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Abstract: We propose a person detector on omnidirectional images, an accurate method to generate minimal enclosing
rectangles of persons. The basic idea is to adapt the qualitative detection performance of a convolutional
neural network based method, namely YOLOv2 to fish-eye images. The design of our approach picks up the
idea of a state-of-the-art object detector and highly overlapping areas of images with their regions of interests.
This overlap reduces the number of false negatives. Based on the raw bounding boxes of the detector we
fine-tuned overlapping bounding boxes by three approaches: the non-maximum suppression, the soft non-
maximum suppression and the soft non-maximum suppression with Gaussian smoothing. The evaluation
was done on the PIROPO database and an own annotated Flat dataset, supplemented with bounding boxes
on omnidirectional images. We achieve an average precision of 64.4 % with YOLOv2 for the class person on
PIROPO and 77.6 % on Flat. For this purpose we fine-tuned the soft non-maximum suppression with Gaussian
smoothing.

1 INTRODUCTION

Convolutional neural networks (CNNs) were treaded
for several tasks in computer vision in the recent ye-
ars. Finding objects in images (i.e. object detection)
belongs to these tasks. A main requirement for the
detection of objects in images for current CNNs are
accurate real-world training data. In this paper we
propose a method to detect objects in fish-eye images
of indoor scenes using a state-of-the-art object detec-
tor.

The object detection in indoor scenes with a limi-
ted number of image sensors can be reached with ima-
ges from omnidirectional cameras. These cameras are
suited for capturing one room with a single sensor due
to a field of view of about 180◦. Our goal is to detect
objects in indoor scenes in omnidirectional data with
a detector trained on perspective images.

Beside our application, the field of active assis-
ted living, the detection of objects in omnidirectional
image data can be used in mobile robots and in the
field of autonomous driving.

The remainder of this paper is structured as fol-
lows: Section 2 presents previous research activities
in object detection. Section 3 illustrates the working
principle of a neural network based object detector.

Section 4 explains how our virtual cameras are ge-
nerated. Section 5 shows the theoretical background
for different variants of non-maximum suppression
(NMS). Section 6 describes our experiments for the
generation of bounding boxes and the evaluation of
our results on common error metrics. Section 7 sum-
marizes the paper’s content, concludes our observa-
tions and gives ideas for future work. The results of
our work, the image data and the evaluation of the re-
sults, can be found at https://gitlab.com/omnidetector/
omnidetector.

2 RELATED WORK

State-of-the-art object detectors predict bounding
boxes on perspective images over several classes. A
region-based, fully connected convolutional network
for accurate and efficient object detection is R-FCN
(Dai et al., 2016). As a standard practice, the results
of the detector based on ResNet-101 architecture (He
et al., 2016) are post-processed with non-maximum
suppression (NMS) using a threshold of 0.3 to the in-
tersection over union (IoU) (Girshick et al., 2013).
The single shot multi-box detector (SSD) by (Liu
et al., 2016) provides an improvement of the net-
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work architecture by adding a backend extra feature
layer on top of VGGNet-16 combined with the idea to
use predictions from multiple feature maps with dif-
ferent resolutions which handles objects with various
sizes. The SSD leads to competitive results on com-
mon object detection benchmark datasets, namely MS
COCO (Lin et al., 2014), ImageNet (Russakovsky
et al., 2015) and PASCAL VOC (Everingham et al.,
2010). The approach we follow is YOLOv2 (Redmon
and Farhadi, 2017). It produces significant impro-
vements to increase mean average precision (mAP)
through variable size of models, multi-scale training
and a joint training to predict detections for object
classes without labeled detection data.

Our application is object detection, so we con-
centrate on datasets where labels are minimally en-
closing rectangles (bounding boxes). Common real
world benchmark datasets with labeled objects on
perspective images are presented by (Everingham
et al., 2010), (Krasin et al., 2017), (Li et al., 2017),
(Russakovsky et al., 2015). Omnidirectional images
with multiple sequences in two different indoor rooms
were created in the work of (del Blanco and Carbal-
leira, 2016). A direct approach for detecting objects
in omnidirectional images without CNNs was shown
in the work of (Cinaroglu and Bastanlar, 2014). The
classical HoG features and training a SVM to detect
humans in a transformed INRIA dataset leads to com-
petitive results in recall and precision.

A novel model named Past-Future Memory Net-
work (PFMN) was proposed by (Lee et al., 2018) on
360◦ videos. One of the main contributions of (Lee
et al., 2018) is to learn the correlation between input
data from the past and future.

In contrast to our work, the authors of Spherical
CNN (Cohen et al., 2018) modify the architecture of
ResNet. Their goal is to build a collection of spherical
layers which are rotation-equivariant and expressive.

3 OBJECT DETECTION

Based on an excellent mAP of 73.4% (10 clas-
ses, VOC2007test) and an average precision (AP) of
81.3% (VOC2007test) for the class person, we use the
You Only Look Once (YOLO) (Redmon et al., 2016)
approach in its second version called YOLOv2 (Red-
mon and Farhadi, 2017). To detect objects in in-
put images YOLOv2 offers a good compromise be-
tween detection accuracy and speed. The model is
trained on ImageNet (Russakovsky et al., 2015) and
the COCO dataset (Lin et al., 2014). The approach
outperforms state-of-the-art methods like Faster R-
CNN (Ren et al., 2015) with ResNet (He et al., 2016)

and SSD (Liu et al., 2016), which still runs signifi-
cantly faster. YOLOv2 predicts the corners of boun-
ding boxes directly with the help of fully connected
layers which are added on top of the convolutional
feature extractor. Additional changes on the network
architecture are the elimination of pooling layers to
obtain a higher resolution output by the convolutional
layers in the network. The input data size of the net-
work is shrinked to operate on 416×416 input images
instead of 448×448. For the prediction of bounding
boxes in YOLOv2 the fully connected layers are re-
placed by anchor boxes. To counteract the effect to
detect objects with a fixed size, a special feature du-
ring the training is the random selection of input size
of the model, which changes every 10 batches. The
smallest input is 320×320 and the largest 608×608.

4 CREATING VIRTUAL VIEWS
FROM AN
OMNIDIRECTIONAL IMAGE

In this chapter we describe the transformation for ge-
nerating virtual perspective views from omnidirectio-
nal image data based on (Findeisen et al., 2013). We
assume, that the omnidirectional camera is calibrated
both intrinsically and extrinsically.

The camera model describes how the coordinates
of a 3D scene point are transformed into the coordi-
nates of a 2D image point. We concentrate on the
central camera model, i.e. all light rays, originating
from the scene points, travel through a single point in
space, called the single effective viewpoint. For the
transformation between the omnidirectional and the
perspective images a mathematical description is ne-
cessary for both camera models.

4.1 Perspective Camera Model

The perspective camera model uses the pinhole
camera model as an approximation. The per-
spective projection of the spatial coordinates given
in the camera coordinate system is stated xcam =
(xcam,ycam,zcam)

T and in normalized image coordina-
tes xnorm = (xnorm,ynorm,1)T . After applying an affine
transformation it is possible to get pixel coordinates
x = (ximg,yimg)

T . For the linear mapping between the
source and target camera model we use homogeneous
coordinates, denoted as x̃ = (x,y,1)T . The relation
between xnorm and x̃ is given by

x̃ = K ·xnorm (1)
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where K is the upper-triangular calibration matrix
containing the camera intrinsic:

K =

 fx sα cx
0 fy cy
0 0 1

 . (2)

As shown in (2) the five intrinsic parameters of a pin-
hole camera are the scale factors in x- and y-direction
( fx, fy), the skewness factor sα and the principle point
of the image (cx,cy).

In general a scene point is modeled in a world
coordinate system, which is different from the camera
coordinate system (xcam). The orientation between
these coordinate systems consists of two parts, na-
mely a rotation R and a translation t (or equivalent
C =−R−1 · t, where C is the camera center).

The relationship between the scene point in the
world coordinate system X̃ = (X ,Y,Z,1)T and an
image point in the image coordinate system x̃ is gi-
ven by

x̃ = P · X̃ (3)

where P is a homogeneous 3× 4 matrix, called the
camera projection matrix (Hartley and Zisserman,
2006). The matrix P contains the parameters of the
extrinsic and intrinsic calibration with

P = K[R|t]. (4)

There are several approaches to extend the camera
model defined above with a description of lens im-
perfections. As long as our target virtual camera is
perfectly perspective and free of lens distortions, we
do not discuss this issue.

4.2 Omnidirectional to Perspective
Image Mapping

Because it is mathematically impossible to transform
the whole omnidirectional image into one perspective
image, we transform a region of 2D image points
from the omnidirectional into the perspective view.
We determine the perspective images through n vir-
tual perspective cameras Cam0, Cam1, . . . , Camn,
which are described by their extrinsic parameters R
and t (6 degrees of freedom (DOF)) and intrinsic pa-
rameters K (5 DOF). Instead of determining the pa-
rameters of the perspective camera through a calibra-
tion, we model the virtual camera and determine the
extrinsic (R and t) empirically.

To create the virtual perspective views we change
the extrinsic camera parameter R through the varia-
tion of the angles through the rotation about the axes
x, y and z represented by their Euler angles. To be
more specific, we rotate about the x-axis and z-axis.

The extrinsic calibration parameters of the omni-
directional camera form the world reference with re-
spect to the virtual perspective cameras. As K con-
tains the scale factors in the horizontal and vertical di-
rections ( fx, fy), K determines the field of view (FOV)
of the target images. For perspective images with a re-
solution of 2cx×2cy the horizontal and vertical FOVs
are:

FOVh = 2arctan
(

cx

2 fx

)
and

FOVv = 2arctan
(

cy

2 fy

)
, respectively.

(5)

Equation (5) allows us to define the FOV of the per-
spective camera and to build at least one virtual per-
spective camera, which is able to generate perspective
images, from the omnidirectional camera. Derived
from the horizontal FOV and vertical FOV we deter-
mine the diagonal FOV (FOVd) with:

FOVd = 2arctan
(

c
2 f

)
(6)

where:

c =
√

c2
x + c2

y and f =
√

f 2
x + f 2

y . (7)

To come to a common FOV of a usual perspective
camera we choose the focal length and the diagonal
image size with respect to the sensor to be equal. This
leads to a simplification of (6) with:

FOVd = 2arctan
(

1
2

)
. (8)

The simplification leads to a diagonal FOV of about
53.13◦ and allows us to choose c and f free, as long
as they are equal.

5 NON-MAXIMUM
SUPPRESSION

Our goal is to find the most likely position of the mi-
nimal enclosing rectangle of the object. Therefore we
disable the two final steps of YOLOv2 occurring at
the last layers of the network. First, the reduction of
the number of bounding boxes based on their confi-
dence. Second, the union of multiple bounding boxes
of one particular object through soft non-maximum
suppression (Soft-NMS).

In general, the NMS is necessary due to highly
overlapping areas of perspective images after the
transformation to omnidirectional images. To receive
the raw detections of YOLOv2 with confidences bet-
ween 0 and 1, we set the confidence threshold equal
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to zero. To group the resulting bounding boxes, one
suitable measurement is the intersection over union
(IoU). The IoU for two boxes A and B is defined by
the Jaccard index as:

IoU(A,B) =
A∩B
A∪B

. (9)

Our next step for the refinement of the back-projected
bounding boxes is applying Soft-NMS inspired by
(Bodla et al., 2017). In this approach Soft-NMS is
used to separate bounding boxes to distinguish be-
tween different objects that are close to each other
and to prune multiple detections for one unambiguous
object, back projected from highly overlapped per-
spective views. Bounding boxes which are close to-
gether and fulfill the IoU > 0.5 are considered as a uni-
que region of interest (RoI) proposal for each object.
To update the confidences of the bounding boxes, in
the NMS the pruning step can be formulated as a res-
coring function:

si =

{
si, IoU(M,bi)< Nt ,

0, IoU(M,bi)≥ Nt .
(10)

Where bi is a bounding box with score si of the de-
tector and M is the detection box with maximum
score. The parameter Nt describes the NMS thres-
hold, which removes boxes from a list of detections
with certain scores, as long as the IoU(M,bi) is gre-
ater than or equal to the NMS threshold. The result
of (10) is a confidence score between zero and one,
which is used to decide what is kept or removed in
the neighborhood of M.

The Soft-NMS approach is able to weight the
score of boxes bi in the neighborhood of M.

si =

{
si, IoU(M,bi)< Nt ,

s(1− IoU(M,bi)), IoU(M,bi)≥ Nt .
(11)

Equation (11) describes the rescoring function for the
Soft-NMS. The goal is to decay the scores above a
threshold Nt modeled with a linear function. The sco-
res of the bounding boxes from the detection with a
higher overlap with M have a stronger potential of
being false positives. As a result we get a rating of
the bounding boxes bi with respect to M without chan-
ging the number of boxes. With an increasing overlap
between detection boxes and M the penalty increases.
At a low overlapping area between bi and M the sco-
res will be not affected. To penalize bi stronger if the
IoU becomes close to one, the pruning step can also
be modeled as a Gaussian penalty function:

si = si · e−
IoU(M,bi)

2
σ , ∀bi ∈ B \D, (12)

where B is the set of back-projected raw detections of
YOLOv2 and D is a growing set of final detections.

6 EXPERIMENTAL RESULTS

We evaluate our approach on two datasets, that are
single images from an omnidirectional camera of an
indoor scene. To qualitatively evaluate our detection
results we use a labeled image dataset from omnidi-
rectional camera geometry, namely the PIROPO data-
base (People in Indoor ROoms with Perspective and
Omnidirectional cameras). The input images have a
resolution of 600× 600 pixels, are undistorted and
captured with a ceiling-mounted omnidirectional ca-
mera. The image data contain point labels on the head
of persons. To compare the results of the detection
with respect to the ground truth, we manually cre-
ate bounding box ground truth for the class person in
638 images. The subset of the labeled data of the PI-
ROPO database is available on the website mentioned
in Section 1. Subsequently, we create a new dataset
with multiple persons moving in a room, that we call
Flat. The images of this dataset have a resolution of
1680×1680 pixels.

We assume, that our start point is an image from
a virtual perspective camera. The creation of vir-
tual perspective views from omnidirectional images
is described in Section 4.2. We made several expe-
riments to validate the deterministic behavior of YO-
LOv2 by choosing different confidence values for the
detection boxes. While the location of the bounding
box in the image is variable through reproducible at-
tempts, for generating the results we keep the con-
fidence value of the detector (0.8) constant for true
positive detections.

The way, we create the perspective images from
our omnidirectional image data, is described as fol-
lows: We vary both the rotation around the x-axis and
z-axis. The rotation around the z-axis corresponds
to the azimuth of the omnidirectional camera model.
Rotating around the x-axis matches to the elevation
of the omnidirectional camera model. The elevation
is changed from 0.0 to 0.9 with a step size of 0.3. We
choose the four different perspective views to avoid
the black image proportion at the boundaries of the
omnidirectional image, which does not contain ad-
ditional information. The azimuth is changed from
−3.14 to 3.14 with a step size of 0.2, for covering the
whole room with perspective views.

As an additional constraint, we assume in our con-
figuration (camera’s mounting height with respect to
the room size) that the person fits in one perspective
image. After the calculation of the detection results in
the perspective images, we transform these detections
to the omnidirectional source image.

The use of a look-up-table (LUT) for back pro-
jecting the perspective images to the omnidirectional
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image leads to their original position of the source
image in the target image. Additionally, the corners
of the bounding boxes are also transformed with the
help of the LUT. Through the back transformation of
the bounding box corners the new boxes become lar-
ger.

6.1 Bounding Box Refinement

For the grouping of bounding boxes based on their
confidences the YOLOv2 object detector has an in-
cluded NMS, as described in Section 5. If the IoU
is higher than a threshold Nt , then multiple boxes of
an object are merged. With the help of a small test
set, we evaluate YOLOv2’s confidence both with the
internal NMS and external NMS, which produces the
same confidence values with equal thresholds. To re-
fine multiple bounding boxes projected from the per-
spective views in the omnidirectional image we use
three variants of NMS.
NMS. First, we apply the classical NMS (see (10))
to reduce bounding boxes with a predefined overlap
threshold Nt . We vary the overlap threshold Nt from
0.0 to 1.0 with a step size of 0.1.
Soft-NMS. Second, the use of Soft-NMS (see (11)).
The advantage of Soft-NMS is penalizing detection
boxes bi with a higher overlap to M as long as they
are false positives. Based on modeling the overlap
of bi to M as a linear function the threshold Nt con-
trols the detection scores. To be more precise, the
detection boxes with high distance to M are not influ-
enced through the function in (11). The boxes that are
close together allocate a high penalty.
Soft-NMS with Gaussian Smoothing. Third, to re-
tort the problem of abrupt changes to the ranked list of
detections, we consider the Gaussian penalty function
as shown in (12). The Gaussian penalty function
is a continuous exponential function, which delivers
no penalty in case of no overlap of the boxes and a
high penalty at highly overlapped boxes. The update
was done iteratively to all scores of the remaining de-
tection boxes. Starting from the detectors raw data,
we vary the confidence threshold Ct with the values
0.3, 0.5, 0.7 and 0.8 and the Gaussian smoothing fac-
tor σ with the values 0.1, 0.3, 0.5, 0.7 and 0.9. The
corresponding results in Figure 1 show a single image
from the PIROPO database with the below mentio-
ned variations of thresholds in the rows and columns,
respectively. An effect, which is easily visible is
the changing number of bounding boxes in the ima-
ges. In the top right corner of the matrix (σ = 0.9
and Ct = 0.3) the number of boxes for possible can-
didates of true positives is high. The opposite effect,
less number of true positives with a high accuracy is

observable in the bottom left corner of Figure 1 (va-
lues of σ = 0.1 or σ = 0.3 and Ct = 0.8). Using σ for
the steering of the smoothness of the merging of the
bounding boxes makes the effects explainable. The
higher we select σ, the closer comes the exponen-
tial function in (12) to 1. Is the exponential function
close to or equal to 1, the number of boxes does not
change. With the knowledge, that the exponential
function cannot become zero, the smaller we set σ,
the smaller is the number of the bounding boxes in
the final set D . The Gaussian smoothing function in
the Soft-NMS delivers the best results, compared to
the other variants of NMS.

6.2 Ground Truth Evaluation

A well working example of our approach is shown
in Figure 2. In Figure 2a we show an omnidirectio-
nal input image from our own dataset. The raw de-
tections of YOLOv2 with a high number of possible
true positive candidates without NMS is visualized in
Figure 2b. The final detection result after the boun-
ding box refinement is shown in Figure 2c. We apply
Soft-NMS with a Gaussian smoothing function. The
ground truth evaluation is done through manually an-
notated bounding box as shown in Figure 2c.

As scalar evaluation metrics for the detector’s re-
sult we choose precision and recall (Szeliski, 2010),
which leads to precision-recall (PR) curves. Additi-
onally, we determine the AP (Szeliski, 2010). Based
on our application we concentrate on the class person,
that makes the use of mAP obsolete for evaluation.

The precision and recall are based on the three ba-
sic error rates, namely the true positives (TP), the false
positives (FP) and the false negatives (FN). Based on
the number of these values per frame in the dataset
the precision pr and recall re are given by:

pr =
#T P

#T P+#FP
and re =

#T P
#T P+#FN

. (13)

Ideally, the pr and re values in (13) are close to
one, each. The higher the values of the evaluation
metrics, the larger the area under the PR curve, the
better the performance of the detector.

The PR curves in Figure 3 show the evaluation
of our method with manually generated ground truth.
The parameter Ot is the overlap threshold for the IoU
from the resulting detection box to the ground truth
box. We consider the PR curves for NMS, Soft-NMS
and Soft-NMS with a Gaussian smoothing function
on omnidirectional images from back-projected per-
spective views and compare them to the results of the
direct application of YOLOv2 to the omnidirectional
images, namely NMS Omni.
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Figure 1: Visualization of results for Soft-NMS with the Gaussian penalty function on an omnidirectional image from the
PIROPO database. The columns are varied over different σ of the Gaussian penalty function. In each row we change the
confidence threshold Ct of the Soft-NMS. See text for details.

(a) input data (b) raw detection boxes (c) ground truth (red), detection
(yellow)

Figure 2: Detection result on omnidirectional images for the class person on the Flat dataset.

The steepest curve in Figure 3 is NMS Omni that
reaches a precision of 1 at small recall. The constella-
tion validates our observations, that the YOLOv2 de-
tector localizes the objects in omnidirectional images
accurate with a high number of false negatives.

Table 1: Evaluation on PIROPO and Flat dataset with
average precision for class person.

PIROPO Flat

NMS 56.6 68.3
Soft-NMS Gauss 64.6 77.6
Soft-NMS 57.1 68.1
Omni 41.4 69.6

For further quantitative evaluation we compute the
AP that is the area under the PR curves of Figure 3
and visualized in Table 1. The overlap threshold
Ot = 0.5 follows the PASCAL VOC notation (Eve-
ringham et al., 2010). Additionally, we determine the

weighted mean values of precision for NMS, Soft-
NMS with Gaussian smoothing, Soft-NMS and apply
YOLOv2 to the omnidirectional images directly. The
best (i.e. highest) value of AP is highlighted in bold.
We reach an AP for the class person of 64.6% through
Soft-NMS with a Gaussian smoothing function on PI-
ROPO and 77.6% on the Flat Dataset, respectively.

Salient points of the PR curves in Figure 3 are in-
tersections of the worst performing and the highest
performing approach. Looking at the NMS Omni
graph (blue) and the Soft-NMS Gauss graph (blue)
we observe an intersection at a precision of 0.83 and
recall of 0.35. From this point up to recall of 0.75
the bounding box refinement method with Soft-NMS
Gauss outperforms all other curves without signifi-
cant decrease of precision on PIROPO.

Another people detector on omnidirectional ima-
ges is (Krams and Kiryati, 2017) that use DET curves
on BOMNI database (Demiröz et al., 2012) for evalu-
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(a) Precision-recall curve on PIROPO (b) Precision-recall curve on our own data (Flat)

Figure 3: The precision-recall curve for NMS, Soft-NMS and Soft-NMS with Gaussian smoothing function on two different
omnidirectional image datasets from back-projected perspective views. The precision-recall curve of NMS Omni show the
direct application of YOLOv2 to the omnidirectional images. Ot = 0.5 is the overlap threshold for the IoU from the resulting
detection box to the ground truth box.

ation, therefore we don’t compare our results to this
people detection approach. Due to unavailable public
training datasets with labeled fish-eye images, we did
not do fine-tuning of YOLOv2 from initial weights
with omnidirectional image data.

We make the following observations. After the
back projection from the perspective to the omnidi-
rectional view bounding boxes are oversized, because
the axis parallelism is not preserved. Through for-
cing parallel box edges with respect to the axis in the
omnidirectional image coordinate system, we do not
receive minimal enclosing rectangles.

For the most of the recall and precision values the
graphs of NMS and Soft-NMS are equal. Only at pre-
cisions smaller than 0.2 we observe different trends as
shown in Figure 3.

7 CONCLUSION

In this work we present a method to detect persons in
omnidirectional images based on CNNs. We apply a
state-of-the-art object detector, namely YOLOv2, to
virtual perspective views and transform the detecti-
ons back to the omnidirectional source images. For
the transformation the step size of the two angles, azi-
muth and elevation was selected in a way, that the
perspective images are highly overlapped. In contrast
to the standard implementation of YOLOv2 we use
the raw detection boxes instead of applying a NMS as

bounding box refinement at the end of the network.
After back projection from perspective to omnidi-
rectional images we apply three different NMS met-
hods for pruning the back-projected bounding boxes
based on confidence and overlap.

We evaluated the bounding box refinement met-
hods, NMS, Soft-NMS with a threshold and Soft-
NMS with Gaussian smoothing on our manually ge-
nerated ground truth on the PIROPO database and the
Flat dataset using PR curves and AP. At Ot = 0.5 we
reach an AP for the class person of 64.6% on PIROPO
and 77.6% on Flat through Soft-NMS with Gaussian
smoothing.

Based on the work of transformation from omni-
directional to perspective and vice versa there are a
couple of ideas for future work. One of our central
questions is: how the detection rate of the object de-
tector changes if we consider the lens distortion para-
meters?

To close the gap of missing omnidirectional
ground truth, we will create labeled synthetic and
real-world data. To simplify the data generation we
can use our approach followed by manually refine-
ment of detections to create ground truth on omni-
directional images. To improve the approach at the
point of projecting bounding boxes from perspective
to omnidirectional model it is necessary to minimize
the effect of oversized boxes in omnidirectional ima-
ges.
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