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Abstract: Software Product Lines (SPLs) play an important role in the context of large-scale production of software 
families. Feature models (FMs) are essential in SPLs by representing all the commonalities and variabilities 
in a product line. Currently, several tools support automated analysis of FMs, such as checking the consistency 
of FMs and counting the valid configurations of a product line. Although these tools greatly reduce the 
complexity of FM analysis, FM design is often performed manually, thus being prone to bad design choices 
in the domain analysis phase. This paper reports on our work to improve FM qualities from the exploration 
of the relationship between FM structure and structural complexity. By performing two common operations 
(i.e., consistency checking and counting valid configurations on FMs with different sizes and structures), we 
collected the time that an automated tool needs to finish these operations. Then, we applied data mining 
approaches to explore the relationship between FM structure and structural complexity. In addition, we 
provide guidelines for designing FMs based on our observations. 

1 INTRODUCTION 

Off-the-shelf software is often complex, hard to 
debug and burdensome to maintain because it tries to 
provide a one-size-fits-all solution. In order to deal 
with software generalization, Software Product Lines 
(SPLs) (Clements and Northrop, 2002) emerged in 
the late 1960s. SPLs focus software development on 
reusable parts to provide flexible product 
configurations based on individual needs. Instead of 
software development as a whole system from 
requirements analyses to testing, SPL divides 
software into several standardized parts that are easier 
to check and test compared with integrated systems. 
SPLs reduce development cost and time before they 
are released to the market because developers do not 
need to design and develop each product from scratch 
(Apel et al., 2016). Creating different products for 
different needs is simplified to the selection of 
options from common functional assets. 

A feature model (FM) is a compact representation 
of all the software products in terms of features in an 
SPL. In this paper, we provide design guidelines for 
FM construction from the exploration of the 
relationship between FM structure and complexity. 

FM structure refers to the structure of a feature 
diagram - a graphical representation of a FM. FM 
structural complexity is the complexity of a FM 
representation across several operations. We use the 
execution time for FM analysis operations to measure 
the structural complexity of a model. By examining 
the relationship between a FM’s structure and its 
structural complexity, we explore the internal 
association among these two factors, thus providing 
guidelines for FM construction to domain analysts. 
The core contributions of this paper include the 
following: 

 Application of data mining approaches to explore 
the relationship between a FM’s structure and 
structural complexity; 

 A set of design guidelines for FM construction to 
domain analysts. 

 

This paper is organized as follows. In Section 2, we 
introduce background information about FMs and the 
evaluation of FM structural complexity. Section 3 
presents a running example to explain the purpose of 
our work. In Section 4, we give an introduction to our 
experimental setup and in Section 5, we summarize 
and analyze the results of our experiment, and provide 
our guideliens for FM construction. Section 6 
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discusses the threats to validity in our work. In 
Section 7, we identify related work in the literature. 
We conclude this paper and propose future work in 
Section 8. 

2 BACKGROUND 

In this section, we introduce concepts about feature 
model, one approach used to evaluate the feature 
model structural complexity and two data mining 
approaches applied in this paper. 

2.1 Feature Model 

In a feature model, features have different 
characteristics. If a feature is expected to appear in 
every product in a product line, this feature is 
mandatory. Otherwise is optional. If a feature acts as 
an interface, it is an abstract feature. Otherwise, it is 
a concrete feature. Figure 1 shows a feature model for 
a simple cellphone SPL. 
 

 

      

Figure 1: A feature model for a cellphone SPL. 

A feature model is usually organized as a tree 
structure. Similar to other tree structures, a feature 
diagram incorporates the concepts of parent and child 
nodes. If a feature is the child of another feature, the 
child feature can only be selected when its parent 
feature is chosen. When several children are selected 
from a single parent node at the same time, we define 
this relationship as OR. When only one child node is 
allowed to be selected among several children, we 
define this relationship as XOR (eXclusive OR). In 
Figure 1, feature Screen and feature 
White/Black, Color and Resolution consist 
of an XOR group. Features Media, Music and 
Photo form an OR group. 

2.2 Complexity Evaluation 

Štuikys and Damasevicius (2009) proposed 
Compound Complexity (CC) to assess the structural 
complexity of a feature model, shown as follows: 
 

CC = NF + 1/9 * NM2 + 2/9 * NO2 +  
        1/3 * XOR2 + 1/3 * OR2 + 1/3 * NC2 (1)

 

In the formula above, NF is the number of features; 
NM is the number of mandatory features; NO is the 
number of optional features; XOR is the number of 
exclusive OR groups; OR is the number of OR 
groups, and NC is the number of constraints. The 
calculation formula and the constants in Equation (1) 
are based on criticism of Metcalfe’s law (Briscoe et 
al., 2006). Metcalfe’s law (Shapiro et al., 1998) is a 
statement showing that the value of network 
communications is proportional to the square of the 
number of connected users in the system. However, 
whether the weight assigned to each metric is 
accurate needs further validation both from a 
theoretical and empirical perspective.  

2.3 Data Mining 

2.3.1 Linear Regression 

Regression is a data mining technique for predicting 
continuous values. It estimates the conditional 
expectation of a dependent variable given the 
independent variables. There are several types of 
regression, such as linear regression, logistic 
regression and non-linear regression. Multiple linear 
regression takes the form: 
 

 ൅	3ݔ * β3 + 2ݔ * β2 + 1ݔ * β1 = ݕ

… + βn nݔ * (2) ߝ  +
 

Multiple linear regression tries to model the 
relationship between one dependent variable and two 
or more independent variables by making them fit 
into a linear equation to observe the pattern. For 
example, if we want to observe whether individual 
income has a relationship between one’s education 
background, living place and working experience, we 
can apply multiple linear regression to the model, 
setting individual income as the dependent variable 
and other factors as independent variables. In this 
paper, we first apply multiple linear regression to 
explore the relationship between feature model 
structure and its structural complexity. 

2.3.2 Support Vector Machine 

A Support Vector Machine (SVM) is a supervised 
learning model in machine learning and data mining 
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for data classification and regression analyses, 
proposed by Vladimir Vapnik and his colleagues in 
1992 (Boser et al., 1992). SVM is widely used in data 
classification and data regression. In this paper, we 
use SVM in regression analysis through Support 
Vector Regression (SVR). 

Given a data set, SVR maps input examples into a 
high dimensional feature space and performs 
regression in that space. SVM regression performs 
linear regression proposed by Vapnik. By calculating 
the empirical risks of the loss function, the original 
problem could be solved through an optimization 
problem (Boser et al., 1992).  

When we apply SVM for different regression 
problems, we need different kernel functions. The 
selection of a kernel function plays an important role 
in the accuracy of the results. However, constructing 
a kernel function for a specific problem is still a 
challenge (Su and Ding, 2006). The most frequently 
used kernel functions are polynomial kernel function, 
radial basis function kernel (RBF kernel function) and 
Sigmoid kernel function. In this paper, we apply a 
polynomial kernel function in our experiment. 

3 MOTIVATING EXAMPLE 

Consider an automotive product line with two basic 
necessary functions – Transmission (either 
Automatic or Manual) and Engine (either Electric, 
Gasoline, or both). From Figure 2, we see that the 
solutions are different. Feature model 2.b applies 
feature group notation – OR, whereas feature model 
2.a simply lists all the sub-features according to the 
requirements (Hybrid means the car could use both 
electric power and gasoline). 

Among feature model 2.a and 2.b, which one is 
preferred? The answer to this simple question is not 
as easy as it seems, especially when the number of 
features in a feature model is large. There are many 
metrics proposed by researchers to evaluate a feature 
model. In Bezerra’s work (Bezerra et al., 2015), 
although the authors summarized more than 40 
metrics to evaluate a feature model in different 
characteristics, choosing the best metric is still 
challenging for developers. For these metrics, most 
are statistical descriptions of feature models, such as 
the number of features, and the number of constraints. 
However, there is not a clear understanding on how 
to analyze a combination of these metrics. Although 
Stuikys et al. (Štuikys and Damaševičius, 2009) try to 
solve this problem by providing three types of 
complexities (i.e., structural complexity, compound 
complexity and cognitive complexity), they did not 

consider whether different metrics have different 
weights when calculating feature model complexity.  
 

 
Figure 2.a 

 
Figure 2.b 

Figure 2: Two different feature model designs for the same 
problem description. 

4 EXPERIMENTAL SETUP 

In this section, we discuss our experimental setup. We 
start with defining our research questions, then we 
summarize the methodologies we used to answer the 
research questions. We also introduce the execution 
environment and tools used in this work. The results 
of our experimental data are available at the following 
URL: http://bit.ly/feature-data. 

4.1 Research Questions 

Motivated by the example introduced in Section 3, we 
define our research questions as follows: 

 Research Question 1 (RQ1): What is the 
relationship between feature model structure and 
structural complexity?  

 Research Question 2 (RQ2): What guidelines 
can be recommended for feature model 
construction based on observations from RQ1? 

4.2 Experiment Design 

Given a feature model, assuming that the model 
satisfies all the requirements, we are interested in 
whether the structure of the feature model affects its 
structural complexity. For example, the feature 
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models shown in Figures 2.a and 2.b both represent 
the same software product line. Feature model 2.b 
uses fewer features, but adopts an OR group instead 
of a XOR group. What is the consequence of this 
modification? Will the increase of OR groups in a 
feature model also increase the structural complexity, 
even if the total number of features decrease? 

In this paper, we chose seven independent 
variables: 

 1ݔ: The number of total features (TF); 

 2ݔ: The number of mandatory features (MF); 

 3ݔ: The number of optional features (OF); 

 4ݔ: The number of OR groups (OR); 

 5ݔ: The number of XOR groups (XOR); 

 6ݔ: The number of total features that are in either 
OR group or XOR group (NG) ; 

 7ݔ: The number of constraints (NC). 
 

There are two reasons why we selected these seven 
metrics. First, as integer values, these metrics are the 
most basic structural measuring metrics; second, the 
calculation of these metrics are provided by an 
automated tool we used in our experiment (please see 
Section 4.4 for details). For a feature model, the value 
of 1ݔ to 7ݔ is easy to obtain by analyzing the FMs. 

In order to obtain the value of y corresponding to 
each set of ݔi, we adopted the approach proposed by 
Pohl et al., (2013). In their approach, they applied 
width measures from graph theory to identify the 
structural complexity of feature models. By setting a 
feature model to automated analysis, they collected 
the time consumed by their analysis tool to finish the 
operations. They used the time spent as an indicator 
for structural complexity of a feature model. In our 
approach, we chose three solvers to perform two 
operations. The three solvers are Choco (Jussien et 

al., 2008), sat4j (Le Berre and Parrain, 2010) and 
Javabdd (Whaley, 2007). The two operations check 
whether a feature model is valid and count the number 
of valid configurations.  

After the collection of ݔ i and its corresponding 
feature model structural complexity ݕ , we need to 
find the relationship (i.e., the value of coefficients for 
each ݔ i) between feature model structure and its 
structural complexity. We apply two approaches: 
multiple linear regression and SVM. The process of 
our experiment is shown in Figure 3. 

4.3 Experiment Execution 

Our experiment is executed on a desktop with an Intel 
Core i7 – 4790 CPU at 3.60 GHz and 8 GB RAM. 
The operating system is Windows 7 64-bit. Each 
operation on each task had a timeout of 3600s. 

4.4 Tool and Feature Model Repository 

In order to obtain the FM structural complexity, we 
adopted the automated tool from Pohl’s work. The 
automated tool provides automated analysis of FMs, 
such as valid checking, valid configuration counting, 
and listing all the valid configurations. The tool is 
available at (CoFFeMAP, 2018). In order to obtain 
the feature structure information, we applied SPLOT 
(Software Product Line Online Tool), which is an 
online system for SPL editing and analysis 
(Mendonca et al., 2009). We applied multiple linear 
regression to explore the relationship between FM 
structure and structural complexity. We used IBM 
SPSS Statistics (SPSS, 2018), a widely used program 
for statistical analysis in many areas. To apply SVM 
for  regression, we adopted a data mining  tool called

 

 

Figure 3: Overview of experimental process. 
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Weka (Weka, 2018), which contains several machine 
learning algorithms for data mining tasks. Both of 
these two tools provide a graphical user interface. 

5 RESULTS AND GUIDELINES  

5.1 Experimental Results and Analyses 

Table 1: LR for Choco performing valid checking. 

Model Standardized Coefficients  Sig.
TF 0.540 0.000
MF 0.062 0.304
OF -0.130 0.054
OR -0.025 0.628

XOR -0.017 0.747
NG Excluded Variable 
NC 0.322 0.000

Table 2: LR for Choco performing configuration counting. 

Model Standardized Coefficients  Sig.
TF 0.219 0.130
MF -0.103 0.267
OF 0.141 0.054
OR 0.123 0.092

XOR -0.119 0.166
NG Excluded Variable 
NC -0.037 0.581

Table 3: LR for sat4j performing valid checking. 

Model Standardized Coefficients  Sig.
TF 1.751 0.000
MF -0.424 0.000
OF -0.431 0.000
OR -0.200 0.000

XOR -0.418 0.000
NG Excluded Variable 
NC 0.034 0.410

Table 4: LR for sat4j performing configuration counting. 

Model Standardized Coefficients  Sig.
TF 1.268 0.000
MF -0.799 0.000
OF -0.246 0.056
OR -0.125 0.254

XOR -0.589 0.009
NG Excluded Variable 
NC -0.202 0.006

Table 5: LR for Javabdd performing valid checking. 

Model Standardized Coefficients  Sig.
TF 0.159 0.523
MF -0.097 0.479
OF 0.006 0.956
OR 0.065 0.440

XOR -0.192 0.708
NG Excluded Variable 
NC 0.027 0.739

Table 6: LR for Javabdd performing configuration 
counting. 

Model Standardized Coefficients  Sig.
TF 0.351 0.070
MF -0.113 0.279
OF -0.122 0.171
OR 0.535 0.000

XOR -0.023 0.806
NG Excluded Variable 
NC -0.096 0.118

 

Tables 1 through 8 show our results for regression 
analyses of all the FMs in our experiment (timeout 
results are excluded). Tables 1 to 6 are the results 
from multiple linear regressions executed in IBM 
SPSS. Table 7 show the results from SVR performed 
in Weka (kernel function is polynomial kernel and the 
exponent is set to 1). Table 8 shows the results with 
the same experimental setting as Table 7. However, 
in Table 8, all FMs have only 10 features. 

5.1.1 Multiple Linear Regression 

From Tables 1 to 6, we can see that most of the results 
we obtained from multiple linear regression have a 
significant value larger than 0.05. Therefore, most of 
the values are not statistically significant. One 
explanation for this may be for a given FM, its 
structure and structural complexity is not a linear 
relationship. The number of FM features and FM 
constraints always have a positive correlation with its 
structural complexity. Thus, the more features and the 
more constraints in an FM, the higher its structural 
complexity. 

The more mandatory features in an FM, the less 
structural complexity it demonstrates, which seems 
intuitive. Suppose in a FM, if all the features are 
mandatory, then there will be only one possible valid 
configuration – a configuration simply adds up all the 
features without any variabilities. On the other hand, 
if a FM has many variations, it will increase its 
structural complexity. 

From Tables 1 to 6, we can also observe that given 
the same data, different solvers produce different 
analysis results (compare with Table 1, Table 3 and 
Table 5; Table 2, Table 4 and Table 6). It also 
indicates that the structural complexity also relates to 
the solver used. Our experimental data shows that 
when performing the same tasks, Javabdd and sat4j 
run faster than Choco. This finding is not related to 
our analysis in this paper, but it may provide 
developers with insights into tool selection with 
regard to FM automated analysis. 
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Table 7: Regression results based on SVR (MAE: Mean Absolute Error; MSE: Mean Squared Error). 

 Choco Sat4j Javabdd 
    
 Valid Checking Configuration Counting Valid Checking Configuration Counting Valid Checking Configuration Counting

TF 0.327 0.0067 0.2522 0.0044 0.0308 0.0577 
MF 0.1224 -0.0026 -0.0371 -0.0022 -0.0142 0.0039 
OF 0.0582 0.006 -0.0807 0.0041 -0.0071 -0.0091 
OR -0.1333 0.003 -0.0834 -0.0004 0.0096 0.046 

XOR 0.0213 -0.0061 -0.0357 -0.0039 -0.0111 0.0485 
NG 0.3597 0.0066 0.3786 0.0062 0.0607 0.0538 
NC 0.268 -0.0063 0.0077 -0.0052 0.0016 -0.0007 

MAE 0.0013 1.6306 0.0004 31.7262 0.0036 0 
MSE 0.0021 12.402 0.0016 191.6283 0.0198 0.0001 

Table 8: Regression results based on SVR given feature models with 10 features. 

 Choco Sat4j Javabdd 
 Valid Checking Configuration Counting Valid Checking Configuration Counting Valid Checking Configuration Counting

MF -0.0437 -0.1927 -0.012 -0.0489 -0.1114 -0.0039 
OF -0.0192 -0.1118 -0.2652 0.0178 -0.0765 0.0369 
OR -0.0629 -0.0868 -0.3307 -0.0405 0.0216 0.1715 

XOR -0.0973 -0.3744 -0.0364 -0.0246 -0.0569 -0.0485 
NG 0.0628 0.3476 0.3119 0.035 0.2104 0.0833 
NC -0.0141 0.0148 0.0695 -0.0195 0.0486 0.0104 

MAE 0.0019 0.0025 0.0004 0.0069 0 0.0003 
MSE 0.0027 0.0032 0.0005 0.0279 0 0.0005 

 
5.1.2 SVR 

From the results of Tables 1 to 6, we can see that the 
relationship between a FM structure and structure 
complexity is more complex than a pure linear 
relationship. Based on this, we applied SVR for 
regression and chose a non-linear kernel function for 
regression. The results are shown in Table 7. 

From Table 7, we can see that similar to the results 
shown in Tables 1 to 6, the number of total features 
and the number of grouped features (features either in 
OR group or XOR group) have a positive correlation 
with its structural complexity. Thus, the more 
features/grouped features, the higher its structural 
complexity. Although Mean Absolute Error (MAE) and 
Mean Squared Error (MSE) differs in each experiment, 
this positive correlation does not change. 

Another interesting observation from Table 7 is 
that for the number of constraints in a FM, when the 
FM executes a valid checking operation, the number 
of constraints has a positive relationship with its 
structural complexity. When the FM executes the task 
of counting valid configurations, the number of 
constraints has a negative relationship with its 
structural complexity. One possible explanation for 
this is during the execution of counting valid 
configurations, the more constraints in an FM, the 
fewer valid configurations available in a SPL, thus 
making calculation time shorter than validation 
checking. 

Table 8 shows our experimental results when 
executing all the tasks with different solvers on FMs 
with 10 features. The purpose of this experiment is to 
explore the relationship between FM structure and its 
structural complexity when fixing the FM size. There 
are two reasons why we chose models with 10 
features: 

 In the FM repository provided by SPLOT, there 
are 83 FMs that have 10 features in the model. We 
randomly chose 31 samples among these 83 FMs. 

 Compared with FMs in other sizes, the experiment 
results with 10 features are the most complete. 

 

From Table 8, we can see that the number of 
mandatory features has a negative correlation with the 
structural complexity of a FM and the number of 
grouped features has a positive correlation with the 
structural complexity of a FM.  

Compared with features in an OR group and in an 
XOR group, we can see that features in an OR group 
increase the structural complexity compared with 
features in a XOR group. Another interesting finding 
is that in different operations using different solvers, 
the number of constraints plays different roles related 
to the change of a FM’s structural complexity. 

5.2 Guidelines for FM Construction 

Based on the experimental results and analyses of the 
previous section, we suggest the following guidelines 
for FM construction: 
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 Use fewer features when possible. Both linear 
regression and SVR support the conclusion that 
the number of features in a FM always increases 
the structural complexity when performing 
automated analysis.  

 Place fewer features in group notations when 
possible. We also observe that when grouping 
features in a FM, structural complexity is always 
relatively higher.  

 Choose an XOR group over an OR group when 
both are options. An XOR group is better than an 
OR group with regards to decreasing structural 
complexity of a FM. 

 

Although the guidelines seem intuitive, we validated 
these guidelines from theoretical aspects. To our best 
knowledge, this is the first study to confirm these 
intuitive guidelines through experimentation. 

6 THREATS TO VALIDITY 

There exist several threats to validity in our study. In 
this section, we discuss these threats from two 
aspects: internal threats and external threats. 

6.1 Internal Threats to Validity 

Threats to internal validity compromise our 
confidence in saying whether the relationship 
between dependent variables and independent 
variable is accurate. In this study, we summarize our 
internal threats to validity as follows: 

 Limited Dataset. One of the biggest challenges 
of our work is the limited dataset we used in our 
study. Although we adopted more than 300 FMs, 
additional data is needed to build a more accurate 
regression model. In our future work, we plan to 
use all the FMs provided by SPLOT. 

 Limited Data Mining Approaches. In this paper, 
we only adopted two data mining approaches to 
explore the relationship. However, we may find 
different results if we apply other data mining 
approaches. 

 Tool Selection. We used the automated analyses 
tool proposed by Pohl et al. in their work to obtain 
the value of dependent variables. However, there 
may exist better tools for our analyses. When 
exploring the structure and complexity 
relationships, we chose Weka. It is also possible 
that other regression tools could yield different 
results.  

 

Possible approaches to improve our results include 
applying more data, using more data mining 
approaches and trying additional automated tools, 
across various combinations of techniques. 

6.2 External Threats 

In our study, external threats to validity refer to 
whether the results are generalizable and whether we 
provide empirical validation of results. Our results are 
built upon theoretical analyses only. The results will 
be more convincing if we observe that our empirical 
evaluations have similar results to theoretical results. 
In order to mitigate external threats, we plan to 
conduct a future empirical study. The study will 
consist of three steps. First, we will introduce 
participants with the necessary knowledge to 
complete the empirical study. Second, we will ask 
participants questions similar to the automated 
analysis performed with existing tools and collect the 
time needed to answer the questions. We will then 
compare the empirical and theoretical results. 

7 RELATED WORK 

In this section, we introduce literature related to the 
research areas discussed in this paper. We will start 
with FMs and FM evaluations with metrics. Then we 
introduce some guidelines to feature modeling 
practice proposed in other work. 

7.1 Feature Model Representation 

Several researchers have proposed different 
languages for feature modeling. All of these 
languages can be classified into two categories: 
diagrammatic languages and textual languages. 
Diagrammatic languages represent feature models in 
graphs with different visual notations. Kang et al., 
(1990) first grouped features into mandatory features, 
alternative features and optional features. Griss et al., 
(1998) adopted OR and XOR (exclusive or) to express 
the relationship between parent features and child 
features. In our work, we conform to Griss’ notation. 

Textual languages for FMs seek to represent FMs 
with formal semantics. Batory (2005) suggested 
applying propositional formulas (Mannion, 2012) as 
feature model formal semantics. Some works 
combined the concept of class modeling and feature 
modeling, such as Clafer (Bąk et al., 2016) and 
Forfamel (Asikainen et al., 2006). Although their 
grammars and usage are not the same, the concept is 
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similar – providing feature modeling with class 
support. 

7.2 Feature Model Evaluation 

Several measurements have been proposed to 
evaluate the quality of FMs. These measurements 
assess several quality characteristics, such as 
maintainability, usability, functionality and security. 
Most works related to maintainability analyses (such 
as (Bagheri and Gasevic, 2011); (Patzke et al., 2012) 
(Montagud et al., 2012); (Chen and Babar, 2011)) 
focus on maintainability analysis of models. 

In Bagheri’s work (Bagheri and Gasevic, 2011), 
the authors proposed several metrics for three 
characteristics of a FM: analysability, changeability, 
and understandability (Al-Kilidar et al., 2005). The 
authors conducted an experiment to validate whether 
the metrics selected in their work are accurate 
predictors for FMs in real scenarios. However, the 
measurements in their work relate to maintainability 
analysis only and do not consider influences from 
other attributes (such as usability and reliability). 
Patzke et al., (2012) focused on variability 
complexity management during the evolution of 
FMs. Their paper presented an approach to help 
developers identify improvement opportunities in 
product line infrastructure. The authors applied their 
approach to three industrial scenarios to validate their 
methodology. They also listed several symptoms of 
variability “code smells” of product lines. However, 
both of the evaluation metrics and the code smell 
symptoms are only for variability analysis and 
management in software product lines.  

7.3 Guidelines for Feature Models 

Lee et al., (2002) proposed a guideline for a feature 
modeling process based on their experience from 
industrial practice. The guideline consists of several 
parts, such as guidelines for domain planning, feature 
identification, organization and refactoring. Kang et 
al., (2003) conducted a similar work. Compared with 
(Lee et al., 2002), they added discussions about 
design principles for system architecture and 
components for Feature-Oriented Software 
Development. 

8 CONCLUSION 

We explored the relationship between FM structure 
and its structural complexity by applying data mining 
approaches to the feature model repository provided 

by SPLOT. Our experimental evaluation led to 
observations that suggested several FM construction 
guidelines for model designers. The contribution of 
this paper is an exploration of this relationship based 
on analysis from data mining approaches. To our best 
knowledge, this is the first work that applied data 
mining to explore patterns in a FM repository. Our 
goal is to help construct robust feature models that 
may improve the quality of software product lines. 

In the future, we plan to include more data in our 
regression model to improve the accuracy of the 
result, adopt more data mining approaches (such as 
decision tree and graidient boosting) to analyze the 
dataset and perform empirical studies to validate our 
theoretical results. As noted in Section 4, all of our 
experimental data is available at: http://bit.ly/feature-
data. 
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