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Abstract: The objective is to evaluate methods for simultaneous classification and localization towards a better size
estimate of marine animals in still images. Marine animals in such images vary in orientations and size. It
is challenging to create a bounding box that predicts the shape of the object. We compare axis-aligned and
rotatable bounding box techniques for size estimation.

1 INTRODUCTION

1.1 Motivation

This paper reports on research and development to
improve sustainability and traceability for the marine
stewardship that keeps the oceans healthy and ensures
the fish or lobster consumed is traceable to a sustaina-
ble source. There are ecological and economic sus-
tainability reasons to assess and monitor stocks and
stock sizes. Traceability aims to uniquely identify
each animal for consumer quality purposes. The met-
hods developed here target the Canadian fishery due
to the small number of species involved. The aim of
the project is to determine the count and species of a
catch as well as each species’ length and color (me-
asure of quality) for economic sustainability reasons.
Another objective is to determine the gender and cha-
racteristic dimensions, and their ratios, for ecological
sustainability. For traceability, imagery is collected to
assess whether say the carapace on a lobster can be
uniquely identified.

The Canadian Department of Fisheries and Oce-
ans is interested in such technology for in-shore wa-
ters. The present use of trained human Observers can
only monitor 1.5-2.0% of the lobster fleet activity not
the 20% to manage non-endangered species (lobster)
or the 50% for endangered species (cod, cusk, jonah
crab). Lastly, value chain stakeholders have articu-
lated their requirement for primary grading (size and
quality) while at-sea to guarantee lobster quality and
value.

A catch from a fishing trawler can contain multi-
ple marine animal species. They are usually manually
sorted, by species, then shipped to different factories
for further classification and processing. As part of
this, there is a requirement to sort these animals ba-
sed on their physical maturity and size.

Sorting and classifying marine catch (fish, in
this case) on the basis of their dimensions and spe-
cies using pattern recognition algorithms is proposed.
Consequently, it is possible to automate the sort and
classification steps of the fish processing with compu-
ter vision to improve traceability, profit margins and
product quality. The collateral benefit is that the size
distribution by species, of a catch, also has ecologi-
cal significance towards characterizing the fish popu-
lation and its evolution. There are earlier efforts in
fish classification (Rathi et al., 2018)(Larsen et al.,
2009)(Ogunlana et al., 2015) however, there is much
less on estimation of the fish dimensions. This paper
explores methods to simultaneously localize the fish
in a static image, from amongst other objects, through
a bounding box that contains the fish. Then, it deter-
mines its dimensions and classifies the fish by species.

The data was gathered from static images that
were culled from publicly available on-line, and ot-
her, sources. The training dataset was created by ma-
nually cropping these images around the object (fish)
with two-dimensional bounding boxes using software
tools. Therefore, the features in this learning pro-
blem are the marine animal dimensions and species
where the species itself implicitly contains many sub-
features which are learned.
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When the model is applied to prediction, this ob-
ject localization using bounding boxes also automates
determining the dimensions of the fish. The CNN ar-
chitectures used in the prediction are discussed next.

1.2 Convolution Neural Networks

The neurons in a neural network provide an output va-
lue from applying a function to the input values from
the receptive field in the prior layer. This function,
also referred to as a filter, is in the form of a vector
of weights and a bias. Learning is achieved through
incremental changes to these weights and bias.

The weight parameters of CNN architectures like
VGG16 and Resnet were trained on the ImageNet da-
taset. This is a database of 14 million images that
contain 20,000 categories of objects which have been
manually annotated. The ImageNet objects include
crabs, lobsters and fish though not hallibut, cusk or
cod - all objects of interest. Over one million of
these images have bounding boxes drawn around the
object. The computation effort to train the Image-
Net data set was leveraged to initialize our learning
models by using the weights / filters from the same
CNN architectures. In this way, the knowledge le-
arned from the pre-trained models was transferred to
our learning models.

Our CNN architectures were initialized with the
ImageNet weights. Next, more convolution and fully
connected layers were added then it was re-trained
using our fish data set. This transfer learning process
to initialize the CNN architecture with pre-trained
weights provides a good initial point for the learning
model and reduces the overall computation time.

Then, the prediction phase uses the transferred le-
arning to ‘measure’ the fish dimensions and classify
its species. Therefore, there is value in creating a
good training set.

Convolution neural networks (CNN) learn the fe-
atures of an object in order to classify it. CNNs such
as VGG16 (Simonyan and Zisserman, 2014), VGG19
(Simonyan and Zisserman, 2014), Resnet (He et al.,
2016), etc. are trained with many images for that re-
ason. The pre-trained weights of these networks can
be used to classify a smaller set of images and conse-
quently leverage the training effort from previous net-
works. This is transfer learning. This paper (1) evalu-
ates an ensemble of the pre-trained CNNs to classify
images of marine animals and (2) creates a bounding
box area around the object to estimate its width and
height.

1.3 Contributions

The contributions of this paper are as follows: (1)
consider and prove viable the use of deep learning
towards automating the classification and sizing of
marine animals; (2) the implementation of bounding
boxes to yield an automatic measure of an object’s di-
mensions for sorting purposes, and (3) a classification
that does a fair job of distinguishing between 5 marine
animal species

The rest of this paper is organized as follows. Re-
lated work in the literature is reviewed to provide con-
text for the authors’ contributions. Then, the proposed
methodology is described in detail with sub-sections
on the training data, model, training and then evalua-
tion.

2 RELATED WORK

Rathi et. al. (Rathi et al., 2018) performed classifi-
cation of fish species. They perform pre-processing
steps of Otsu’s binarization, dilation and erosion to
improve the quality of the image. They add the pre-
processed image as the fourth channel to an already
existing RGB image and use CNN for classification
of fish images. Rathi et al. have used a custom CNN
architecture which they trained from scratch. We have
used pretrained CNN architectures which uses trans-
fer learning to leverage the large amount of training
time.

White et. al. (White et al., 2006) determines the
orientation of the fish based on the moments of the po-
lygon spanned by the fish silhouette. They determine
the fish species based on colour and shape. White et
al determine the length of the fish by mapping eight
points on the detected outline of the fish. Contrary to
White et al,we plan to determine the width and height
of the fish by creating a bounding box around the fish.
The bounding box technique is robust to various types
of fishes.

Larsen et. al. (Larsen et al., 2009) perform classi-
fication of fish species based on shape and texture fe-
atures. They estimate the parameters of an active ap-
pearance model using geometric and texture-based fe-
atures. Subsequently, they apply principal component
analysis (PCA) to these model parameters which yield
features that they apply Linear Discriminant Analysis
to for an accuracy of 76 percent. Their method is de-
pendant of building a separate model apart from the
learned one for each species of a fish. Our CNN archi-
tecture creates an intrinsic model of the fish species
for classification and does not need a separate model.

Hsieh et al. (Hsieh et al., 2011) proposed a techni-
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que to measure a tuna fish’s snork to fork length
using Hough transform. The longest line measured by
Hough transform in the image can indicate the length
of the fish. They transform every point in image space
to Hough space. The collinear points in the image
space are presented in the Hough space. Therefore,
the weight of the largest peak is the fish length in the
image. In other words, this technique measures the
longest length of an object in the image. However,
the technique might not work if there are other ob-
jects longer than the fish in the image whereas our
technique does not have that limitation.

Costa et. al. (Costa et al., 2013) were able to
sort fish based upon size, gender and skeletal anoma-
lies using external shape analysis. First,they used the
Canny Operator in MATLAB (Canny, 1986)to cre-
ate a binary image. The Canny operator smooths the
image through Gaussian convolution and applies a 2D
first derivative operator to highlight regions with ed-
ges. The next step was to create 200 equally spaced
points along the outline of the marine animal. The
shape of each fish was then analyzed by elliptic Fou-
rier analysis (EFA) on the coordinates of each outline
point. EFA is based on Fourier decompositions of the
incremental changes in each of the x and y coordina-
tes (Costa et al., 2011). The limitation of this is that
this binary image is specific to a species and sensitive
to variations within a species.

Ogunlana et. al. (Ogunlana et al., 2015) extrac-
ted fish sizes like the body length and width and the
five fin lengths; namely anal, caudal, dorsal, pelvic
and pectoral. Then, used support vector machines for
species classification with a 78.59% accuracy, which
was significantly higher than what was obtained for
artificial neural networks, k-nearest neighbour and k-
means clustering-based algorithms for the same da-
taset. This approach does not take into account the
color and texture features of the marine animal.

Hasija et. al. (Hasija et al., 2017) use image sets
to classify fish species using graph embedding discri-
minant analysis unlike state-of-the-art methods which
operate on single images. Multiple views of the fish,
as in our approach, might help in a better classifica-
tion of the fish’s species. However, their algorithm
is not immune to distortion caused by noisy images
which have a classification accuracy of 76 %.

3 PROPOSED METHODOLOGY

3.1 Training Data Collection

Static images of marine animals for five species
namely Jonah crab, lobster, halibut, cod and cusk

Table 1: Distribution of collected images.

label cod crab halibut cusk lobster

count 724 503 913 459 631

Figure 1: Axis-aligned bounding boxes.

were culled from the internet (Table 1). The first
stage was to manually draw axis-aligned bounding
boxes around the target object (its region of inte-
rest or ROI) with the labelImg software annotation
tool(Tzutalin, 2015) in the images (Figure 1). Then,
the second stage was to manually draw rotatable-
bounding boxes(Liu et al., 2017) around the ob-
ject’s ROI with the roLabelImg software annotation
tool.(Cgvict, 2017) (Figure 2).

3.1.1 Image Augmentation

This culled dataset was augmented using the imgaug
(Aleju, 2015) software image augmentation library.
The following image augmentations were performed:
randomly rotated horizontally and vertically; affine
transformations like image translation from -10% to
10%; rotations from -45◦ to 45 ◦; images sharpened
with pixel intensity multiplicative ratios from 0.75 to
1.5; image brightness changed for each RGB channel
by adding pixel intensity from -10 to 10 and contrast
normalization ratios ranging from 0.9 to 1.10.

As part of the data preparation for the training, the
images were re-sized to 224×224 pixels for input into
the CNN. (Figure 3).

3.2 MODEL

3.2.1 Architectures

Acquiring enough labelled data for image classifica-
tion using supervised CNN can be a challenge. This
can be mitigated by re-using models trained on dif-
ferent image sets (Yosinski et al., 2014). The CNN
model architectures used are described next.

Figure 2: Rotated bounding boxes.
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Figure 3: Example images generated for each Cod from
image augmentation. Augmentation such as random image
flipping,rotation and translation were applied to the original
image.

VGG16 and VGG19: These are deep convoluti-
onal networks trained by the Visual Geometry Group
proposed by Simonyan and Zisserman (Simonyan and
Zisserman, 2014). Their network uses 3×3 convolu-
tional layers stacked on top of each other. The first
step is a convolution of the image. Then, the image
size is reduced through down sampling (max pool-
ing). This alternates until the two layers become fully
connected. The 16 and 19 in VGG16 and VGG19 re-
fer to the number of convolutional layers in each of
the networks, respectively.

Residual Network: Resnet(He et al., 2016) allows
the addition of hundreds of layers to a network and
is still able to achieve good performance compared
to VGG. Residual networks use residual mapping or
skip connections to a deeper version of the network.
At each layer, Resnet is implemented as shown in eq.1

y = f (x)+ x (1)

such that f(x) is the convolution or batch normaliza-
tion layers and x is the skip connection that allows the
gradient to pass backwards, directly. Theoretically,
the gradient could skip over all the intermediate lay-
ers and reach the bottom one without being diminis-
hed. Residual mappings therefore assist in avoiding
the vanishing gradient problem that occurs in deep
CNNs. Residual networks also use batch normaliza-
tion layers which are intermediate normalization lay-
ers. Theses layers address the problem of vanishing
and exploding gradients.(Bengio et al., 1994)(Glorot
and Bengio, 2010).

MobileNet: MobileNet (Howard et al., 2017) uses
a 3× 3 depth-wise separable convolution which uses
less computations than standard convolutions with
only a small reduction in accuracy. Depth-wise sepa-
rable convolutions are made up of two layers: depth-
wise convolutions and point-wise convolutions. In
depth-wise convolutions, filters are applied to each in-
put channel. Point-wise convolution is a 1×1 convo-
lution used to create linear combinations of the output
of the depth-wise layer. This two-step method reduces
the computation effort and learning model size. The
depth-wise convolutions filter the input channels but
do not combine them to create new features whereas

Figure 4: Automatic Size estimation using localization and
ruler detection. Ruler detection gives the unit length in
pixels.

the point-wise convolutions generate new features.

3.2.2 Feature Extraction

For feature extraction pre-trained networks of VGG16
(Simonyan and Zisserman, 2014), VGG19 (Simonyan
and Zisserman, 2014), Resnet (He et al., 2016) and
MobileNet (Howard et al., 2017) were used. The
weights used for the pre-trained networks are those
from the ImageNet dataset. The deeper layers of the
pre-trained networks were trainable to improve the
accuracy. The pre-trained networks branch out into
a regression head and a classification head.

3.2.3 Size Estimation

The width and height of the bounding box is a mea-
sure of the marine animal size but it still needs to be
scaled to its actual size. To achieve this, a ruler is in-
serted in the image field of view. We detect the ruler
(Figure 4)(Konovalov et al., 2017) in the image back-
ground and determine the length of a pixel and scale
the width and height of the bounding box to this.

3.2.4 Model Implementation

Figure 5 shows the architecture of our learning mo-
del. The classification head contains a fully connected
layer of 2048 neural network units followed by anot-
her fully connected layer of 5 units. The output of the
classification head are neural network units equal in
number to the number of distinct marine animal spe-
cies considered where each neural network unit gives
the probability that the image belongs to that species.

The regression head contains a convolution layer
with 1024 3×3 filters followed by a 4×4 max pool-
ing layer. The final layer of the regression head is a
1×1 convolution layer. The output of the regression
head are localization coordinates for the object. In the
case of axis-aligned bounding boxes, the coordinates
are (x1,y1,x2,y2) where (x1,y1) is the lower left cor-
ner and (x2,y2) the upper right corner of the bounding
box.

The size of the marine animal can also be estima-
ted by creating a rotatable bounding box around it. A
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Figure 5: Convolutional layered architecture with the re-
gression and classification heads for simultaneous localiza-
tion and classification of images.

rotatable bounding box fits an object oriented at an
arbitrary angle to the horizontal, better, than an axis-
aligned one. The regression coordinates for a rotata-
ble bounding box are (xc,yc,h,w,θ) where xc,yc are
the coordinates for the center of the bounding box,
h,w are its height and width, respectively, and θ is its
orientation relative to the horizontal.

3.2.5 Ensemble Architecture

Ensemble learning uses multiple models to attain bet-
ter predictive performance than that obtained by any
one model.(Zhou, 2009). The classification perfor-
mance can be increased by combining the predictions
of multiple weak models instead of training a single
strong one.

Different ensemble architectures were used to pro-
cess the outputs from the regression and classification
heads.

The results from the classification heads of each of
the CNN architectures (VGG16, VGG19, Mobilenet
and Resnet) were concatenatated. Then, the resulting
20-dimensional vector was sent to the ensemble CNN
for classification. The ensemble CNN has a fully con-
nected layer of 50 neural network units followed by
another fully connected layer of 5 units (equal to the
number of species).

Similarly, the output from the image localization
heads of each of the CNN architectures (VGG16,
VGG19, Mobilenet and Resnet) were concatenated.
The resulting vector (20-dimensional for the axis-
aligned and 25-dimensional for the rotatable boxes)
was sent to the ensemble CNN for object localiza-
tion. The ensemble CNN has a fully connected layer
of 50 neural network units followed by another fully
connected layer containing neural network units equal
to the number of localization parameters (4 for axis-
aligned and 5 for rotatable boxes).

3.3 Training

3.3.1 Losses

Loss is used in the training to obtain the best weig-
hts for a model. Loss is optimized (minimized) in the
training by adjusting the CNN weights. The cross-
entropy loss (eq.2) was used for the classification
head and the mean squared error loss (eq.3, 4) for the
regression head. With the cross-entropy loss:

ce(y, ŷ) =−
n

∑
i=1

yi log(ŷi) (2)

yi is the ground truth label of the image and ŷi is the
predicted species score.

For the mean square error loss for the axis-aligned
bounding boxes:

mseax =−
n

∑
i=1

((x̂i
1 − xi

1)
2 +(x̂i

2 − xi
2)

2+

(ŷi
1 − yi

1)
2 +(ŷi

2 − yi
2)

2)

(3)

(xi
1,y

i
1) and (xi

2,y
i
2) are the ground truth coordinates

of the lower left and upper right corners of the ith
axis-aligned box and (x̂i

1, ŷ
i
1) and (x̂i

2, ŷ
i
2) are the pre-

dicted coordinates of the lower left and upper right
corners of ith bounding box.

Eq. 4 is the mean square error loss for the rotatable
bounding boxes.

mser =−
n

∑
i=1

((x̂i
c − xi

c)
2 +(ŷi

c − xi
c)

2+

(ĥi −hi)2 +(ŵi −wi)2 +(θ̂i − θ̂
i)2)

(4)

(xc,yc) are the coordinates of the center of the ith box.
(h,w,θ) are the height,width and angle of the box re-
lative to the horizontal. (x̂c, ŷc) are the predicted coor-
dinates of the center of the ith box.(ĥ,ŵ,θ̂) are the pre-
dicted height,width and angle of the box relative to
the horizontal.

The loss function used for training is the sum of
the mean squared error from the regression head and
the entropy loss error from the classification head.
Forty epochs were trained. The evaluation of the re-
sulting model is discussed in the next section.

4 MODEL EVALUATION

4.1 Methodology

The intersection over union (IoU) was used to evalu-
ate the accuracy of the axis-aligned bounding boxes.
The IoU is defined as the ratio of the intersection
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Figure 6: IoC metric change for Resnet architecture. IoC is
intersection over union. The IoC increases during training
time and converges to 0.7. A higher IoC score indicates
better localization accuracy.

(overlap) area between two bounding boxes and the
area of union of the two bounding boxes.

Figure 6 shows the increase in IoU value while
training. Both these trends are indicative of a good
model.

Five-fold cross validation (Kohavi et al., 1995)
was used for model evaluation. The original training
dataset was divided into five folds. At each iteration,
four folds were used for training and the fifth for tes-
ting/evaluation. The data augmentation described ear-
lier was performed on the training set but not on the
test/evaluation set.

4.2 Results

The height and width of the object in pixel lengths
were annotated in the images. To compare the perfor-
mance between axis-aligned (Table 2) and rotatable
(Table 3) bounding boxes, the mean absolute error in
pixels of the annotated height and width and the pre-
dicted height and width was calculated (Table 4)

Table 4 compares mean absolute error in pre-
dicted height and width (in pixels) between the two
types of bounding boxes. The rotatable bounding
boxes have notably lower mean absolute errors than
the axis-aligned ones. This suggests rotatable boun-
ding boxes are a better measure of the target height
and width.

Figure 7 illustrates the confusion matrix for spe-
cies classification. The classifier misinterprets some
cusk images as cod. However, that is not unexpected
as cusk are a type of cod.

Figure 8 shows the weights learned by the ensem-
bling architectures for classification of fish species.
Darker colors depict higher weights for the output of
a particular ensembling architecture. Note, the confi-
dence in prediction of cusk and halibut is high for the

Figure 7: Confusion matrix for the Resnet classification.
The diagonal cells show greater values indicating better
classification accuracy for each label.

Figure 8: Weights assigned to the CNN architectures for
prediction of each label in the species classification.

Figure 9: Weights assigned to CNN architectures for pre-
diction of the corners of bounding boxes in localization.
xmin and ymin are left bottom coordinates and xmax and
ymax are top right coordinates.

VGG16 ensembling architecture prediction.
Figure 9 shows the weights learned by the ensem-

bling architecture for localization species. Again, dar-
ker colors depict a higher weight for the output of a
particular method. The ensemble architecture gives
a higher weight to MobileNetV2 because it shows a
better localization accuracy compared to VGG19 and
Resnet.

The ensemble classification accuracies and locali-
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Table 2: Mean localization accuracy, intersection over union and classification accuracy of CNN architectures using axis-
aligned bounding boxes. The classification accuracy of the ensembled architecture is 81% which is better than classification
accuracy of the individual CNNs. The ensembled CNN gives a test IoU score of 0.57 which is marginally better than the
individual CNN IoU scores.

Model Localization IoU Classification

Train Test Train Test Train Test

VGG16 0.92 0.78 0.79 0.56 0.98 0.76

VGG19 0.93 0.79 0.79 0.56 0.98 0.75

Resnet 0.80 0.77 0.58 0.54 0.73 0.76

MobileNet 0.85 0.80 0.65 0.57 0.59 0.59

Ensembled 0.93 0.81 0.78 0.57 0.99 0.81

Table 3: Mean localization accuracy and classification accu-
racy of CNN architectures using rotatable bounding boxes.
The classification accuracy of the ensembled architecture is
83% which is better than classification accuracy of the in-
dividual CNNs. The ensembled CNN gives a localization
accuracy of 0.80 which is marginally better than the indivi-
dual CNN localization accuracy scores.

Model Localization Classification

Train Test Train Test

VGG16 0.93 0.76 0.94 0.76

VGG19 0.94 0.79 0.90 0.73

Resnet 0.67 0.6 0.70 0.73

MobileNet 0.87 0.76 0.58 0.56

Ensembled 0.95 0.80 0.99 0.836

Table 4: The mean absolute error (in pixels) for width
and height using axis-aligned and rotatable bounding boxes.
The rotatable bounding boxes show lower mean absolute er-
ror in the predicted height and width.

Model Axis-Aligned Rotatable Boxes

height width height width

VGG16 39.72 59.72 20.99 16.01

VGG19 39.98 61.04 18.94 16.69

Resnet 40.04 65.61 27.96 22.03

MobileNet 40.58 50.58 20.64 16.78

Ensembled 40.57 56.95 17.19 13.00

zation metrics are better than individual CNN archi-
tectures for both axis-aligned and rotatable bounding
boxes. The ensemble classification had some value.

4.2.1 Visualization

Figure 10 shows heat map images that portray the
activation of the convolutional layers. The final layer
shows higher ’temperatures’ around the fish outline

Figure 10: Activation of convolutional layers. Upper left:
The original image, Upper right: activation from layer 5,
Lower left: activations from layer 10, lower right: activa-
tions from layer 20. Activations from layer 2 show higher
temperatures around the object area indicating the regions
that contribute more to the prediction.

indicating the regions that contribute more to the clas-
sification.

5 CONCLUDING REMARKS

This paper reports on work that considers and proves
the viability of using pattern recognition towards au-
tomating the species classification and sizing of ma-
rine animals. The pre-trained weights used in the con-
volution neural network were based on those used in
ImageNet which contained lobster, crab, and several
types of fish though not the cod, cusk and halibut that
were of interest.

The work evaluates axis-aligned and rotatable
bounding boxes for marine animal classification and
localization aimed at their size estimation in static
images. Based on an analysis of the mean absolute
error in bounding box heights and widths, it was ob-
served that rotatable bounding boxes perform notably
better. Therefore, rotatable bounding boxes yield a
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better estimate of the marine animal height and width.
Future work builds on the achievements to date to

collect and prepare more training data for the specific
species of interest to increase the model accuracy. As
well, work is underway to build a marine animal pre-
sentation system for an image capture system that is
integrated with the learning tools developed to date.
This will be integrated into a marine animal proces-
sing plant for testing in an operationally relevant en-
vironment.
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