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Abstract: This paper describes the NoisyArt dataset, a dataset designed to support research on webly-supervised recog-
nition of artworks. The dataset consists of more than 90,000 images and in more than 3,000 webly-supervised
classes, and a subset of 200 classes with verified test images. Candidate artworks are identified using publicly
available metadata repositories, and images are automatically acquired using Google Image and Flickr search.
Document embeddings are also provided for short descriptions of all artworks. NoisyArt is designed to sup-
port research on webly-supervised artwork instance recognition, zero-shot learning, and other approaches to
visual recognition of cultural heritage objects. Baseline experimental results are given using pretrained Convo-
lutional Neural Network (CNN) features and a shallow classifier architecture. Experiments are also performed
using a variety of techniques for identifying and mitigating label noise in webly-supervised training data.

1 INTRODUCTION

Cultural patrimony and exploitation of its artifacts
is an extremely important economic driver interna-
tionally. This is especially true for culturally dense
regions like Europe and Asia who rely on cultural
tourism for jobs and important industry. U.S. tourist
travelers alone represent nearly 130 million adults
spending approximately $171 billion annually on
leisure travel (Chen and Rahman, 2018). Museums
are massive, distributed repositories of physical and
digital artifacts. For decades now museums have been
frantically digitizing their collections in an effort to
render their content more available to the general pub-
lic. Initiatives like EUROPEANA (Valtysson, 2012)
and the European Year of Cultural Heritage1 have ad-
vanced the state-of-the-art in cultural heritage meta-
data exchange and promoted coordinated valorization
of cultural history assets, but have had limited impact
on diffusion and dissemination of each collection.

The state-of-the-art in automatic recognition of
objects, actions, and other visual phenomena has ad-
vanced by leaps and bounds in the last five years (Rus-
sakovsky et al., 2015). This visual recognition tech-
nology can offer the potential of linking cultural
tourists to the (currently inaccessible) collections of
museums. Imagine the following scenario:
• A cultural tourist arrives at a destination rich in

cultural heritage offerings.
1https://europa.eu/cultural-heritage/

• Our prototypical cultural tourist snaps a photo of
an object or landmark of interest with his smart-
phone.

• After automatic recognition of the artwork or
landmark, our tourist receives personalized, cu-
rated information about the object of interest and
other cultural offerings in the area.

This type of scenario is realistic only if we have some
way of easily recognizing a broad range of artworks.
The challenges and barriers to this type of recognition
technology have been studied in the past in the mul-
timedia information analysis community (Cucchiara
et al., 2012).

Recent breakthroughs in visual media recognition
offer promise, but also present new challenges. One
key challenging factor in the application of state-of-
the-art classifiers is the data-hungry nature of modern
visual recognition models. Even modestly sized Con-
volutional Neural Networks (CNNs) can have hun-
dreds of millions of trainable parameters. As a conse-
quence, they can require millions of annotated train-
ing examples to be effectively trained. The real prob-
lem then becomes the cost of annotation. Museum
budgets are already stretched with classical curation
requirements, adding to that the additional costs of
collecting and annotating example media is not feasi-
ble.

Webly-supervised learning can offer solutions to
the data annotation problem by exploiting abundantly
available media on the web. This approach is appeal-
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ing as it is potentially able to exploit the millions of
images available on the web without requiring any
additional human annotation. In our application sce-
nario, for example, there are abundant images, videos,
blog posts, and other multimedia assets freely avail-
able on the web. If the multimedia corresponding
to specific instances of cultural heritage items can be
retrieved and verified in some way, this multimedia
can in turn be exploited as (noisy) training data. The
problem then turns from one of a lack of data, to one
of mitigating the effects of various types of noise in
the training process that derive from its Webly na-
ture (Temmermans et al., 2011; Sukhbaatar and Fer-
gus, 2014).

In this paper we present a dataset for Webly-
supervised learning specifically targeting cultural her-
itage artifacts and their recognition. Starting from an
authoritative list of known artworks from DBpedia,
we query Google Images and Flickr in order to iden-
tify likely image candidates. The dataset consists of
more than 3000 artworks with an average of 30 im-
ages per class. A test set of 200 artworks with verified
images is also included for validation. We call our
dataset NoisyArt to emphasize its webly-supervised
nature and the presence of label noise in the train-
ing and validation sets. NoisyArt is designed to sup-
port research on multiple types of webly-supervised
recognition problems. Included in the database are
document embeddings of short, verified text descrip-
tions of each artwork in order to support development
of models that mix language and visual features such
as zero-shot learning (Xian et al., 2017) and auto-
matic image captioning (Vinyals et al., 2017). We
believe that NoisyArt represents the first benchmark
dataset for webly-supervised learning for cultural her-
itage collections. 2

In addition to the NoisyArt dataset, we report on
baseline experiments designed to probe the effective-
ness of pretrained CNN features for webly-supervised
learning of artwork instances. We also describe a
number of techniques designed to mitigate various
sources of noise in training data, as well as techniques
for identifying “clean” classes for which recognition
is likely to be robust. These techniques provide sev-
eral practical tools for building classifiers trained on
automatically acquired imagery from the web.

The rest of the paper is organized as follows. In
the next section we review recent work related to our
contribution. In section 3 we describe the NoisyArt
dataset designed specifically for research on Webly-
supervised learning in museum contexts, and in sec-
tion 4 we discuss several techniques to cope with
noise in webly supervised data. In section 5 we

2https://github.com/delchiaro/NoisyArt

present a range of experimental results establishing
baselines for state-of-the-art methods on the NoisyArt
dataset. We conclude with a discussion of our contri-
bution in section 6.

2 RELATED WORK

In this section we review work from the literature re-
lated to the NoisyArt dataset and webly-supervised
learning.

Visual Recognition for Cultural Heritage. Cul-
tural heritage and recognition of artworks enjoys a
long tradition in the computer vision and multimedia
research communities. The Mobile Museum Guide
was an early attempt to build a system to recognize in-
stances from a collection of 17 artworks using photos
from mobile phone (Temmermans et al., 2011). More
recently, the Rijksmuseum Challenge dataset was
published which contains more than 100,000 highly
curated photos of artworks from the Rijksmuseum
collection (Mensink and Van Gemert, 2014). The
PeopleArt dataset, on the other hand, consists of high-
quality, curated photos of paintings depicting people
in various artistic styles (Westlake et al., 2016). The
objectives of these datasets vary, from person detec-
tion invariant to artistic style, to artist/artwork recog-
nition. A unifying characteristic of these datasets, is
the high level of curation and meticulous annotation
invested.

Another common application theme in multime-
dia analysis and computer vision applied to cultural
heritage is personalized content delivery. The goal of
the MNEMOSYNE project was to analyze visitor in-
terest in situ and to then select content to deliver on
the basis of similarity to recognized content of inter-
est (Karaman et al., 2016). The authors of (Baraldi
et al., 2015), on the other hand, concentrate on closed-
collection artwork recognition and gesture recogni-
tion using a wearable sensor to enable novel interac-
tions between visitor and museum content.

Webly-supervised Category Recognition. Early
approaches to webly-supervised learning (long before
it was called by that name), were the decontamina-
tion technique of (Barandela and Gasca, 2000), and
the noise filtering approach of (Brodley and Friedl,
1999). Both of these approaches are based on explicit
identification and removal of mislabeled training sam-
ples. A more recent approach is the noise adaptation
approach of (Sukhbaatar and Fergus, 2014). This ap-
proach looks at two specific types of label noise –
labelflip and outliers – and modifies a deep network
architecture to absorb and adapt to them. A very re-
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cent approach to webly-supervised training of CNNs
is the representation adaptation approach of (Chen
and Gupta, 2015). The authors, in this work, at first
fit a CNN to “easy” images identified by Google, and
then adapt this representation to “harder” images by
identifying sub- and similar-category relationships in
the noisy data.

The majority of work on webly-supervised learn-
ing has concentrated on category learning. However,
the NoisyArt dataset we introduce in this paper is
an instance-based, webly-supervised learning prob-
lem. As we will describe in section 3, instance-base
learning presents different sources of label noise than
category-based.

Landmark Recognition. The problem of land-
mark recognition is similar to our focus of artwork
classification, since they are both instance recognition
problems rather than category recognition problems.
It is also one of the first problems to which webly-
supervised learning was widely applied. The authors
of (Raguram et al., 2011) use webly-supervised learn-
ing to acquire visual models of landmarks by identi-
fying iconic views of each landmark in question. An-
other early work merged image and contextual text
features to build recognition models for large-scale
landmark collection (Li et al., 2009).

Artwork recognition differs from landmark recog-
nition, however, in the diversity of viewpoints recov-
erable from web search alone. As we will show in
section 3, the NoisyArt dataset suffers from several
types of label bias and label noise which are particu-
lar to the artwork recognition context.

3 THE NoisyArt DATASET

NoisyArt is a collection of artwork images collected
using articulated queries to metadata repositories and
image search engines on the web. The goal of
NoisyArt is to support research on webly-supervised
artwork recognition for cultural heritage applications.
Webly-supervision is an important feature, since in
the cultural applications data can be acutely scarce.
Thus, the ability to exploit abundantly available im-
agery to acquire visual recognition models would be
a tremendous advantage.

We feel that NoisyArt can be well-suited for ex-
perimentation on a wide variety of recognition prob-
lems. The dataset is particularly well-suited to
webly-supervised instance recognition as a weakly-
supervised extension of fully-supervised learning. To
support this, we provide a subset of classes with man-
ually verified test images (i.e. with no label noise).

In the next section we describe the data sources

used for collecting images and metadata. Then in sec-
tion 3.2 we describe the data collection process and
detail the statistics of the NoisyArt dataset.

3.1 Data Sources

To collect the NoisyArt dataset we exploited a range
of publicly available data sources on the web.

Structured Knowledge Bases. As a starting point,
we used public knowledge bases like DBpedia (Bizer
et al., 2009; Mendes et al., 2011) and Europeana (Val-
tysson, 2012) to query, select, and filter the entities to
be used a basis for NoisyArt. The result of this exer-
cise was a reduced list of 3,120 artwork classes with
Wikipedia entries and ancillary information for each
one: title, descriptions, museum in which the artwork
is preserved, artist information like name, birth and
death date, description, and artistic movement.

DBpedia. DBpedia is the same source from which
we retrieved metadata. For some artworks it also con-
tains one or more images. We call this kind of images
a seed image because it is unequivocally associated
with the metadata of the artwork. Note, however, that
though the association is reliable, some times the seed
image is an image of the artist and not of the artwork.

Google Images. We queried Google Images using
the title of each artwork and the artist name. For each
query we downloaded the first 20 retrieved images.
These images tend to be very clean, in particular for
paintings, most of which do not have a background
and tend to be very similar to scans or posters. For this
reason the variability of examples can be poor: we can
retrieve images that are almost identical, maybe with
just different resolutions or with some differences in
color calibration. Another issue with Google Image
search results is the label flip phenomenon: search-
ing for minor artworks by a famous artist can result
in retrieving images of other artworks from the same
artist. Outliers are also present in a small part for less
famous artworks by less famous artists.

Flickr. Finally, we used the Flickr API to retrieve
a small set of images more similar to real-world pic-
tures taken by users. Due to its nature, the images
retrieved from Flickr tend to be more noisy: the only
supervision is by the end-users, and a lot of images
(specially for famous and iconic artworks) do not con-
tain the expected subject. For least famous artworks,
the number of retrieved images is almost zero and can
be full of outliers. For these reasons we only retrieve
the first 12 images from each Flickr query in order to
filter some of the outlier noise.

Discussion. In the end, Flickr images are the most
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Name/Artist DBPedia Google Flickr

Self-Portrait / Raffaello

Alien / David Breuer-Weil

Saint Jerome in his Study /
Antonello da Messina

Anxiety / Munch

Figure 1: Sample classes and training images from the NoisyArt dataset. For each artwork/artist pair we show the seed image
obtained from DBpedia, the first two Google Image search results, and the first two Flickr search results.

informative due to variety and similarity to real-world
pictures. However a lot of them are incorrect (out-
liers). DBpedia seed images are the most reliable but
are at most one per artwork. Google images are usu-
ally more consistent with the searched concept when
compared to the Flicker ones, but normally present
low variability.

3.2 Data Collection

From these sources we managed to collect 89,395 im-
ages for the 3120 classes, that became 89,095 after
we pruned unreadable images and some error banners
received from websites. Before filtering, each class
contained a minimum of 20 images (from google) and
a maximum of 33 (12 from Flickr and the DBpedia
seed).

We could have used the seed images as a single-
shot test set (pruning all the classes without the seed)
but the importance of these images in the training
phase joined to the inconsistency of seed in some
classes led us to create a supervised test set using a
small subset of the original classes: 200 classes con-
taining more than 1,300 images taken from the web or
from our personal photos. We have been careful not
to use images from the training set. This test set is not

Table 1: Characteristics of the NoisyArt dataset.
(webly images) (verified images)

classes training validation test
2,920 65,759 17,368 0

200 4,715 1,253 1,355
totals: 3,120 70,474 18,621 1,355

balanced: for some classes we have few images, and
some others have up to 12. Figure 2 illustrates some
sample classes and images from our verified test set.
Note the strong domain shift in these images with re-
spect to those in the training set shown in figure 1.

Finally, each artwork has a description and meta-
data retrieved from DBpedia, from which a single tex-
tual document was created for each class. These short
descriptions were then embedded using doc2vec (Le
and Mikolov, 2014) in order to provide a compact,
vector space embedding for each artwork description.
These embeddings are included to support research on
zero-shot learning and other multi-modal approaches
to learning over weakly supervised data.

In the end, NoisyArt is a multi-modal, weakly-
supervised dataset of artworks with 3,120 classes and
more than 90,000 images, 1,300 of which are human
validated. Table 1 details the breakdown of the splits
defined in NoisyArt.
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Name/Artist Images from TestSet-200 (Validated by Humans)

Self-Portrait / Raffaello

David / Michelangelo

Bacchus / Leonardo

Anxiety / Munch

Figure 2: Sample verified test images from the NoisyArt test set. For a random sample of 200 classes we collected an
additional set of images that we manually verified. Note the significant domain shift on these images with respect to those in
figure 1.

3.3 Discussion

In figure 1 we give a variety of examples from the
NoisyArt dataset. For each artwork we show: the
seed image from DBpedia, the first two Google Image
search results, and the first two results from Flickr.
These examples show typical scenarios of this art-
work instance recognition problem:

• Best Case. The second row of figure 1 contains
pictures of a statue. For these kinds of objects
it is usually much easier to retrieve images with
a good level of diversity, both from Google and
Flickr. This is due to the 360◦ access and thus
the relative variety of viewpoints from which such
artworks are photographed.

• Lack of Diversity. The first row of figure 1 is an
example of an artwork for which Google retrieves
images with extremely low variety, although in
this case Flickr returns images with some diver-
sity, but also outliers. In the third row we can
observe an example for which both Google and
Flickr failed to have diversity.

• Labelflip. In the fourth of figure 1 we see a
pathology particular to our instance recognition
problem: we are looking for images of a not-

so-famous artwork (Anxiety) by a famous artist
(Munch) who also made much more iconic art-
works (like The Scream). In these cases the risk
of labelflip is high, and in fact we retrieved from
both Google and Flickr also images of The Scream
(together with some correct and some outlier im-
ages).
These types of label noise in the NoisyArt dataset

render it difficult to acquire robust visual models us-
ing webly supervision. In the next section we discuss
techniques to mitigate or identify noise during train-
ing.

4 COPING WITH NOISY DATA

In this section we describe several techniques for mit-
igating and/or identifying label noise during training.
First we describe the baseline classifier model used in
all experiments.

4.1 Baseline Classifier Model

For all our experiments we use a shallow classifier
based on image features extracted from CNNs pre-
trained on ImageNet. Figure 3 shows the architecture
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Figure 3: Classifier models used for webly-supervised ex-
periments on NoisyArt. Green blocks represent data flowing
through the network, blue ones components with trainable
parameters. A CNN (pretrained on ImageNet) is used to ex-
tract features from training images, and then a shallow net-
work with a single hidden layer and output layer are trained
to predict class probabilities. The F matrix (see section 4.2)
is used to model and absorb labelflip noise in the training
set, and the loss function is either the cross entropy loss L or
the weighted cross entropy loss Lh described in section 4.3.

of our networks. Given an input image x, we extract a
feature vector using the pretrained CNN and then we
pass it trough a shallow classifier, consisting of a sin-
gle hidden layer (with the same size as the extracted
features) and an output layer that estimates class prob-
abilities p(c|x) for each of the 200 test classes.

The shallow classifier is then optionally followed
by multiplication by a 200× 200 labelflip matrix F
(see section 4.2). For the baseline experiments F is
set to the identity matrix.

Finally, the loss function used to train the shallow
network weights is the cross entropy loss:

L(x,y;θ) =−∑
c
1y(c)p(c | x),

where 1y(c) is the indicator function:

1y(c) =

{
1 if c = y
0 otherwise.

The alternate loss function Lh shown in figure 3 is de-
scribed in section 4.3.

4.2 Labelflip Noise

Labelflip noise refers to images in the training set
which are mislabeled as belonging to the incorrect
class. This problem can be acute in instance recogni-
tion, for example when artists have works which are
significantly more famous than their others and these
famous works are often returned on queries. We ex-
perimented with the technique for labelflip absorption
proposed in (Sukhbaatar and Fergus, 2014).

The main idea of labelflip absorption is to intro-
duce a new fully connected layer without bias after
the final softmax output (see the component F in fig-
ure 3). The weights of this layer, which we call F ,
are an N×N stochastic matrix, where N is the num-
ber of classes. Each row of F models the likelihood

of confusing one class for any of the other classes.
This matrix is initialized to the identity matrix and, at
the start of training, the weights are locked (not train-
able). After a number of training epochs (500 in our
experiments), the weights are unlocked, allowing F
to model class confusion probabilities and to spread
out the probability mass from each class to common
confusions for that class, thanks also to a trace regu-
larization. At each training iteration the rows of F are
reprojected onto the N-simplex to keep F stochastic.
The result is that labelflip noise is absorbed into the
F matrix, leaving the network free to learn on “clean”
labels.

4.3 Entropy Scaling for Outlier
Mitigation

The labelflip matrix described in the previous sec-
tion attempts to compensate for class-level confusions
during training. In this section we describe an alter-
nate technique that performs soft outlier detection in
order to weight training samples during training. Our
hypothesis is that the class-normalized entropy of a
training sample is an indicator of how confident the
model is about a particular input sample.

The normalized entropy of a training sample xi is
defined as:

Ĥ(xi) =−
1
C ∑

c
p(c | xi) ln p(c | xi),

where C is a normalizing constant equal to the max-
imum entropy attainable for the given number of
classes. When Ĥ(xi) is zero, the classifier is abso-
lutely certain about xi; when it is one, the classifier
has maximal uncertainty.

The entropy weighted loss is defined as:

Lh(x,y;θ) =−σ(Ĥ(x))∑
c
1y(c)p(c | x),

where the normalized entropy is passed through a
modified sigmoid σ function of the types illustrated
in figure 4. This function is defined as:

σ(x;m,b) =
1

1+ em(x−b)

so that the loss for training sample x is weighted
inversely proportionally to the normalized entropy
Ĥ(x).

4.4 Gradual Bootstrapping

The entropy scaling technique described in the previ-
ous section applies soft weights to the loss contributed
by specific training samples. These weights are based
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Figure 4: Modified sigmoid function used to calculate per-
sample weights based on normalized entropy. The m pa-
rameter controls the steepness of the transition from 1.0 to
0.0, and the b parameter the point at which is begins its tran-
sition.

on an estimate of the class uncertainty. However,
CNNs are known to produce highly-confident predic-
tions even on outliers. Instead, here we propose a
method for gradually bootstrapping during training by
starting from highly reliable training examples, and
sequentially introducing less reliable training data.

For NoisyArt we have the seed images acquired
from DBpedia metadata records that can be used as
an absolutely reliable image for each class. If there
is no seed image, we use the first result returned by
Google Image Search as the initial bootstrap image
for each class. Training is performed for 80 epochs
using only seed images, then the rest of the training
images are added and training proceeds using entropy
scaling as described in section 4.3. We expect that af-
ter acquiring a reliable model on seed images, entropy
scaling will be more robust as the classifiers should be
more conservative as they have been initially trained
on a very reduced training set.

4.5 Identifying Problem Classes

The entropy measure used for noise mitigation in the
approach described in section 4.3 can also be used to
filter “problem classes” in the sense that the average
class entropy on the test images is an indicator of clas-
sifier uncertainty. For each class we compute the av-
erage entropy, as measured by a trained shallow clas-
sifier model, for every training image in that class. We
then rank the classes by decreasing average entropy.
We then progressively remove these problem classes.
This provides a practical technique for filtering unre-
liable classes from the final model.

Table 2: Networks used for image feature extraction in our
experiments.

CNN Reference Feature Size
ResNet-50 (He et al., 2016) Global pool 2048

ResNet-101 (He et al., 2016) Global pool 2048
ResNet-152 (He et al., 2016) Global pool 2048

VGG16 (Simonyan and Zisserman, 2014) FC7 4096
VGG19 (Simonyan and Zisserman, 2014) FC7 4096

Table 3: Baseline and noise filtering results for webly-
supervised recognition. We report accuracy (acc) and
mean average precision (mAP) results on both the webly-
supervised validation and fully-validate test sets.

test validation
acc mAP acc mAP

ResNet-50 BL 67.01 54.14 76.46 64.10
ResNet-50 LF 67.90 55.83 76.54 63.54
ResNet-50 ES 68.71 57.42 76.46 63.74
ResNet-50 BS 68.27 57.44 75.98 62.83

ResNet-101 BL 67.31 54.82 76.54 63.33
ResNet-101 LF 67.08 55.58 77.09 64.17
ResNet-101 ES 67.16 56.60 76.38 63.56
ResNet-101 BS 68.27 57.41 76.78 63.46
ResNet-152 BL 67.60 54.92 76.70 63.66
ResNet-152 LF 66.72 54.66 76.46 63.02
ResNet-152 ES 67.16 56.06 76.70 64.16
ResNet-152 BS 67.38 55.81 76.22 62.90

VGG16 BL 64.72 50.61 74.86 60.82
VGG16 LF 64.65 50.62 73.74 59.23
VGG16 ES 64.80 51.17 75.42 61.65
VGG16 BS 66.27 52.52 74.38 60.07
VGG19 BL 62.80 48.98 73.50 59.42
VGG19 LF 61.33 46.53 73.07 57.84
VGG19 ES 61.92 48.43 72.87 58.34
VGG19 BS 63.99 51.14 72.63 58.21

5 EXPERIMENTAL RESULTS

In this section we report experimental results for a
number of feature extraction and label noise com-
pensation methods. All experiments were conducted
using features extracted from CNNs pretrained on
ImageNet, which are then fed as input to a shallow
classifier (see figure 3). More specifically, we ex-
tracted features using the networks shown in table 2.

The shallow networks were trained with the Adam
optimizer (Kingma and Ba, 2014) for 1500 epochs on
the 200-class training set. We use a learning rate of
1e-4 and L2 weight decay with a coefficient of 1e-7.
For experiments using entropy scaling, we use param-
eters m = 20 and b = 0.8 for the modified sigmoid
function. After 1500 epochs, the model correspond-
ing to the best classification accuracy on the webly-
supervised validation set was evaluated on the verified
test set.
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5.1 Webly-supervised Classification

Table 3 gives results for all extracted features. For
each extracted feature type we report results for:

• Baseline (BL): the shallow network trained with
no noise mitigation.

• LabelFlip (LF): the shallow network trained with
labelflip absorption as described in section 4.2.

• Entropy Scaling (ES): the shallow network
trained with entropy scaling as described in sec-
tion 4.3.

• BootStrapping (BS): the shallow network trained
with gradual bootstrapping as described in sec-
tion 4.4.

From table 3 we can draw a few conclusions. First
of all, despite the high degree of noise in the training
labels, even the baseline classifiers perform surpris-
ingly well on the webly-supervised learning problem.
All of the ResNet models achieve nearly 70% classi-
fication accuracy on the verified test set. The shallow
classifier seems to be able to construct models robust
to noise in the majority of classes.

Another interesting observation to be made from
table 3 is that simpler models seem to perform better,
on average. ResNet-50 and ResNet-101 outperform
the more complex models. The VGG16 and VGG19
features perform significantly worse than all of the
ResNet features.

All three of the noise mitigation techniques gen-
erally improve over the baseline shallow classifier,
though not always by a significant margin. Our grad-
ual bootstrapping technique described in section 4.4
generally yields the most consistent and significant
improvement: about 2% improvement in accuracy
and 3% in mAP over the baseline on ResNet-50 and
ResNet-101 features.

Finally, results on the validation set are an unre-
liable fine-grained predictor of classifier performance
on validated test data. Though the performance on
the validation set between ResNet and VGG models
is a reliable indicator, performance on the different
ResNet models is too close to call.

5.2 Identifying Problem Classes

In figure 5 we show the improvement that can be
gained by filtering classes with high average entropy.
The figure plots classifier accuracy for all models with
bootstrapping as a function of progressively filtered
test sets (i.e. removing unreliable classes). Observe
that the average class entropy is a reasonable measure
of classifier reliability. After filtering only about 20%
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Figure 5: Filtering problem classes. We progressively re-
move classes with high entropy from the test set. Accuracy
is plotted as a function of the number of remaining classes.

of the problem classes we can obtain an overall accu-
racy of better than 80% on the remaining ones for the
ResNet models.

6 CONCLUSIONS AND FUTURE
WORK

In this paper we described the NoisyArt dataset which
is designed to support research on webly-supervised
training for artwork recognition. NoisyArt contains
more than 3,000 classes with over 90,000 correspond-
ing images automatically collected from the web.
Metadata and document embeddings are included for
all artworks. A verified set of test samples for a subset
of 200 classes is also provided.

Preliminary results on artwork recognition using
shallow classifiers trained on features extracted with
pretrained CNNs are encouraging. Baseline classi-
fiers, with relatively simple networks and compact
image features, achieve nearly 70% classification ac-
curacy when trained on webly-supervised data. Noise
mitigation techniques are able to improve perfor-
mance, though the increase is at times marginal. Our
technique for noise mitigation, a type of gradual boot-
strapping, yields consistent improvements on most
features.

We also described a technique for identifying
problem classes (i.e. classes whose recognition is
likely to be unreliable). Our approach is to use the
average entropy of training samples, as measured by
the outputs of the trained classifier, and filter those
with high average entropy. Our results show that fil-
tering only about 20% of classes can yield a dramatic
increase in overall reliability.

Current and ongoing work includes research on
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zero-shot learning using webly-supervised data, and
a deeper investigation of entropy-based noise mitiga-
tion. We are also interested in investigating the po-
tential for using entropy-based problem class iden-
tification as a means to articulate better queries for
problem classes, leading to an iterative query-train-
requery-retrain cycle in order to improve robustness.
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