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Abstract: This paper presents an original approach to analyze the motion of a moving pattern with a Spiking Neural
Network, using visual data encoded in the Address-Event Representation. Our objective is to identify a mini-
mal network structure able to recognize the motion direction of a simple binary pattern. For this purpose, we
generated synthetic data of 3 different patterns moving in 4 directions, and we designed several variants of a
one-layer fully-connected feed-forward spiking neural network with varying number of neurons in the output
layer. The networks are trained in an unsupervised manner by presenting the synthetic temporal data to the
network for a few seconds. The experimental results show that such networks quickly converged to a state
where input classes can be successfully distinguished for 2 of the considered patterns, no network configura-
tion did converge for the third pattern. In the convergence cases, the network proved a remarkable stability for
several output layer sizes. We also show that the sequential order of presentation of classes impacts the ability
of the network to learn the input.

1 INTRODUCTION

Video analysis is a widespread task in the computer
vision community that traditionally requires either the
extraction and processing of key-frames, or the defi-
nition of motion descriptors such as optical flow. De-
termining the optical flow is useful to estimate the
elementary displacements of key-points in a video
stream.

In this paper, we investigate temporal data ana-
lysis with Spiking Neural Networks (SNN) for vi-
deo. The visual input needs to be converted into spi-
kes. We consider the Address-Event Representation
(AER) of a video, namely used by Dynamic Vision
Sensors (Lichtsteiner et al., 2008). In this represen-
tation, each pixel individually encodes positive and
negative intensity variations – every change triggers
an event that is transmitted asynchronously. There
are two types of event: ON events for positive vari-
ations, and OFF events for negative variations. Such
a representation is well adapted to SNN, because the
events resemble spikes, and therefore they can be used
to feed the network in a straightforward manner.

This increases the processing efficiency while re-
ducing potential sensor/compression noise. The big-
term objective of this work is the development of
an end-to-end bio-inspired vision approach. Our
objective is to exhibit a minimal network structure

able to identify a basic stimulus coming from a
reduced window. We successfully trained simple
one-layer fully-connected feed-forward spiking neu-
ral networks to recognize the motion orientation of a
binary pattern in a 5× 5 window, in an unsupervised
manner.

The remainder of the paper is organized as fol-
lows: Section 2 discusses the use of SNN in vision,
namely for image and video classification, Section 3
describes the core of our work, by giving details re-
garding the dataset, the network structure, and the ex-
perimental protocol, Section 4 shows and discusses
the findings of our study, and Section 5 concludes the
paper and discusses future work.

2 RELATED WORK

Spiking Neural Networks represent a special class of
artificial neural networks (Maass, 1997), where neu-
rons communicate by sequences of spikes (Ponulak
and Kasinski, 2011). Contrary to widely-used deep
convolutional neural networks, spiking neurons do
not fire at each propagation cycle, but rather fire only
when their activation level (or membrane potential, an
intrinsic quality of the neuron related to its membrane
electrical charge) reaches a specific threshold value.
Therefore, the network is asynchronous and allege-
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dly likely to handle well temporal data such as vi-
deo. SNNs do not rely on stochastic gradient descent
and backpropagation. Instead, neurons are connected
through synapses, that implement a learning mecha-
nism inspired from biology: it rests upon the Spike-
Timing-Dependent Plasticity, a rule that updates syn-
aptic weights according to the spike timings, and in-
creases the weight when a presynaptic spike occurs
just before a postsynaptic spike (within a few millise-
conds). Therefore, the learning process is intrinsically
not supervised, and SNN can be successfully used to
detect patterns in data in an unsupervised manner (Bi-
chler et al., 2012; Hopkins et al., 2018). In parallel,
several studies have attempted to reproduce and ap-
ply to SNN several mechanisms that contribute to the
success of deep networks, such as the stochastic gra-
dient descent (Lee et al., 2016) or deep convolutional
architectures (Cao et al., 2015; Tavanaei and Maida,
2017). SNN have long been used in the neuroscience
community as a reliable model to precisely simulate
biology and understand brain mechanisms (Paugam-
Moisy and Bohte, 2012).

In addition, SNN are increasingly used in data
processing because of their implementability on low-
energy hardware such as neuromorphic circuits (Me-
rolla et al., 2014; Sourikopoulos et al., 2017; Kreiser
et al., 2017). SNN have been used in vision-related
tasks (Masquelier and Thorpe, 2007), and some re-
searchers are keen to attack standard vision data-
sets with SNN and AER, e.g. converting a visual
input into AER, such as Poker-DVS, MNIST-DVS
(Serrano-Gotarredona and Linares-Barranco, 2015),
N-MNIST (Orchard et al., 2015), CIFAR-DVS (Li
et al., 2017).

More specifically in video analysis, several at-
tempts to apply SNN for video classification or for
more specific tasks on the same type of data exist.
Bichler et al. (Bichler et al., 2012) have used a feed-
forward SNN capable of recognizing the movement of
a ball among 8 discretized directions from AER data.
They also show in another experiment that SNN can
be used to count cars passing on a highway lane. The
data is captured by an artificial sensor (TMPDIFF128
DVS by iniLabs) which generate events if a local tem-
poral change in contrast (over a threshold) occurs in
its field of view and is transmitted in AER format.

Orchard et al. (Orchard et al., 2013) developed a
system to extract the optical flow from an AER video
sequence. Their architecture imposes constraints si-
milar to Lucas-Kanade algorithm. In their approach,
they use neurons with a 5x5 receptive field size, all
of which are sensitive to movement with a certain di-
rection and speed (8 directions and 8 speeds), with the
assumption that the speed is constant. In the model,

they integrate, among other things, synaptic delays in
order to be sensitive to spatio-temporal patterns. All
parameters are set at the begining, so there is no lear-
ning phase.

Zhao et al. (Zhao et al., 2015) combine an HMAX
and SNN feed-forward architecture to recognize the
following 3 human actions: bending, walking and
standing/sitting, where the type of movement can be
simplified by a diagonal, horizontal and vertical mo-
tion. The data is encoded into AER format. Amir et
al. (Amir et al., 2017) have designed a tool that is
able to recognize more than 10 hand gestures in real
time with a low-energy consumption, by exploiting a
neuromorphic processor with a capacity of one mil-
lion neurons, on which authors use an SNN coupled
to a pre-trained CNN. Such a system reached a 96.5%
success rate.

All previously mentioned work use both ON and
OFF event types. With this rich information, if we
assume a constant intensity for objects and back-
grounds, the object motion can be inferred in short
temporal windows. Let us take the example of a white
ball moving towards the right before a darker back-
ground. The right edge of the ball will generate a set
of ON events and the opposite edge (left) will simul-
taneously generate a set of OFF events. In this setting,
the motion recognition problem boils down to a static
pattern recognition problem, because the very motion
is encoded in a static way. Moreover, if the object is
either large or close to the sensor, then ON events and
OFF events will be much separated in space, or even
separated in time (i.e. they will not occur simultane-
ously) if the object is larger than the sensor’s field of
view, making it almost impossible for such static ap-
proaches to infer a motion.

Our objective is to study the use of feed-forward
SNN for learning the dynamic object motions. The-
refore, we deliberately ignore the event types, and we
use a single event type, indicating both types of in-
tensity variation. The purpose is to train detectors
that are sensitive to certain directions of motion. To
achieve this, we aim to identify the structure of a mi-
nimal network whose output layer is capable of lear-
ning the direction of a given binary texture in motion
at the input.

3 METHODOLOGY

We wish to investigate the ability of a simple feed-
forward network to learn the motion direction of a bi-
nary texture pattern. This section relates how the data
was generated, gives details of the network structure
and parameters, and describes the experimental pro-
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tocol.

3.1 Synthetic AER-like Data

Standard AER encodes positive and negative pixel-
wise luminosity variation in the form of ON- and
OFF-events. In our model, we used a simplified re-
presentation considering only a single type of event.

We generated synthetic simplified-AER data mi-
micking the displacement of simple texture patterns
in four directions (NORTH, SOUTH, WEST, EAST)
inside a 5× 5 window. We selected 3 types of pat-
terns corresponding to a vertical line, a diagonal line,
and a square pattern. Figure 1 shows an example of
our synthetic data. Note that in the first 2 patterns
(vertical and diagonal lines), only 2 directions can be
distinguished because of the aperture problem. For
instance, NORTH and SOUTH directions are not vi-
sible for the vertical line (yet the corresponding events
are kept in the input data), and therefore only WEST
and EAST can be distinguished. Also, for the diago-
nal line, NORTH and WEST as well as SOUTH and
EAST directions are not distinguishable. Also note
that because of the symmetry of both the network and
the data, horizontal and vertical lines are equivalent
and so are both diagonals. For each direction, the pat-
tern is sequentially shifted as illustrated in Figure 2.

Figure 1: Three input patterns used in our experiments.

Figure 2: Illustration of the square pattern motion in the
EAST direction.

Therefore, we have four classes for each pattern.
The speed is set to 480 pixels/s as in the experiments
described in (Bichler et al., 2012), and one sample in-
put corresponds to a 200-ms duration of stimulation.

3.2 Network Details

Our network is a simple one-layer fully-connected
feed-forward SNN, that takes the AER data as a 5×5
continuous input (as illustrated in the Figure 3), and
whose output layer is a vector encoding the motion
class.

Among several neuron models, we use the Leaky-
Integrate-and-Fire (LIF) model (Ponulak and Kasin-

Figure 3: Topological overview of the network.

ski, 2011), and a simplified STDP learning rule – see
(Bichler et al., 2012) for details:

∆t = tpost − tpre

std p(∆t) =
{

∆w+ if 0 ≤ ∆t ≤ TLT P
∆w− otherwise

(1)

where tpre (resp. tpost ) represents the presynaptic
(resp. postsynaptic) spike time-stamp, and TLT P the
width of the potentiation window. If the postsyn-
aptic spike occurs within TLT P ms after the presyn-
aptic spike, the synapse is potentiated by ∆w+ mV
(Long Term Potentiation). Otherwise the synapse is
depressed by ∆w− mV (Long Term Depression). In
our experiments, parameters are set individually for
each synapse in the following way: a minimum and
a maximum bound are set randomly, and the initial
value of the synapse is chosen randomly inside the
bounds. Moreover, ∆w− and ∆w+ are also set rand-
omly for each synapse, with the only constraint that
∆w− < ∆w+. M Moreover, our model includes 3 bio-
inspired mechanisms:

• a competition constraint that prevents all output
units to learn the same pattern: neurons are equip-
ped with lateral inhibition capability, where an
active neuron prevents its neighbors to spike;

• refractory periods to prevent a single output unit
to continuously burst without giving other units a
chance;

• synaptic delays to avoid that all incoming spikes
occur simultaneously.

We implemented this network using Brian2 SNN si-
mulator (Goodman and Brette, 2009) with parameters
inpired from (Bichler et al., 2012).

3.3 Protocol

We study our model by exploring its behavior accor-
ding to the type of input pattern among the three con-
sidered patterns. We expect that the model should
be able to differentiate between WEST and EAST
directions for the vertical line (two distinguisha-
ble classes), between NORTH/WEST directions and
SOUTH/EAST directions for the diagonal pattern
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(two distinguishable classes), and between NORTH,
SOUTH, WEST, EAST directions for the square pat-
tern (four distinguishable classes).

We also investigate a possible impact of the stimu-
lation sequence strategy. Indeed, different simulation
orders are likely to influence the way synaptic weig-
hts are updated. For a given pattern, the stimulus is
presented to the network using the 3 following strate-
gies: (1) ordered sequence e.g. NNNSSSWWWEEE,
(2) sequences of quadruplets where classes are per-
muted so that they appear in a random sequence e.g
NSWE-ESWN-WNES- etc. – this guarantees a uni-
form class distribution, and (3) random sequence (e.g.
NSSESWN etc.). We stimulated the network using
these 3 strategies, and each run consists in presenting
40 samples to the network (i.e. 8 s).

Finally, we try several sizes for the output layer,
ranging from 2 to 6:

• 4 output neurons is the natural size for four clas-
ses;

• 2 output neurons is the minimal number for two
classes (vertical and diagonal lines);

• 6 output neurons increases the chance to get a spe-
cialized output neuron for each class;

• we also tried values in between: 3 and 5.

We describe the experimental results varying these
settings and parameters in the next section.

4 EXPERIMENTAL RESULTS

The aim of the unsupervised training step is to reach a
network state where the outputs precisely distinguish
between input classes. This means that some output
layer neurons would become specialized in detecting
a particular input class. A necessary situation of spe-
cialization is when some synaptic weights have con-
verged to values close to 0 or 1, indicating that the
corresponding output neuron has become either in-
sensitive or sensitive to the corresponding input neu-
ron, therefore proving a specialization of the network
toward a particular stimulus.

4.1 Evolution of Weights

For each simulation, we observe the evolution of syn-
aptic weights, that are initially given random values.
Figure 4 shows an illustration of synaptic weights spe-
cialization for a network with a 6-neuron output layer.
Each cell in this 6×25 matrix represents the normali-
zed synaptic weight between one of the 25 input neu-
rons and one of the 6 output neurons. The matrix on

the left shows the weights after a random initializa-
tion, before the training, and the matrix on the right
shows the same weights after 8s of stimulation. We
observe that a number of weights have changed to-
ward a lower or higher value, indicating a specializa-
tion of synaptic connections.

Figure 4: Evolution of weights – LEFT: random initializa-
tion before training. RIGHT: after training, light/dark zones
indicate weight variations towards specialized outputs.

4.2 Results and Discussion

Because of the random initializations, we ran a num-
ber of simulations for each situation in order to eva-
luate the stability of the results. We successfully trai-
ned several network configurations able to recognize
the motion direction for the vertical and diagonal li-
nes. However, the simulations with the square pattern
mainly resulted in an oscillating network state, where
no convergence allowed for the correct classification
of input classes, as illustrated in the Figure 6. The net-
work reaches an infinite oscillation state that does not
converge. This resembles situations of too large le-
arning rate in stochastic gradient descent, that causes
the gradient to diverge.

A plausible clue to explain this situation lies in the
amount of active input neurons: 5 for the vertical and
diagonal lines, and 9 for the square pattern. There-
fore, the overall expected input voltage is higher for
this pattern. In other words, each spike train stimula-
tes a larger number of neurons. With a given set of
neuronal and synaptic parameters, it is likely that the
network is able to reach a stable state only if the input
spike volume lies inside specific bounds. This would
indicate an unwanted sensitivity that would require to
fine tune parameters according to the input – see fu-
ture work.

Figure 5 shows in the top row the activity of the
output neurons for several network configurations and
sequence order strategies, and in the bottom row the
evolution of the standard deviation of the synaptic
weights during the simulation.

In Figure 5 the top-left plot corresponds to the di-
agonal line pattern, with random sequence order of
presentation, where the network has 6 output neurons.
After 1000 ms, we see that the neuron at index 3 spe-
cializes for the SOUTH/EAST class (Blue and Yel-
low) and the neuron at index 2 becomes selective to
the NORTH/WEST class (Red and Violet). We obser-
ved that only 3 output neurons are sufficient to distin-
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Figure 5: Best seen in color. Top row: The ordinate axis corresponds to the output neuron indices and the abscissa is the
simulation time in ms. The black markers indicate the pulses from the corresponding output neuron. The color patches
displayed in the background are associated with the input class. When the network is trained, we target a situation where
certain neurons react to a particular class. Bottom row: Evolution of the standard deviation of the synaptic weights during
the simulation. We observe a large increase early in the simulation, and then a plateau indicating a stable state (homeostasis)
of the network.

Figure 6: Evolution of the standard deviation of the synaptic
weights during the simulation for the square pattern. We
observed no stability, and therefore no convergence of the
network weights.

guish the 3 following different input classes: WEST,
EAST, and NORTH/SOUTH. For this last class, in-
cluding NORTH and SOUTH directions, even though
there is no visible motion, input neurons are active
and the network is able to detect this activity, That is
different from having no input.

The top-central plot corresponds to a diagonal
pattern, with a random quadruplet strategy, with a
network composed of 2 output neurons – the raster
shows a specialization of both neurons. We notice
that only 2 output neurons are sufficient to classify
NORTH/WEST and SOUTH/EAST classes.

Finally, the top-right plot shows the result for the

vertical line with a random sequence order, where the
network has 3 output neurons. In this configuration, 3
input classes WEST, EAST, and NORTH/SOUTH are
recognized by output neurons with indices 3, 2, and 1
respectively.

In all experiments, we found that the selected
number of output neurons (between 2 and 6) is not
significant for the ability of the networks to correctly
classify the inputs. More importantly, we noticed that
the stimulation sequence strategy did not play an im-
portant role for the training. Indeed, among the 3 pre-
sentation strategies, we generally observed the same
ability to correctly classify input classes.

5 CONCLUSION

The objective of this study was to train a spiking neu-
ral network to recognize the motion direction of pat-
terns, where the data is expressed in AER. Our main
findings are as follows: (1) we achieved a conver-
gence for 2 out of 3 patterns after unsupervised trai-
ning, where the motion direction is successfully re-
cognized by the network, (2) in successful situati-
ons, the network weights quickly converge to a stable
state, (3) we observed that the sequence of presenta-
tion has no impact on the training of the network.
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In future work, we will naturally address the pro-
blem of convergence for the square input. Also, we
wish to target invariance regarding motion speed, pos-
sibly by further exploiting synaptic delays so that se-
veral speeds will trigger the same network output.

Other directions will be investigated. One of them
will be the estimation of a classification score, e.g.
based on the number of distinguishable classes. We
will also work towards establishing a theoretical link
between the network parameters and the convergence
conditions. For example, it would be interesting to
automatically update neuronal parameters depending
on recent activity of the input layer, in order to dy-
namically adapt its sensitivity. Then, we will try to
validate the proposed parameters on random patterns
containing a varying number of pixels and appearing
on windows of various sizes.

Once such a minimal motion analysis architecture
is identified, the long-term objective of our work is to
use them as elementary units whose input is a limited
receptive field, to be laid out in layers or other archi-
tectures to enable analysis of more complex motion
patterns.
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