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Abstract: A rooted labeled caterpillatcaterpillar, for short) is a rooted labeled tree transformed to a roottld (ralled
a backbong after removing all the leaves in it and we can computedti¢ distancebetween caterpillars in
quartic time. In this paper, we introduce twertical distancesnd twohorizontal distance$or caterpillars.
The former are based onstring edit distancéetween the string representations of the backbones and the
latter on anultiset edit distancbetween the multisets of labels occurring in all the leaifé&n, we show that
these distances give both lower bound and upper bound offihdistance and we can compute the vertical
distances in quadratic time and the horizontal distancégéar time under the unit cost function.

1 INTRODUCTION are metrics for caterpillars and we can compute them
more efficiently (linear or quadratic time) than the edit

Comparing tree-structured data such as HTML and distance (quartic time), they are incomparable with
XML data for web mining or RNA and glycan datafor the edit distance in both theoretical and experimental.
bioinformatics is one of the important tasks for data ~ In order to approximate the edit distance for cater-
mining. The most famous distance measure betweenpillars efficiently, in this paper, we introduce twer-
rooted labeled unordered tre¢sees for short) isthe  tical distances ¢ andd;; based on &tring edit dis-
edit distanceTai, 1979). The edit distance is formu- tanceand twohorizontal distancesd anddy; based
lated as the minimum cost afdit operations con- on amultiset edit distanceHere, the multiset edit dis-
sisting of asubstitution a deletionand aninsertion tance coincides with a famobsg distanc¢Deza and
applied to transform a tree to another tree. Unfor- Deza, 2016) if we adopt a unit cost function.

tunately, the problem of computing the edit distance  LetCi andC; be caterpillars. Therty (Cy,Cy) is
between trees is MAX SNP-hard (Zhang and Jiang, the string edit distance between the string representa-

1994), even if trees are binary or height 2 (Akutsu tions of the backbones @ andC,, anddy; (Cy,C) is
etal., 2013; Hirata et al., 2011). the sum ofdy (C1,Cy), the multiset edit distance be-

A caterpillar (cf. (Gallian, 2007)) is a tree trans- tween the multisets on labels occurring in the leaves
formed to a rooted path after removing all the leaves ©f the endpoints of the backbones@ andC; and
in it. Recently, Murakeet al. (Muraka et al., 2018)  the costs of deleting the remained leave<inand
have shown that we can compute the edit distanceinserting the remained leaves@. Also dy(Cy,Cz)
between caterpillars i®(h?\2) time, whereh is the is the multiset edit distance between the multisets of
maximum height and is the maximum number of labels occurring in all the leaves @ andC,, and
leaves in caterpillars. Hence, the problem is quartic- 9 (C1,C2) is the sum ofdy (Cy,Cz), the cost of the
time tractable with respect to the maximum number correspondence between the rootCgfandC; and

of nodes, which is not efficient well. the costs of deleting nodes in the backbon€irand
As an efficient distance comparing caterpillars, nSerting nodes in the backboned. ,
histogram distances such aspath histogram dis- Then, we show that these distances provide the

tance (Kawaguchi et al., 2018), aomplete subtree  following lower bound and upper bound of the edit
histogram distance/Akutsu et al., 2013; Yoshino distancerry (C1,Cz) betweerC; andC,.

etal., 2018) and anCA histogram distancgroshino max{dy (C1,Cz),dn (C1,Cz)}

etal., 2018) have developed. Whereas these distances < 1y, (C;,C,) < min{d;(C1,Cz),d};(C1,Co) -
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Furthermore, if we adopt the unit cost function, then say that a tree is @aterpillar if it is transformed to a
we can computel, (Cq,Cs), & (Cq,Co), dn(Cy,Co) rooted path after removing all the leaves in it. For a
andd;, (C1,Cz) in O(h?) time, O(h? +A) time, O(A) caterpillarC, we call the remained rooted pathack-
time andO(A + h) time, respectively. Hence, we can boneof C and denote it byb(C).

compute the vertical distances in quadratic time and It is obvious thatr(C) = r(bb(C)) andV/(C) —

the horizontal distances in linear time with respect to bb(C) UIV(C) for a caterpillarC, that is, every node

the n_umber of nc_)des. : in a caterpillar is either a leaf or an element of the
Finally, we give experimental results to evaluate backbone

the running time and the approximation for caterpil- . o .
lars in real data. mag;:i)r(]té we introduce aree edit distancend aTai

Definition 2 (Edit operations (Tai, 1979))The edit
operationsof a treeT are defined as follows, see Fig-
ure 1.

2 PRELIMINARIES

A tree Tis a connected grapfV, E) without cycles,
whereV is the set of vertices arfelis the set of edges.
We denoteV andE by V(T) andE(T). Thesizeof
T is |V| and denoted byT|. We sometime denote

1. Substitution Change the label of the noden T.

2. Deletion Delete a nodes in T with parentV,
making the children o¥ become the children of
V. The children are inserted in the placevofs

veV(T)byve T. We denote an empty tré®, 0) by
0. A rooted treeis a tree with one nodechosen as its
root. We denote the root of a rooted tr€eby r(T).

Let T be a rooted tree such that=r(T) and
u,v,w e T. We denote the unique path franto v, that
is, the tregV’,E’) such thaV’ = {v1,...,w},v1 =T,
vk =vand(vi,vi+1) € E’ for everyi (1 <i<k-1),
by UP; (v).

Theparentof v(# r), which we denote bpar(v),
is its adjacent node oblP,(v) and theancestorsof
v(#r) are the nodes adP; (v) — {v}. We say thati is
achild of vif vis the parent ofi andu is adescendant

of vif vis an ancestor ofi. We denote the set of

children ofv by ch(v) and thatv is a ancestor ofi
by u < v. We call a node with no childrenlaaf and
denote the set of all the leavesTirby Iv(T).

A rooted path P is a rooted tree
({vi,...,vn},{(vi,vi+1) | 1 < i < n—1}) such
thatr(P) = v1. We call the node, (the leaf ofP) an
endpointof P and denote it bg(P).

Thedegreeof v, denoted byl(v), is the number of
children ofv, and thedegreeof T, denoted byl(T), is
max{d(v) | v e T}. Theheightof v, denoted byh(v),
is max{|UPy(w)| |w e Iv(T[v])}, and theheightof T,
denoted byh(T), is maXh(v) |[ve T}.

We say thau is to the left of vin T if pre(u) <
pre(v) for the preorder numbgrein T andpos{u) <
pos{v) for the postorder numbgrostin T. We say
that a rooted tree isrderedif a left-to-right order
among siblings is givenynorderedtherwise. We say

that a rooted tree imbeledif each node is assigned a

symbol from a fixed finite alphab& For a nodey,

we denote the label afby I (v), and sometimes iden-
tify vwith I(v). In this paper, we call a rooted labeled

unordered tree iee simply.
Definition 1 (Caterpillar €f., (Gallian, 2007))) We

a subset of the children of. In particular, ifvis
the root inT, then the result applying the deletion
is a forest consisting of the children of the root.

3. Insertion The complement of deletion. Insert a
nodev as a child of/ in T makingv the parent of
a subset of the children of.

Substitution ¥ +— w)
Jg& RN .
Ntion v—e)
N A

Insertion € — V)

Figure 1: Edit operations for trees.

Lete ¢ 2 denote a specislanksymbol and define

> = 2U{¢e}. Then, we represent each edit operation

by (11 — I2), where(ly,12) € (Ze x Z¢ — {(g,€)}). The
operation is a substitution if # € andl, # €, a dele-
tion if I, = €, and an insertion if; = €. For nodew

andw, we also denotd (v) — I (w)) by (v — w). We
define acost functiory: (Z¢ x Z¢ \ {(g,€)}) — R on

pairs of labels. We often constrain a cost functjaa

be ametrig thatis,y(l1,12) > 0,y(I1,12) =0iff 1 =15,

y(l1,12) = y(l2,11) andy(l1,13) < y(I1,12) +y(l2,13). In

particular, we call the cost function thedis,l2) = 1

if 11 # |2 aunit cost function
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Definition 3 (Edit distance (Tai, 1979))For a cost
functiony, the costof an edit operatior =11 — I,
is given byy(e) = y(I1,12). The costof a sequence
E =ey,...,e of edit operations is given by(E) =
K., y(&). Then, anedit distancetr, (Ty,T2) be-
tween treeg; andT; is defined as follows:

of edit operations

Tral (Tl,TZ) =min y(E)
transformingTy to To

E is a sequence }

Definition 4 (Tai mapping (Tai, 1979))Let T; and
T, be trees. We say that a trip(d,T1, T,) is a Tai
mapping(a mapping for short) fromTy to T, if M C
V(T1) x V(T2) and every paifvi,wi) and(vz,wz) in
M satisfies the following conditions.

1. vi = vp iff wy =w, (One-to-one condition).
2. vi < v iff wi < wp (ancestor condition).

We will useM instead of(M, Ty, T2) when there is no
confusion denote it byl € M (Ty, T2).

Let M be a mapping fronT; to To. Letly andJy
be the sets of nodes 1R andT, but not inM, that is,
Im={veTi| (vw)Z€M}andy ={we T2 | (v,w) &
M}. Then, thecosty(M) of M is given as follows.

yM)= 5 vvww)+ Z y(v,€) + Z y(g,W).
(v,w)eM velm wedm
Theorem 1 (Tai, 1979) T (T1,T2) = min{y(M) |

M e MTA| (Tl,Tz)}.

For computing the edit distance between trees, the

following theorem is well-known.

Theorem 2 (Akutsu et al., 2013; Hirata et al., 2011;

Zhang and Jiang, 1994)et T; and T, be trees. Then,
the problem of computingra, (T1, T2) is MAX SNP-
hard, even if both Tand & are binary or heigh®.

On the other hand, Murakat al. (Muraka et al.,
2018) have recently shown the following theorem.

Theorem 3 (Muraka et al., 2018)Let G and G
be caterpillars, where k= max{h(C;),h(Cz)} and

A = maxX{|Iv(Cy)|,|Iv(C)|}. Then, we can compute

Tra (C1,Cz) in O(h2A2) time.

3 VERTICAL AND HORIZONTAL
DISTANCES FOR
CATERPILLARS

Theorem 3 claims that the problem of computing
T1a (C1,C2) for caterpillarsCy and C; is tractable
in quartic time, which is not efficient well. In this
section, we give simple and efficient approximation
of T1a (C1,C2) by usingvertical and horizontal dis-
tancesrespectively.

The vertical distance is based onsting edit
distance(cf., (Deza and Deza, 2016)) for the string
representation of the backbones. For strirggs
and s;, we denote the string edit distance between
s and s, by o(si,s). For a rooted pathP =
({vi,. . sWn}, {(vi,viz1) | 1 <i < n—1}) such that
r(P) = v1, we define thestring representatiorof P
as a strind(v1) - --1(vy) and denote it by(P).

On the other hand, the horizontal distance is based
on amultiset edit distancavhich is defined as similar
as another edit distancef( Definition 3).

The edit operationsof a multisetS on X are de-
fined as those of a tree. Latb € ¥ such thaS(a) > 0
anda # b. Then, asubstitution(a — b) operates(a)
to S(a) — 1 andS(b) to S(b) + 1, adeletion(a+— €) op-
eratesS(a) to S(a) — 1 and arinsertion(g — b) oper-
atesS(b) to S(b) + 1. Also we assume a cost function

yas in Section 2.

Definition 5 (Multiset edit distance)Let S; andS; be

multisets or> andy a cost function. Then, multiset

edit distance (51, S) betweert; andS; is defined as
follows.

of edit operations
transformings; to S,

For multisetsS; and & such that|S| < |
(resp, |S1| > |S2|), we can consider an injection
from S to & (resp, from S to §;). For exam-
ple, letS and S, be multisets such the (a) = 3,
Si(b) =0, $(a) =2 andS(b) = 2. Then, by re-
gardingS, and S, as the sequencdal? al® a®)]

H(S,S) = min{v(E)

E is a sequence }

Finally, we introduce the notions of multisets. A and [a*,a®,b» b7 (where the superscript de-

multiseton ¥ is a mappinds: £ — N. For a multise
onZ, we say thata € X is anelemenof Sif S(a) >0

and denote it bya € S (like as a standard set). The

cardinalityof S, denoted byS, is defined asy S(a).
ac

Let S and S be multisets onx. Then, we
define theintersection $M'S, and thedifference
S\ S are multisets satisfying thats N S)(a) =
min{Sy(a), S(a)} and (S1\ $)(a) = max{S;(a)
S(a),0} for everya € Z. Note thatS \ S = S \
SN and|§\ S| = [S\SNS[ =[S - [S M.
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notes the order of the element), the functimisuch
thatm(a) = a@, n(a?) = b@ andm@®) = aV)
is an injection fron5; to S. When|S;| < || (resp,
|S1| > |S2|), we denote the set of all the injections

from S to S (resp, from S to ;) by My (resp, M2).

Lemma 1. The following equation holds.
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H(S1,S)
e <8l beSp\(Sy)
{ > v(r(b),b) +
besS,

otherwise.

min
ey

> Y@g }
(S)

acS \1

Proof. Suppose thd§;| < |S|. By the minimality of
Definition 5, an injectiormt € M1 mapsa € & to the
samea € S, as possible, that isy(a) = awith the cost
y(a,m(a)) = 0, and the remainede S to 11(c) € &
with the costy(c, 1(c)). Then, the sum of the costs is
represented b)z'l y(a,(a)). Furthermore, everly €
ac
$\ 1(S) is inserted with the cost z y(g,b).
beS\T(Sy)

Hence, the total cost implies the first formula.

Suppose thalS| > |S|. By the minimality of
Definition 5, an injectiormt € My mapsb € $ to the
sameb € S; as possible, that isi(b) = b with the cost
y(1i(b),b) = 0, and the remainede S to 1i(c) € §;
with the costy(1t(c),c). Then, the sum of the costs
is represented bxzzy(n(b),b). Furthermore, every

be

ac S \1(S) is deleted with the cost

N | acS\n(S)
Hence, the total cost implies the second formulal

v(a,€).

If we adopt a unit cost function, then we can give
the following simpler form of Lemma 1 which coin-
cides with abag distancdDeza and Deza, 2016) be-
tween multisets.

Lemma 2. If yis a unit cost function, then the follow-
ing statement holds.

H(SL, S) = maX{|$\ S/, [S\ Si}-

Proof. Suppose thatS;| < |S|. Then, by Lemma 1,
it holds that:

y(a,m(a))

g y(aa)+ y(a,b)
acS1S acs\S1 M1, be S\ S NS a#b
N————’

=0
=[S\ SN =S| - [SIM1S].

On the other hand, since is an injection, it holds

that V(e h) =[S\ T(S)| =S| - S As a
beS\1(Sy)

result, it holds thap(S1, ) = |S1| — S S| + S| —

1S =S| - [S1NS| =[S\ Si.

it holds that|S\ S| > |S1\ S|. Hence,|$\ S| =
max{|S:\ &, S\ S}

By using the same discussion,|8;| > |$|, then
WS, S) =[S\ [ =maX|S\ S, [2\S[} O

Lemma 3. We can compute (%,S) in

O(nm?M) time, where m= min{|S|,|S|} and

M = maX|S1|,|S|}. Furthermore, if we adopt the
unit cost function, then we can comput&Sy ) in

O(m+ M) time.

Proof. By Lemma 1 and by using the same technique
based on the maximum weighted bipartite matching
algorithm for the complete bipartite graph consisting
of § andS (cf.,, (Yamamoto et al., 2014; Zhang et al.,
1996)), we can computg(S;,S) in O(mPM) time.

On the other hand, by Lemma 2, we can compute
W(St,S) in O(m+ M) time. O

Hence, we formulate vertical and horizontal dis-
tances between caterpillars. Here, we regard & set
of leaves as a multiset of labels @noccurring inL,
which we denote by.

Definition 6 (Vertical and horizontal distanceslor
i =1,2, letC be a caterpillar such that = r(C),

Bi =bb(Ci), L; = Iv(C;) andE; = ch(e(B;)). Then, we
define twovertical distances anddy; as follows.

dv(C1,Co) = 0(s(By).S(B2)).
& (C1,C2) = dv(C1,Co) + M(E1, Ep)
+ D Yve+ S VEW.
velq\Ex wely\Ep
Also we define twdhorizontal distancesglandd;; as
follows.

dn (Cq,C2) = p(Ly,L2).
05y (C1,C2) = dn(C1,Co) +¥(r1,12)
+ S vve)+ V(e W),
veBi\{ri} weBa\{rz}
Theorem 4. Let G and G be caterpillars. Then, the
following statement holds.

maX{dv(Cl,Cz),dH (Cl,Cz)}
< Tra (C1,C2) < min{d; (Cy,Cz),d5(C1,Co) }.

Proof. In order to show the left inequality, it is suf-
ficient to show how the values aly(C1,C;) and
du (C1,C2) change whel€, is obtained by applying
one edit operation t@;.

If C, is obtained by substituting to an element
in bb(Cy), then it holds thatdy(C;,Cz) = 1 and
dy(Cq,C2) = 0. If Gy is obtained by substituting to
a leaf inlv(C,), then it holds thatl (C;,C2) = 0 and

Furthermore, in this case, by the supposition that dy(C1,C;) = 1. If C; is obtained by deleting an el-

1S1| < [S] and sinceS \ S| =[S\ SN[ =S| -
SN[ and[S\ S| =[S\S NS =S|~ [S1S],

ement inbb(Cy), then it holds thady (C;,Cp) = 1
anddy(C1,C2) = 0. If Cy is obtained by deleting a
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leaf in Iv(Cy), then it holds thatl/ (C;,Cp) = 0 and upper bound distance midy;,d}} of Ty, by ubd

dh (C1,Co) = 1. Also letdiff = ubd— Ibd.
As a result, ifCy is obtained by applying one In this paper, we use the real data illustrated from
edit operation taCy, then both values ofly (C1,Cz) Table 1, which illustrates the number of caterpillars in

and dy(Cy,Cz) change at most one. Hence, it N-glycans and all-glycans from KEGGCSLOGS,
holds thatdy (C1,Cz) < T7a(C1,C2) anddy (C1,Cp) < dblp®. Here, #cat is the number of caterpillars and
Tra (C1,C2), which implies the left inequality. #data is the total number of data.

On the other hand, it order to show the right in-
equality, by regarding the correspondences betweenTable 1: The number of caterpillars in N-glycans and all-
By and B; in o(s(B1),s(By)) and those betweeiy glycans from KEGG, CSLOGS and dblp.

andLy in u(L1,Ly) as the pairs o¥ (Cy1) x V(Cy), the

0,
set of correspondences between nodedyifC1,Cy) dataset eat Aidata %
anddy (Cy,Cy) form Tai mappings. Then, it is ob- N-glycans 514 2,142 23.996
vious that all the correspondencesdj(Cy,Cy) and all-glycans 8,005 10,704 74.785
d (C1,Cyp) are one-to-one. CSLOGS 41,592 59,691 69.679
Since the correspondencesdn(Cy,C,) preserve dblp 5,154,295 5,154,530 99.995
ancestor relation and every nodebnis a descendant
of the node ire(B;) (i = 1,2), all the correspondences We deal with caterpillars for N-glycans, all-
in dy (C1,Cz) preserve ancestor relation. Also, since glycans, CSLOGS and the largest 5,154 caterpillars
every leafinL; is an descendant of the rapin C; (i = (0.1%) in dblp (we refer to dblp). Table 2 illus-
1,2), all the correspondences i (C1,Cz) preserve  trates the information of such caterpillars. Here, # is
ancestor relation. the number of caterpillars,is the average number of
As a result, all the correspondencesii(Cy,Cy) nodesd is the average degreeis the average height,
anddy; (C1,Cz) form Tai mappings betwee@; and ) is the average number of leaves ghid the average
Cp, respectively, which implies thatrs (C1,Cz) < number of labels.
d{;(Cl,Cz) and Tty (Cl,C2) < d:_] (Cl,C2) by Theo-
rem 1. Hence, the right inequality holds. O Table 2: The information of caterpillars in N-glycans, all-

) glycans, CSLOGS and dbtp
Theorem 5. Let G and G be caterpillars, where b=

max{h(Cy1),h(C2)} and A = max{|Iv(C1)|, |Iv(Co)|}. dataset # n d h A B

Then, we can Compu_tev(ﬁlz,c_z), Uk’}(gLCzs), N-glycans 514 6.40 1.84 4.22 218 4.50
dH (C1,Cz) and d;(C1,C2) in O(h?) time, O(h” 4 A%) all-glycans 8,005 4.74 1.49 3.02 1.72 2.84
time, QA3%) time and @A3 + h) time, respectively.  CSLOGS 41,592 5.84 3.05 220 3.64 5.18

Furthermore, if we adopt the unit cost function, then dblp~ 5,154 41.74 40.73 1.01 40.73 10.62
we can compute\dCi,Cy), o (Cq,C2), dn(Cy,Co)

and d;(Cy,Cp) in O(h?) time, Qh? 4 A) time, QA) First, Table 3 illustrates the running time to com-
time and QA + h) time, respectively. pute the vertical distance, anddy;, the horizontal

) ) . distancesdy anddy; and the edit distancer, (Mu-
Proof. It is obvious by Lemma 3 and since we can akg et al., 2018) for all the pairs of caterpillars in
computes(s(B1),s(Bz)) in O(h?) time (cf., (Dezaand  Taple 2.
Deza, 2016)). (]

Table 3: The running time of computing distancks dy;,

Hence, if we adopt the unit cost function, then we du, o andra (Sec).

can compute the vertical distancesdf(C1,C,) and
d(C1,C2) in quadratic time and the horizontal dis- dataset dv o dw d; TTal

all-glycans 20.35 48.08 29.98 20.3557,011.10
CSLOGS 336.721,821.361,564.28 1,788.53 —

4 EXPERIMENTAL RESULTS dblp~ 2.86 149.17 137.20 143.22 6,363.79

In thi i . . tal Its t | IKyoto Encyclopedia of Genes and Genomes, http:/
n this section, we give experimental results to eval- www.kegg.jp/

uate the inequality in Theorem 4 and the running 25, 0Gs: http:/Awww.cs. rpi.edwizakiivww-new/pm
time in Theorem 5 (under the unit cost function). wiki.php/Software/Software

Here, concerned with Theorem 4, we denote the lower  3dblp computer science bibliography: http://dblp.uni-
bound distance mgxly,dy} of Try by Ibd and the  trier.de/
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Table 3 shows that, as the experimental evaluation
of Theorem 5 (and 3), the running time of comput-
ing all the distances oy, d;, dq andd;; is much
smaller than that of the edit distancg,, and the run-
ning time of computing the horizontal distandg is
smaller than that of the vertical distand.

Note that, the reason why the running time of
computingdy for dblp™ is extremely small is that the
height in every caterpillar in dblpis either 1 or 2
and then the running time of(s(B1),s(B>)) is small.
Also, the height of 88% in caterpillars for CSLOGS is
from 1 to 3, which is the reason why the running time
of computingdy is smaller than that of other distances
for CSLOGS. Furthermore, in contrast to Theorem 5,
the running time of computingy andd; (in O(h?)
andO(h? 4 ) time in theoretical) is not much larger
than that ofdy andhd* (in O(A) andO(A + h) time
in theoretical), because we conjecture that the height
in caterpillars for all the data is too small to influence
the running time.

Next, we compare the distancestyf, dy, dy, df,
andtr, . Figure 2 illustrates the distributions of the
distances for N-glycans and all-glycans. Also Fig-
ure 3 and 4 illustrate the distributions of the distances
to 10, from 10 to 30, from 30 to 100 and from 100,
for CSLOGS and dblp, respectively. Since we can-
not computerr, for CSLOGS, Figure 3 presents the
distances ofdy, dy;, dq andd;,. Since the vertical
distancedy for more than 99% pairs of caterpillars in
CSLOGS is 0 or 1, Figure 4 presents the distances of
dy, dn, dfy andtr,

Figure 2 shows that the forms of all the distribu-
tions in are nearly normalbd is left to T, andty,,
is left toubd On the other hand, Figure 3 and 4 show
that the forms of distributions are not normal, but con-
centrate small values. Figure 3 shows that more than
90% pairs of caterpillars for CSLOGS concentrate on
the distances within 30, where the maximum values of
dv, &, dy anddy, are 70, 579, 403 and 473, respec-
tively. Also Figure 4 shows that more than 90% pairs
of caterpillars for dblp concentrate on the distances
within 40, where the maximum valuesof . o, dy
andd}; are 746, 813, 745 and 746, respectively.

Figure 5 illustrates the scatter chartslod, ubd
and 11, for N-glycans, all-glycans, CSLOGS and
dblp~. Here, the representation df/dyx means that
the number of pairs of caterpillars with the distance
dy is pointed at thex-axis and that with the distance
dy at they-axis.

Since the number of caterpillars in N-glycans is

0.45

ES

edit distance

distance

N-glycans

=3t -
15 20 25

distance
all-glycans

Figure 2: The distributions of distances for N-glycans and
all-glycans.

In order to cofirm it in more detail, we evaluate
how the lower bound distances and the upper bound
distances approximate to the edit distance. Then, Ta-
ble 4 illustrates the differenddiff for N-glycans, all-
glycans, dblp and CSLOGS.

Table 4 shows that more than 93% of caterpillars
for N-glycans satisfy thadiff <5, more than 94% of
caterpillars for all-glycans satisfy thdtff < 4, more
than 99% of caterpillars for dbipsatisfy thadiff <1
and more than 92% of caterpillars for CSLOGS sat-
isfy thatdiff <5.

Hence, since more than 90%&$p, 98%) of cater-
pillars satisfy thadiff <5 (resp, diff < 10), we can
conclude that majdy,dy } and mif{dy;, d;; } succeed
to approximater,, within 5 (resp, 10). This resultis
important for the case that the running time of com-
putingTtry, is large as CSLOGS.

small, so the scatter charts in Figure 5 are sparse. For

N-glycans and all-glycans, the difference between a
pair of ubd, Ibd and tr,, is almost within 10. For
CSLOGS and dblp, the difference is not large.

595



ICPRAM 2019 - 8th International Conference on Pattern Recognition Applications and Methods

o == 18 — ° ———%

MAX

6 8 10 12 1 16

wlt
o

30< d <100
Figure 4: The distributions of distances for dblp
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5 CONCLUSION I :
ya ya

In this paper, we have formulated tlertical dis- ‘ l w

tances ¢ anddy; and thehorizontal distancesigand g | g

d;, to approximate the edit distanag, . Then, we 1

have shown the following inequality:

max{dy,dn } < Tra < min{dy,dy }. R R
Furthermore, we have shown that, if we adopt the ubd/tra, dblp- Ibd,/ubd, dblp-

unit cost function, then we can compulg anddy,
in quadratic time andy andd}; in linear time.

Finally, we have given the experimental results to
evaluate the inequality and the running time for N-
glycans, all-glycans, CSLOGS and dblpThen, we University, Protein and Nasa from UW XML Reposi-
can conclude that by combinirdy, o, dy anddy, tory*. Note that, whereas the last four data contain no
we can approximate to the edit distance well such that caterpillars, we can obtain many caterpillars by delet-

min{dy,d;} —max{dy,dq} <5 ing the root €f., (Muraka et al., 2018)).
for more than 90% of caterpillars.

It is a future work to give experimental results 4UW XML Repository, http:/aiweb.cs.washington.edu
for other data such as SwissProt, TPC-H, Auction, /research/projects/xmlitk/xmldata/www/repository.htm

Figure 5: The scatter charts of liifd, ubd andtt,, for N-
glycans, all-glycans, CSLOGS and dblp
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Table 4: The differencaliff for N-glycans, all-glycans,
dblp~ and CSLOGS.

N-glycans . all-glycans

0 2448 186 0 1,105,515 3.47
1 11,619,644 34.46

1 17,091 12.96
2 10,547,139 33.10

2 32,404 24.58
3 4,633,275 14.54

3 33,949 25.75
4 2,108,501 6.62

4 24,240 18.46
5 1,001,311 3.14

5 13,420 10.18
6 458,637 1.44

6 5,801 4.40
7 203,334 0.64

7 1,751 1.33
8 110,184 0.35

8 475 0.36
9 49,385 0.16

9 109 0.08
10 20,461 0.06

10 47 0.04
1 5 0,00 11 6,999 0.02
12 2,393 0.01
- 13 801 0.00
dblp 14 350 0.00
diff £ % 15 147 0.00
0 6,960,854 52.42 13 ig 8'88

1 6,198,038 46.67 :

18 8 0.00

2 119,889 0.90
2 00 0.00 19 3 0.00
: 20 1 0.00

CSLOGS

diff # % diff # %
0 10,513,132 1.22 8 8,791,664 1.02
1 174,777,470 20.21 9 5,472,715 0.63
2 301,960,142 34.91 10 3,612,677 0.42
3 175,761,327 20.32 11 2,667,528 0.31
4 90,141,737 10.42 12 2,046,998 0.24
5 42,955,474 4.97 13 1,567,370 0.18
6 23,342,365 2.70 14 1,247,637 0.14
7 14,094,693 1.63 > 15 5,973,407 0.69

One of the reason that the approximation suc-
ceeds is that every node in a caterpillar is either an
element of the backbone or a leaf, that\g§C) =
bb(C) Ulv(C). Also dv anddy, are based on a string
edit distance fobb(C) anddy anddy, are based on
a multiset edit distance fdv(C). When we can ex-
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tend these distances to standard trees, it is necessary

how to determine a backbone and to deal with internal
nodes, which is a future work.
Concerned with the horizontal distances, we can

consider the repetition of the bag distance between
leaves after removing leaves from trees as possible.

Then, it is a future work to analyze such a distance.
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