

pages. 

Fazayeli, S, Eydi, A, and Kamalabadi, I N, 2017. A model 

for distribution centers location-routing problem on a 

multimodal transportation network with a meta-

heuristic solving approach. Journal of Industrial 

Engineering International, vol. 14, no. 2, pp. 327-342. 

Ferreira, K M, and Alves de Queiroz, T, 2018. Two 

effective simulated annealing algorithms for the 

Location-Routing Problem. Applied Soft Computing, 

vol. 70, no. 1, pp. 389-422. 

Greenhut, M L, Hwang, M, and Ohta, H, 1975. 

Observations on the Shape and Relevance of the Spatial 

Demand Function. Econometrica, vol. 43, no. 4, pp. 

669–682. 

Guo, H, Li, C, Zhang, Y, Zhang, C, and Wang, Y, 2018. A 

Nonlinear Integer Programming Model for Integrated 

Location, Inventory, and Routing Decisions in a 

Closed-Loop Supply Chain. Complexity, vol. 2018, no. 

1, Article ID 2726070, 17 pages. 

Miller, C E, Tucker, A W, and Zemlin, R A, 1960. Integer 

Programming Formulation of Traveling Salesman 

Problems. J. ACM, vol. 7, no. 4, pp. 326–329. 

Nagy, G, and Salhi, S, 1998. The many-to-many location-

routing problem. Top, vol. 6, no. 2, pp. 261–275.  

Nagy, G, and Salhi, S, 2007. Location-routing: Issues, 

models and methods. European Journal of Operational 

Research, vol. 177, no. 2, pp. 649–672. 

Panicker, V V, Vamshidhar Reddy, M, and Sridharan, R, 

2018. Development of an ant colony optimisation-

based heuristic for a location-routing problem in a two-

stage supply chain. International Journal of Value 

Chain Management, vol. 9, no. 1, pp. 38–69. 

Prodhon, C, and Prins, C, 2014. A survey of recent research 

on location-routing problems. European Journal of 

Operational Research, vol. 238, no. 1, pp. 1–17. 

Sarham, M S, Süral, H, and Iyigun, C, 2018. A column 

generation approach for the location-routing problem 

with time windows. Computers and Operations 

Research, vol. 90, no. 1, pp. 249–263. 

Maximization of Profit for a Problem of Location and Routing, with Price-sensitive Demands

421


