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Abstract: We propose a GPU-based version of the Image Foresting Transform by Seed Competition (IFT-SC) operator
and instantiate it to produce compact watershed-based superpixels (Waterpixels). Superpixels are usually
applied as a pre-processing step to reduce the amount of processed data to perform object segmentation.
However, recent advances in image acquisition techniques can easily produce 3D images with billions of
voxels in roughly 1 second, making the time necessary to compute Waterpixels using the CPU-version of the
IFT-SC quickly escalate. We aim to address this fundamental issue, since the efficiency of the entire object
segmentation methodology may be hindered by the initial process of estimating superpixels. We demonstrate
that our CUDA-based version of the sequential IFT-SC operator can speed up computation by a factor of up to
180x for 2D images, with consistent optimum-path forests without requiring additional CPU post-processing.

1 INTRODUCTION

Image segmentation is a crucial task for many appli-
cations in computer vision and image analysis. It is a
challenging process given the wide variety of objects
that may be depicted in different imaging modalities
(e.g., medical, natural, and geological images). To ad-
dress this issue, several methods rely on performing a
first level of image segmentation by generating super-
pixels. Superpixels divide an image into homogene-
ous regions such that adjacent pixels with similar in-
tensities/colors are assigned to a same region. Seman-
tic objects are then usually comprised by one or more
of those regions. The object segmentation methods
aim to classify and/or merge the superpixels to per-
form the final segmentation and separate the desired
objects of interest (Stegmaier et al., 2016; Stegmaier
et al., 2018; Rauber et al., 2013).

Superpixel estimation is important because (i) it
permits image segmentation methods to aggregate lo-
cal contextual information about the different regions
of the objects (an object may contain very dissimi-
lar parts), and because (ii) it may significantly reduce

*Corresponding author

the computational effort for segmentation, since the
amount of estimated superpixels is usually far lower
than the number of pixels in the image. Hence, se-
veral methods have been proposed to extract super-
pixels from an image (Achanta et al., 2012; Lotufo
et al., 2002; Alexandre et al., 2015; Machairas et al.,
2015; Vargas-Muñoz et al., 2018; Felzenszwalb and
Huttenlocher, 2004).

Superpixel extraction methods ought to strike
a balance between achieving high boundary recall
and obtaining compact regions (Vargas-Muñoz et al.,
2018). The former evaluates how the superpixels cap-
ture the borders of the existing objects in the image,
while the latter is concerned with producing regions
with shape as regular as possible. Compactness is im-
portant because regular shaped regions facilitate the
posterior extraction of features for object segmenta-
tion. Methods such as the Simple Linear Iterative
Clustering (Achanta et al., 2012) (SLIC) have been
proposed with compactness in mind, to counterba-
lance approaches that produce irregular regions such
as the watershed transform (Falcão et al., 2004; Roer-
dink and Meijster, 2000). The latter, however, can
usually achieve higher boundary recall at the expense
of region compactness.
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More recently, some authors have devised hybrid
methods that combine the characteristics of the su-
perpixel estimation by the watershed transform and
SLIC (Achanta et al., 2012) to leverage their comple-
mentary properties, such as the IFT-SLIC (Alexandre
et al., 2015), the Compact Watershed (Neubert and
Protzel, 2014), and the Waterpixels (Machairas et al.,
2015) approaches. All of the aforementioned techni-
ques rely on variants of the seeded watershed trans-
form, which can be efficiently implemented by using
the Image Foresting Transform (Falcão et al., 2004)
(IFT), a tool for the design of image processing and
pattern recognition operators based on optimum con-
nectivity. The IFT works by promoting a competition
among candidate pixels selected as the representati-
ves of the superpixels, henceforth denoted as seeds,
to conquer the remaining pixels of the image. The
resulting regions can be tuned in the aforementioned
hybrid approaches to exhibit either the compactness
of SLIC superpixels or the superior boundary adhe-
rence of the watershed transform.

In this work, we propose a GPU-based version of
the IFT by optimum seed competition operator (IFT-
SC) and instantiate it to produce Waterpixels (Fig. 1).
We aim to address one of the key issues overlooked by
the previously stated hybrid approaches: superpixel
estimation must be performed in timely fashion. Alt-
hough linear-time sequential implementations for the
IFT-SC exist (Falcão et al., 2004), the required com-
putational time can quickly escalate with the incre-
ase in the size of the image. This is particularly true
for 3D images, since recent image acquisition techni-
ques (Costa et al., 2017) can easily produce images
with billions of voxels in a few seconds (15003 voxel
images in about 1− 5s). Hence, even though the di-
mensionality of the object segmentation problem is
reduced when using superpixels, the efficiency of the
entire approach can be hindered by the initial process
of estimating them (Rauber et al., 2013).

The IFT-SC can be understood by making an ana-
logy with the ordered formation of communities. Con-
sider a population in which each individual has the
desire of forming a community. Some natural born
leaders (seeds) begin the process by offering a re-
ward to their acquaintances to become part of their
community. If the reward is higher than the acquain-
tance’s desire of forming his/her own community,
or the acquaintance’s current reward if it is already
part of one, the acquaintance accepts the invitation
and changes communities. The communities grow
through their members, who start offering rewards
that are not higher than their own reward/desire. This
process continues following the non-increasing or-
der of reward/desire, until each individual is part of

(a) Input image (b) Seed set S , with σ = 20

(c) Border image B (d) Waterpixels by cu-
daIFT

Figure 1: Waterpixel computation on a 2D slice of a CT
image of dolomite rock sample, using the cudaIFT pa-
rallel algorithm with regularly spaced seeds (σ = 20 and
k = 1000, see Equations 1-2).

the community that offered the highest reward. In
superpixel estimation, the population represents the
image, the individuals are the pixels, and each com-
puted community corresponds to a superpixel rooted
at the seed pixel (community leader) selected as its
representative.

To implement the IFT-SC in GPU, we allow each
individual of the population to begin conquering new
individuals as soon as they become part of a growing
community. Hence, we allow parallel competition be-
tween communities to occur, even if the reward that
can be offered by their individuals is not yet opti-
mum. In other words, we do not require the order
of reward/desire to be respected. We then iterate the
competition a few times to ensure that the rewards are
as close to the expected optimum value as possible,
thereby leading to a parallel version of the IFT algo-
rithm. We have implemented our method using Nvi-
dia’s CUDA language and therefore name it cudaIFT.

cudaIFT is related to the parallel implementation
of the Relative Fuzzy Connectedness algorithms pro-
posed in (Wang et al., 2016; Zhuge et al., 2012).
Those works tend to either parallelize the execution
considering some order during optimum reward pro-
pagation (Zhuge et al., 2012), or heavily rely on glo-
bal GPU memory with costly access (Wang et al.,
2016). cudaIFT thus presents several important con-
tributions:
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1. It considerably improves the usage of GPU by ma-
king better use of CUDA threads during competi-
tion;

2. It makes heavy use of shared block memory
instead of global GPU memory to increase throug-
hput;

3. It is a parallel version of the IFT-SC operator, and
therefore can be used in settings other than Water-
pixel estimation.

We validate cudaIFT for the estimation of Water-
pixels in 2D slices of a 3D Computed Tomography
image, against the linear-time implementation of the
sequential IFT algorithm (Falcão et al., 2004). cu-
daIFT computes accurate superpixels with consistent
optimum-path forest, without requiring further CPU
post-processing, while achieving speedups of up to
roughly 180x over the CPU version.

The next sections are organized as follows.
Section 2 presents an overview of background con-
cepts that are necessary to understand Waterpixel es-
timation and the IFT algorithm. Section 3 provides
the algorithmic details about the cudaIFT approach.
We present our experimental validation in Section 4
and draw our final conclusions in Section 5.

2 BACKGROUND

Image segmentation provides high-level knowledge
about the content of the image, by representing the
objects of interest depicted in the image. An image
I : DI →V⊆Rm is a mapping function from the rec-
tangular image domain DI ⊂Zd to the m-dimensional
real domain, such that m scalars are assigned to each
pixel in p ∈ DI . In this work, we are interested in
grayscale images (m = 1) represented in two dimen-
sional space (d = 2), making the array index p repre-
sent matricial image coordinates as p = (x,y). The
goal of image segmentation is to assign a label L(p)
to each pixel p in an image I corresponding to one
out of c available objects of interest or the background
(L(p) = 0).

In the following, we briefly describe some back-
ground concepts necessary to understand the super-
pixel estimation method named Waterpixels, and the
sequential Image Foresting Transform algorithm. For
simplicity, the aformentioned label assignment L(p)
shall refer to the computed c regions, with each re-
gion reprepresenting a superpixel.

2.1 Waterpixel Estimation

The Waterpixels approach was proposed in (Machai-
ras et al., 2015) (Fig. 1). In order to strike a balance
between compactness and boundary recall, the Water-
pixels method performs the watershed transform on a
specially crafted border image B, which takes into ac-
count the position of the seed pixels in a set S selected
on a regular grid with spacing of σ pixels (Fig. 1b).
Image B (Fig. 1c) combines the gradient magnitude
of the input image |∇I | and a distance map E from
the seed set S :

B(p) = |∇I (p)|+ kE(p), (1)

in which k is an application-dependent parameter that
controls the tradeoff between compactness and boun-
dary adherance, and E is computed as

E(p) =
2
σ

min
q∈S
{d(p,q)}, (2)

with d(p,q) = ||p− q|| being the euclidean distance
between pixels p and q. If k is small in Eq. 1, the
watershed transform is forced to adhere to the origi-
nal boundaries of image I . When k → ∞, the wa-
tershed transform becomes a Voronoi tessellation. It
is worth noting that both the computation of the gra-
dient image ∇I and the seed distance map E can be
very efficiently done on the GPU using, in the former
case, the Sobel operator for instance. Hence, those
optimizations are not the focus of this paper.

2.2 The Image Foresting Transform

The Image Foresting Transform can be seen as ge-
neralization of Dijkstra’s single source shortest path
algorithm (Dijkstra, 1959) for multiple sources and a
greater variety of connectivity functions (Falcão et al.,
2004; Ciesielski et al., 2018). The IFT algorithm can
be used to implement operators such as the waters-
hed transform (IFT-SC (Falcão et al., 2004)), supervi-
sed (Papa et al., 2012) and unsupervised (Rocha et al.,
2009) pattern classifiers, among others (Miranda and
Mansilla, 2014).

The IFT interprets an image as graph, in which the
pixels are the nodes and spatially adjacent elements
are connected by an arc. The aforementioned ordered
community formation analogy is therefore cast into
a graph-partitioning problem (Fig. 2). We describe
next the main elements required for using the IFT for
watershed image segmentation.

2.2.1 Graphs from Images

Let G = (N ,A ,w) denote a weighted graph, in which
N is a set of elements taken as nodes and A ⊆N ×N
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Figure 2: The Image Foresting Transform sequential algo-
rithm diagram, depicting the intermediate result of the com-
munity formation procedure. The color code indicates the
sequence in which the pixels will be evaluated, according to
the final optimum path cost that they will have.

is a binary and non-reflexive adjacency relation be-
tween elements of N that form the arcs. We use
q ∈ A(p) or (p,q) ∈ A to indicate that a node q ∈N
is adjacent to a node p ∈ N . Each arc (p,q) ∈ A is
given a fixed weight w(p,q) that encodes the dissimi-
larity between adjacent nodes p,q ∈N .

For a given graph G = (N ,A ,w), a path πq =
〈q1,q2, . . . ,q〉 with terminus at a node q is simple
when it is a sequence of distinct and adjacent nodes.
A path πq = πp · 〈p,q〉 indicates the extension of a
path πp by an arc (p,q) and a path πq = 〈q〉 is said
trivial. A connectivity function f assigns to any path
πq in the graph a value f (πq). A path πq is optimum
if f (πq)≤ f (τq) for any other path τq in G.

In this work, we are interested in the traditional
fmax connectivity function:

fmax(〈q〉) =

{
0 if q ∈ S ,
+∞ otherwise

fmax(πp · 〈p,q〉) = max{ fmax(πp),w(p,q)}.(3)

Function fmax essentially propagates the maximum
edge weight along a path. By assigning initial con-
nectivity values of 0 to trivial paths of nodes q belon-
ging to a set of previously selected seed pixels S , we
ensure that the IFT will force the seeds to compete
among themselves to conquer the remaining nodes of
the graph N \ S . The IFT algorithm may consider
several types of connectivity functions (Miranda and
Mansilla, 2013; Miranda et al., 2012), although a pro-
found study about other functions is outside the scope
of this work.

2.2.2 Optimum Path Forest

Considering all possible paths with terminus at each
node q ∈ N , an optimum connectivity map V (q) is

created by

V (q) = min
∀πq in (N ,A ,w)

{ f (πq)}. (4)

The IFT solves the minimization problem above
by computing an optimum-path forest — a function
P which contains no cycles and assigns to each node
q ∈ N either its predecessor node P(q) ∈ N in the
optimum path or a distinctive marker P(q) = nil 6∈N ,
when 〈q〉 is optimum (i.e. q is said root of the forest).
In essence, pixels in the seed set S become the roots
of the forest due to the initialization of function fmax
in Eq. 3. We present next the sequential IFT algorithm
for solving the minimization problem of Eq. 4.

2.2.3 Sequential IFT Algorithm

Algorithm 1 presents the steps to compute the IFT
following the minimization of Eq. 4. It relies on a
priority queue Q to propagate optimum path costs in
orderly fashion on weighted graph G.

Algorithm 1.: Sequential IFT Algorithm.

INPUT: Graph G = (N ,A ,w) and connectivity function f .
OUTPUT: Optimum-path forest P, its connectivity value map V

and its root map R.
AUXILIARY: Priority queue Q and variable tmp.

1. For each q ∈N , do

2. P(q)← nil, and V (q)← fmax(〈q〉).
3. If V (q) 6=+∞, then insert q in Q.
4. While Q 6= /0, do

5. Remove p from Q such that V (p) is minimum.
6. For each q ∈ A(p), such that V (q)>V (p), do

7. Compute tmp← fmax(πp · 〈p,q〉).
8. If tmp <V (q), then

9. If V (q) 6=+∞, then remove q from Q.
10. Set P(q)← p, V (q)← tmp.
11. Insert q in Q.

Steps 1–3 initialize maps for trivial paths. The mi-
nima of the initial map V compete with each other
and the ones in seed set S become roots of the fo-
rest. They are nodes with optimum trivial-path values,
which are inserted in queue Q. The main loop com-
putes an optimum path from the roots to every node p
in a non-decreasing order of path value (Steps 4–11).
At each iteration, a path of minimum value V (p) is
obtained in P when we remove its last pixel p from Q
(Step 5). Ties are broken in Q using first-in-first-out
policy. The remaining steps evaluate if the path that
reaches an adjacent pixel q through p is cheaper than
the current path with terminus q and update Q, V (q),
and P(q) accordingly.

Seeded watershed segmentation using the IFT al-
gorithm is known as the Image Foresting Transform
by Seed Competition (IFT-SC) operator. In this work,
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it can be straightforwadly derived by considering a
graph GI = (N ,A ,w) with the nodes N = DI as the
entire domain of image I and a spatial connectivity
function A = A4 connecting 4-adjacent pixels. To
ensure that Waterpixels are computed through IFT-
SC, the seed set S is selected as the superpixel seeds
and the arc weights of graph GI are assigned as
w(p,q) = B(q), both of which as previously defined
in Section 2.1.

Since arc weights can be normalized to integer va-
lues ranging from {0,1, . . . ,K}, Dial’s bucket sorting-
based priority queue (Dial, 1969) is usually selected
as Q in Algorithm 1. Hence, for sparse graphs as in
the case of 4- or 8-connected image-graphs, the al-
gorithm’s complexity is O(K +N ), being essentially
linear for reasonable values of K.

3 THE cudaIFT ALGORITHM

The main challenge of the parallelization of Al-
gorithm 1 lies on the fact that the IFT computes
optimum-path costs in greedy fashion, starting from
the seeds and extending paths incrementally follo-
wing the order given by the priority queue. One pre-
viously adopted strategy for implementing the IFT al-
gorithm (Zhuge et al., 2012) on the GPU aimed to pa-
rallelize the competition respecting the sequence of a
virtual priority queue. In essence, competition would
take place simultaneously for pixels with the same
cost level. Hence, pixels with the same color in the
priority queue of Fig. 2 would be allowed to compete
to extend their optimum-path trees, as long as their
costs matched the current minimum value in the vir-
tual priority queue. This approach severely hinders
parallel competition, since the global sequence of the
queue is still respected.

cudaIFT instead aims to allow as much competi-
tion to take place as possible, by understanding that
competition occurs primarily between neighboring
regions of the image when computing superpixels.
Hence, cudaIFT divides the 2D image into a grid of
CUDA blocks, with one CUDA thread per pixel, and
keeps track of a pixel activation map. Each CUDA
thread verifies if its pixel p is active in the map,
and then tries to conquer adjacent pixels q ∈ A(p).
Seeds are the first nodes that are activated before any
competition takes place, and whenever a new pixel
is conquered it is immediately activated to continue
the optimum-path tree expansion process inside their
CUDA thread blocks (Fig. 3).

Due to intrablock synchronization capabilities, we
make use of atomic operations and allow competition
to occur only inside CUDA blocks first. Then, we

resolve interblock propagation of optimum-path costs
(bottom of Fig. 3) and iterate the entire algorithm a
few times until no pixel is active. This is similar in
spirit to the approach in (Wang et al., 2016), although
with a number of advantages. First, we make heavy
use of the GPU’s shared memory to avoid expensive
global memory access. Second, we keep CUDA thre-
ads continuously checking if their pixel have been
activated, until all of the threads in their block have
concluded. Third, we compute not only the opti-
mum path cost map V , but also the predecessor map
P and label L consistently, with no need for posterior
CPU corrections. This is very important, since the
Relative Fuzzy Connectedness approach, parallelized
in (Wang et al., 2016), actually only requires a con-
sistent cost map V and therefore does not compute a
predecessor map P. We detail in the next sections the
cudaIFT algorithm.

3.1 Main Steps of cudaIFT

Algorithm 2 presents the main steps of cudaIFT. The
algorithm starts by initializing the proper connecti-
vity, predecessor, label, and activation maps by taking
into account the seeds in set S and the connectivity
function fmax. The initialization kernel is a simple pa-
rallelization of a loop over the entire image and seed
set. Then, the intrablock competition kernel is invo-
ked to perform seed competition inside each CUDA
thread block. In order to propagate the optimum-path
costs between CUDA thread blocks, the appropriate
kernels are called three times in the loop of Step 4,
such that information is propagated between the cor-
ners of the blocks as pointed out in Fig. 3 and follo-
wing (Wang et al., 2016). Finally, all steps are iterated
M times to ensure that there are no more active pixels.

With each iteration, more and more pixels become
active thereby ensuring that the wavefront of optimum
path-costs is propagated even if a CUDA thread block
originally has no seeds. Hence, although we focus on
superpixel estimation cudaIFT can be used with an
arbitrary seed set S . It is important to note, however,
that we divide interblock competition into two similar
kernels for efficient processing of larger images, since
rows and columns at the CUDA thread block borders
are evaluated separately.

Algorithm 2.: The cudaIFT Algorithm.

INPUT: Seed set S , optimum-path forest P, its connectivity va-
lue map V , and its label map L in global GPU memory.
Adjacency relation A , and connectivity function fmax.
Number of iterations M.

OUTPUT: Optimum-path forest P, its connectivity value map V ,
and its label map L in CPU memory.

AUXILIARY: Activation map A.
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Figure 3: The proposed cudaIFT parallel algorithm diagram. Top: intrablock competition performed by active nodes in
shared memory, for small CUDA thread blocks (5x5 threads) and a single seed selected in each block. The left image depicts
active nodes during some step of the competition. The middle image presents the temporary result in shared memory after the
first iteration of competition is done. The right image depicts the final result, after some iterations of intrablock and interblock
competition are performed. Bottom: interblock competition performed by pixels on the boundary of CUDA blocks that were
activated during intrablock competition. The arrows indicate one node conquering another one from a different block. We
perform three interblock competition iterations for each intrablock competition to propagate information between the corners
of four adjacent blocks (a, b, c, d), as can be seen at the center of the three images.

1. Initialization-Kernel(V , L, P, A, A , S , fmax).
2. For i ∈ {1,2, . . . ,M}do

3. Intrablock-Competition-Kernel(V , P, L, A, A , fmax)
4. For j ∈ {1,2,3} do

5. Interblock-H-Competition-Kernel(V , P, L, A, Ah, fmax).
6. Interblock-V-Competition-Kernel(V , P, L, A, Av, fmax).
7. Transfer maps L, V , and P to CPU/main memory.

3.2 Intrablock Competition

The intrablock competition kernel is run for each
pixel in the image domain p ∈ DI . CUDA threads
are spawned using a 32× 32 block size with blocks
covering the entire image. Algorithm 3 presents the
intrablock competition kernel.

Algorithm 3.: Intrablock Competition Kernel.

INPUT: Global index of pixel p. Adjacency relation A . Activa-
tion map A. Optimum-path forest P, its connectivity va-
lue map V , and its label map L in global memory. Con-
nectivity function fmax.

OUTPUT: Updated values in global memory of: optimum-path fo-
rest P, connectivity value map V , label map L, and acti-
vation map A.

AUXILIARY: Temporary variables active, tmp. Variables in shared
memory: activation map As, cost map Vs, predecessor
map Ps, label map Ls, mutex lock map Ks, and termina-
tion variable s done .

1. Copy map values L(p),V (p),P(p) from global to shared memory.

2. syncthreads().
3. While s done 6= False, do

4. Vp←Vs(p).
5. Lp← Ls(p).
6. s done← 1.
7. active← As(p).
8. Atomically set As(p)← False.
9. syncthreads().

10. If active = True, then

11. For each q ∈ A(p) do

12. Compute tmp← fmax(πp · 〈p,q〉).
13. Try-Acquire-Lock(Ks(q)).
14. If tmp <Vp or

15. (Vs(q) = tmp, Ps(q) = p, Ls(q) 6= Lp), then

16. Set Ps(q)← p,Vs(q)← tmp.
17. As(q)← True,s done← False.
18. Release-Lock(Ks(q))
19. syncthreads().
20. syncthreads().
21. Copy map values Ls(p),Vs(p),Ps(p) from shared to global memory.

First, the current label, cost, and predecessor maps
are copied to shared memory. Then, the kernel loops
while the pixels of the threads of the corresponding
CUDA block are active, given by shared variable
s done = True. While that is true, a snapshot of the
label and cost of the current pixel p is done, since
they may be altered by other threads during compe-
tition, and the pixel p is checked for activation. If
p is active (Step 10), then it will attempt to conquer
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neighboring nodes q ∈ A(p). In order to conquer a
neighbor q, we need to ensure that only the current
thread is modifying the adjacent node’s connectivity,
label, and predecessor map values.

We have thus created a mutex procedure that es-
sentially tries to lock a map Ks(q) in shared memory.
If successful, then the algorithm evaluates if the com-
puted cost value is lower than Vs(q) and, if so, p is
able to conquer q (Step 14). However, since competi-
tion occurs in parallel and a voxel q is activated as
soon as it is reached, then sub-optimum path costs
may be propagated inadvertently. This becomes a
problem when ties in optimum costs exist, which may
lead to inconsistent label maps. Hence, we borrow
ideas from the differential IFT-SC operator (Falcão
and Bergo, 2004), which is able to perform local cor-
rections after additions/removal of seed pixels, and
modify the test in Step 8 of the original IFT Algo-
rithm 1 to take into account ties in the path costs being
computed, as presented in Step 14 of Algorithm 3.
Since the mutex locking procedure is expensive, as
it involves a loop encompassing Steps 13-18 to ato-
mically verify if the state of the locking map Ks(q) is
originally 0 and set it to 1 if true, in practice we repeat
the test of Step 14 before Step 13 to evaluate only can-
didate neighbors. Block thread synchronizations are
performed to ensure consistency of the competition.

3.3 Interblock Competition

The horizontal interblock competition procedure, gi-
ven in Algorithm 4, is quite similar to the intrablock
kernel. The main difference is that the competition is
executed only once for each pixel p on the boundary
of the CUDA thread blocks that divided the image
into a regular grid. Only the boundary pixels acti-
vated during intrablock competition are eligible for
interblock competition and to propagate information
to adjacent blocks. Note that the vertical competition
is essentially identical, what changes is that boundary
pixels on the columns are evaluated instead.

Algorithm 4.: Interblock Horizontal Competition Kernel.

INPUT: Global index of pixel p at the boundary of a CUDA
thread block from Algorithm 3. Adjacency relation in
the horizontal axis Ah. Activation map A, optimum-path
forest P, connectivity value map V , label map L in global
memory. Mutex lock map Ks in shared memory. Con-
nectivity function fmax.

OUTPUT: Updated values in global memory of: optimum-path fo-
rest P, connectivity value map V , label map L, and acti-
vation map A.

AUXILIARY: Temporary variables active, tmp.

1. Vp←V (p).
2. Lp← L(p).

3. active← A(p).
4. syncthreads().
5. If active = True, then

6. For each q ∈ Ah(p) do

7. Try-Acquire-Lock(Ks(q)).
8. Compute tmp← fmax(πp · 〈p,q〉).
9. If tmp <V (q) or (V (q) = tmp, P(q) = p, L(q) 6= Lp), then

10. Set P(q)← p,L(q)← Lp,A(q)← True.
11. Release-Lock(Ks(q))

In the first time that the intrablock competition
kernel is executed, all block boundary pixels are acti-
vated, but as iterations of the Algorithm 2 occur, this
number decreases until none is active. To this end, we
actually deactivate boundary pixels once Algorithm 4
is executed both horizontally and vertically after the
loop in Step 4 of Algorithm 2 is done, if the boundary
pixels are not activated during interblock competition.

4 EXPERIMENTAL RESULTS

We have conducted experiments comparing the se-
quential linear-time implementation of the IFT-SC al-
gorithm in C language, versus the cudaIFT algorithm
for estimation of Waterpixels. We have selected 2D
slices of a graycale 3D Computed Tomography image
of a carbonate rock sample to perform the compa-
rison, with original size of 10243 voxels. For each
slice, we carried out the comparison using 4 diffe-
rent seed spacing steps, namely σ = {5,10,20,30},
to understand how seed sparseness affects computa-
tion. Parameter k in Eq. 1 was set to 1000 for all ex-
periments. The greater the value of σ the higher the
number of iterations (parameter M in Algorithm 2)
required for the result of the cudaIFT algorithm to
match the result of the sequential IFT-SC. Hence, we
executed up to M = 30 iterations but stopped as soon
as the computed optimum-path cost maps V for both
sequential and parallel algorithms matched. The sli-
ces were rescaled to encompass four different sizes
(10242,15362,20482, and 40962 pixels), to evaluate
the speedup factor of the cudaIFT algorithm with in-
creasing amounts of pixels.

It is important to note that, due to the parallel na-
ture of cudaIFT, the forest map P and label map L may
differ from the result of the sequential IFT-SC due to
the asynchronous propagation of optimum paths. Ho-
wever, the differences in label and predecessor maps
only occur in zones where ties occur for the optimum-
path costs in map V . Therefore, in practice any result
in those regions corresponds to a valid optimum-path
forest P and the only thing that should truly match is
the optimum-path cost map V . Our verification furt-
her ensured the consistency of the optimum-path cost,
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Figure 4: Average speedup factor for computing Waterpixels on 2D slices using cudaIFT vs. CPU IFT. Varying σ spacing
(steps) are considered to evaluate how seed sparseness affects the computational times. Different image sizes are also con-
sidered (|DI | = {1024,1536,2048,4096}), for three different computer configurations with distinct GPUs (Nvidia Titan X,
Nvidia Tesla P100, and Nvidia Tesla V100).

forest, and label maps computed by cudaIFT.
We have executed the aforementioned experi-

ments 10 times for each slice and parameter setting,
in order to obtain statistics about the time measure-
ments. Our experiments were conducted using three
different machines, each with a distinct GPU and con-
figuration to assess the algorithm in different environ-
ments. Our first machine is a regular desktop with an
Intel Core i7-4790 CPU running at 3.60GHz, 8 GB of
memory RAM, Ubuntu 18.04 operating system, and
Nvidia GeForce GTX Titan X GPU with 3072 CUDA
Cores. The second is a server with an IBM Power 8
CPU running at 2.60GHz, 512 GB of memory RAM,
Ubuntu 18.04 OS, and Nvidia Tesla P100 GPU with
3584 CUDA Cores. The final machine is a server with
an IBM Power 9 CPU running at 2.3GHz, 512 GB of
memory RAM, Ubuntu 18.04 OS, and Nvidia Tesla
V100 GPU with 5120 CUDA cores. CUDA 9.2 or
CUDA 10 were used in our experiments.

Figure 4 presents the average speedup factor for
the previously stated experiments, across all machine
configurations, without including CPU-GPU memory
transfer as the IBM Power servers possess NVLink
buses that could further increase the time difference
w.r.t. the used desktop. As expected, cudaIFT per-
forms significantly better for larger images and smal-
ler step sizes. This occurs because smaller step sizes
decrease the amount of competition required to seg-
ment the images and generate superpixels. The server

running Nvidia Tesla V100 outperforms the others for
4096× 4096 sized images, which can be explained
by the fact that Nvidia’s Volta architecture presents
superior atomic operations to the Pascal architecture
used for GTX Titan X and Tesla P100. In that case,
that configuration may reach close to 180x speedup
for seeds with step size of σ = 5, and roughly 140x
speedup for σ = 10. Figure 5 depicts the average raw
computational times for the 4096× 4096 sized ima-
ges for cudaIFT and IFT-SC in all three configurations
and four step sizes. It can be seen that IFT-SC takes
between 3.3s and 4.7s to execute, while the compu-
tational time for cudaIFT is always smaller than 0.5s,
reaching as low as 0.02s.

For other image sizes, we see a somewhat com-
petitive behavior between the P100 and V100 GPUs,
since the clock of the corresponding CPUs is slightly
lower for the latter. With respect to the Titan X GPU,
the others perform significantly better since the Te-
sla P100 and Tesla V100 have compute capabilities
of 60 and 70, respectively, versus 52 for the GTX Ti-
tan X. This implies that the atomic operations for the
P100 is also superior, even though it has the same Pas-
cal architecture as the GTX Titan X and only a little
over 500 extra CUDA cores. Figure 6 confirms the
aforementioned comparisons between GPUs and de-
monstrates that the cudaIFT runs usually from 2−5x
faster in Tesla P100 and Tesla V100 than GTX Titan
X. Similarly, Titan V100 is up to 1.8x faster than Te-
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Figure 5: Raw computational times (in milliseconds) between cudaIFT and IFT-SC for image with size 4096×4096, for the
three different machines used in this work.

IFT-SC Label cudaIFT Label IFT-SC Cost cudaIFT Cost

Figure 7: Comparison between the label and cost maps obtained via cudaIFT and IFT-SC, for σ = 10 (top), σ = 20 (middle),
and σ = 30 (bottom). While the cost maps are identical, there are virtually no differences between the label maps.

Figure 6: Average speedup factor between GPUs for the
computation of cudaIFT.

sla P100. Figure 7 depicts some examples of cudaIFT
and IFT-SC results to demonstrate that the cost maps
are identical and that there are virtually no differences
in label assignment.

5 CONCLUSIONS

We have presented cudaIFT, a parallel version of the
IFT-SC operator using Nvidia’s CUDA language. cu-
daIFT is able to achieve up to roughly 180x speedup
over the sequential linear-time CPU implementation
of the IFT-SC operator, with perfectly consistent cal-
culations of the optimum-path forest. We have eva-
luated our algorithm to estimate Waterpixels in 2D
slices of 3D CT images of rock samples, and demon-
strated consistently superior results across three dif-
ferent machine configurations. In the future, we aim
to extend the method to work with 3D images and
non-planar image-graphs, and to automatically deter-
mine the number of iterations M. Our goal is to ens-
ure that large 3D and 4D images being acquired using
different imaging modalities with increasingly faster
speeds be segmented with the lowest possible proces-
sing time. We also intend to extend cudaIFT to handle
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other types of connectivity functions and evaluate it
with more general seed sets.
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