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Abstract: A rooted labeled caterpillar(caterpillar, for short) is a rooted labeled tree transformed to a rooted path (called
a backbone) after removing all the leaves in it and we can compute theedit distancebetween caterpillars in
quartic time. In this paper, we introduce twovertical distancesand twohorizontal distancesfor caterpillars.
The former are based on astring edit distancebetween the string representations of the backbones and the
latter on amultiset edit distancebetween the multisets of labels occurring in all the leaves.Then, we show that
these distances give both lower bound and upper bound of the edit distance and we can compute the vertical
distances in quadratic time and the horizontal distances inlinear time under the unit cost function.

1 INTRODUCTION

Comparing tree-structured data such as HTML and
XML data for web mining or RNA and glycan data for
bioinformatics is one of the important tasks for data
mining. The most famous distance measure between
rooted labeled unordered trees(trees, for short) is the
edit distance(Tai, 1979). The edit distance is formu-
lated as the minimum cost ofedit operations, con-
sisting of asubstitution, a deletionand aninsertion,
applied to transform a tree to another tree. Unfor-
tunately, the problem of computing the edit distance
between trees is MAX SNP-hard (Zhang and Jiang,
1994), even if trees are binary or height 2 (Akutsu
et al., 2013; Hirata et al., 2011).

A caterpillar (cf. (Gallian, 2007)) is a tree trans-
formed to a rooted path after removing all the leaves
in it. Recently, Murakaet al. (Muraka et al., 2018)
have shown that we can compute the edit distance
between caterpillars inO(h2λ2) time, whereh is the
maximum height andλ is the maximum number of
leaves in caterpillars. Hence, the problem is quartic-
time tractable with respect to the maximum number
of nodes, which is not efficient well.

As an efficient distance comparing caterpillars,
histogram distances such as apath histogram dis-
tance (Kawaguchi et al., 2018), acomplete subtree
histogram distance(Akutsu et al., 2013; Yoshino
et al., 2018) and anLCA histogram distance(Yoshino
et al., 2018) have developed. Whereas these distances

are metrics for caterpillars and we can compute them
more efficiently (linear or quadratic time) than the edit
distance (quartic time), they are incomparable with
the edit distance in both theoretical and experimental.

In order to approximate the edit distance for cater-
pillars efficiently, in this paper, we introduce twover-
tical distances dV andd∗

V based on astring edit dis-
tanceand twohorizontal distances dH andd∗

H based
on amultiset edit distance. Here, the multiset edit dis-
tance coincides with a famousbag distance(Deza and
Deza, 2016) if we adopt a unit cost function.

Let C1 andC2 be caterpillars. Then,dV(C1,C2) is
the string edit distance between the string representa-
tions of the backbones ofC1 andC2, andd∗

V(C1,C2) is
the sum ofdV(C1,C2), the multiset edit distance be-
tween the multisets on labels occurring in the leaves
of the endpoints of the backbones inC1 andC2 and
the costs of deleting the remained leaves inC1 and
inserting the remained leaves inC2. Also dH(C1,C2)
is the multiset edit distance between the multisets of
labels occurring in all the leaves ofC1 andC2, and
d∗

H(C1,C2) is the sum ofdH(C1,C2), the cost of the
correspondence between the roots ofC1 andC2 and
the costs of deleting nodes in the backbone inC1 and
inserting nodes in the backbone inC2.

Then, we show that these distances provide the
following lower bound and upper bound of the edit
distanceτTAI (C1,C2) betweenC1 andC2.

max{dV(C1,C2),dH(C1,C2)}
≤ τTAI (C1,C2)≤ min{d∗

V(C1,C2),d∗
H(C1,C2)}.
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Furthermore, if we adopt the unit cost function, then
we can computedV(C1,C2), d∗

V(C1,C2), dH(C1,C2)
andd∗

H(C1,C2) in O(h2) time, O(h2+λ) time, O(λ)
time andO(λ+h) time, respectively. Hence, we can
compute the vertical distances in quadratic time and
the horizontal distances in linear time with respect to
the number of nodes.

Finally, we give experimental results to evaluate
the running time and the approximation for caterpil-
lars in real data.

2 PRELIMINARIES

A tree T is a connected graph(V,E) without cycles,
whereV is the set of vertices andE is the set of edges.
We denoteV andE by V(T) andE(T). Thesizeof
T is |V| and denoted by|T|. We sometime denote
v∈V(T) by v∈ T. We denote an empty tree( /0, /0) by
/0. A rooted treeis a tree with one noder chosen as its
root. We denote the root of a rooted treeT by r(T).

Let T be a rooted tree such thatr = r(T) and
u,v,w∈T. We denote the unique path fromr to v, that
is, the tree(V ′,E′) such thatV ′ = {v1, . . . ,vk}, v1 = r,
vk = v and(vi ,vi+1) ∈ E′ for everyi (1≤ i ≤ k−1),
by UPr(v).

Theparentof v(6= r), which we denote bypar(v),
is its adjacent node onUPr(v) and theancestorsof
v(6= r) are the nodes onUPr(v)−{v}. We say thatu is
achild of v if v is the parent ofu andu is adescendant
of v if v is an ancestor ofu. We denote the set of
children of v by ch(v) and thatv is a ancestor ofu
by u≤ v. We call a node with no children aleaf and
denote the set of all the leaves inT by lv(T).

A rooted path P is a rooted tree
({v1, . . . ,vn},{(vi ,vi+1) | 1 ≤ i ≤ n − 1}) such
thatr(P) = v1. We call the nodevn (the leaf ofP) an
endpointof P and denote it bye(P).

Thedegreeof v, denoted byd(v), is the number of
children ofv, and thedegreeof T, denoted byd(T), is
max{d(v) | v∈ T}. Theheightof v, denoted byh(v),
is max{|UPv(w)| | w∈ lv(T[v])}, and theheightof T,
denoted byh(T), is max{h(v) | v∈ T}.

We say thatu is to the left of vin T if pre(u) ≤
pre(v) for the preorder numberpre in T andpost(u)≤
post(v) for the postorder numberpost in T. We say
that a rooted tree isordered if a left-to-right order
among siblings is given;unorderedotherwise. We say
that a rooted tree islabeledif each node is assigned a
symbol from a fixed finite alphabetΣ. For a nodev,
we denote the label ofv by l(v), and sometimes iden-
tify v with l(v). In this paper, we call a rooted labeled
unordered tree atreesimply.

Definition 1 (Caterpillar (cf., (Gallian, 2007))). We

say that a tree is acaterpillar if it is transformed to a
rooted path after removing all the leaves in it. For a
caterpillarC, we call the remained rooted path aback-
boneof C and denote it bybb(C).

It is obvious thatr(C) = r(bb(C)) andV(C) =
bb(C)∪ lv(C) for a caterpillarC, that is, every node
in a caterpillar is either a leaf or an element of the
backbone.

Next, we introduce atree edit distanceand aTai
mapping.

Definition 2 (Edit operations (Tai, 1979)). The edit
operationsof a treeT are defined as follows, see Fig-
ure 1.

1. Substitution: Change the label of the nodev in T.

2. Deletion: Delete a nodev in T with parentv′,
making the children ofv become the children of
v′. The children are inserted in the place ofv as
a subset of the children ofv′. In particular, ifv is
the root inT, then the result applying the deletion
is a forest consisting of the children of the root.

3. Insertion: The complement of deletion. Insert a
nodev as a child ofv′ in T makingv the parent of
a subset of the children ofv′.

Substitution (v 7→ w)

v 7→ w

Deletion (v 7→ ε)

v
′

v

7→ v
′

Insertion (ε 7→ v)

v
′ 7→

v
′

v

Figure 1: Edit operations for trees.

Let ε 6∈Σ denote a specialblanksymbol and define
Σε = Σ∪{ε}. Then, we represent each edit operation
by (l1 7→ l2), where(l1, l2)∈ (Σε×Σε−{(ε,ε)}). The
operation is a substitution ifl1 6= ε andl2 6= ε, a dele-
tion if l2 = ε, and an insertion ifl1 = ε. For nodesv
andw, we also denote(l(v) 7→ l(w)) by (v 7→ w). We
define acost functionγ : (Σε ×Σε \{(ε,ε)}) 7→ R+ on
pairs of labels. We often constrain a cost functionγ to
be ametric, that is,γ(l1, l2)≥ 0, γ(l1, l2) =0 iff l1 = l2,
γ(l1, l2) = γ(l2, l1) andγ(l1, l3)≤ γ(l1, l2)+γ(l2, l3). In
particular, we call the cost function thatγ(l1, l2) = 1
if l1 6= l2 a unit cost function.
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Definition 3 (Edit distance (Tai, 1979)). For a cost
function γ, the costof an edit operatione= l1 7→ l2
is given byγ(e) = γ(l1, l2). The cost of a sequence
E = e1, . . . ,ek of edit operations is given byγ(E) =
∑k

i=1 γ(ei). Then, anedit distanceτTAI (T1,T2) be-
tween treesT1 andT2 is defined as follows:

τTAI (T1,T2) = min



γ(E)

∣∣∣∣∣∣

E is a sequence
of edit operations
transformingT1 to T2



 .

Definition 4 (Tai mapping (Tai, 1979)). Let T1 and
T2 be trees. We say that a triple(M,T1,T2) is a Tai
mapping(a mapping, for short) fromT1 to T2 if M ⊆
V(T1)×V(T2) and every pair(v1,w1) and(v2,w2) in
M satisfies the following conditions.

1. v1 = v2 iff w1 = w2 (one-to-one condition).

2. v1 ≤ v2 iff w1 ≤ w2 (ancestor condition).

We will useM instead of(M,T1,T2) when there is no
confusion denote it byM ∈ M TAI (T1,T2).

Let M be a mapping fromT1 to T2. Let IM andJM
be the sets of nodes inT1 andT2 but not inM, that is,
IM = {v∈ T1 | (v,w) 6∈M} andJM = {w∈ T2 | (v,w) 6∈
M}. Then, thecostγ(M) of M is given as follows.

γ(M) = ∑
(v,w)∈M

γ(v,w)+ ∑
v∈IM

γ(v,ε)+ ∑
w∈JM

γ(ε,w).

Theorem 1 (Tai, 1979). τTAI (T1,T2) = min{γ(M) |
M ∈ M TAI (T1,T2)}.

For computing the edit distance between trees, the
following theorem is well-known.

Theorem 2 (Akutsu et al., 2013; Hirata et al., 2011;
Zhang and Jiang, 1994). Let T1 and T2 be trees. Then,
the problem of computingτTAI (T1,T2) is MAX SNP-
hard, even if both T1 and T2 are binary or height2.

On the other hand, Murakaet al. (Muraka et al.,
2018) have recently shown the following theorem.

Theorem 3 (Muraka et al., 2018). Let C1 and C2
be caterpillars, where h= max{h(C1),h(C2)} and
λ = max{|lv(C1)|, |lv(C2)|}. Then, we can compute
τTAI (C1,C2) in O(h2λ2) time.

Finally, we introduce the notions of multisets. A
multisetonΣ is a mappingS: Σ →N. For a multisetS
on Σ, we say thata∈ Σ is anelementof S if S(a)> 0
and denote it bya ∈ S (like as a standard set). The
cardinalityof S, denoted by|S|, is defined as∑

a∈Σ
S(a).

Let S1 and S2 be multisets onΣ. Then, we
define the intersection S1 ⊓ S2 and the difference
S1 \ S2 are multisets satisfying that(S1 ⊓ S2)(a) =
min{S1(a),S2(a)} and (S1 \ S2)(a) = max{S1(a)−
S2(a),0} for every a ∈ Σ. Note thatS1 \S2 = S1 \
S1⊓S2 and|S1\S2|= |S1\S1⊓S2|= |S1|− |S1⊓S2|.

3 VERTICAL AND HORIZONTAL
DISTANCES FOR
CATERPILLARS

Theorem 3 claims that the problem of computing
τTAI (C1,C2) for caterpillarsC1 and C2 is tractable
in quartic time, which is not efficient well. In this
section, we give simple and efficient approximation
of τTAI (C1,C2) by usingvertical andhorizontal dis-
tances, respectively.

The vertical distance is based on astring edit
distance(cf., (Deza and Deza, 2016)) for the string
representation of the backbones. For stringss1
and s2, we denote the string edit distance between
s1 and s2 by σ(s1,s2). For a rooted pathP =
({v1, . . . ,vn},{(vi ,vi+1) | 1 ≤ i ≤ n− 1}) such that
r(P) = v1, we define thestring representationof P
as a stringl(v1) · · · l(vn) and denote it bys(P).

On the other hand, the horizontal distance is based
on amultiset edit distance, which is defined as similar
as another edit distance (cf., Definition 3).

The edit operationsof a multisetS on Σ are de-
fined as those of a tree. Leta,b∈ Σ such thatS(a)> 0
anda 6= b. Then, asubstitution(a 7→ b) operatesS(a)
to S(a)−1 andS(b) to S(b)+1, adeletion(a 7→ ε) op-
eratesS(a) to S(a)−1 and aninsertion(ε 7→ b) oper-
atesS(b) to S(b)+1. Also we assume a cost function
γ as in Section 2.

Definition 5 (Multiset edit distance). Let S1 andS2 be
multisets onΣ andγ a cost function. Then, amultiset
edit distance µ(S1,S2) betweenS1 andS2 is defined as
follows.

µ(S1,S2) = min



γ(E)

∣∣∣∣∣∣

E is a sequence
of edit operations
transformingS1 to S2



 .

For multisetsS1 and S2 such that|S1| ≤ |S2|
(resp., |S1| > |S2|), we can consider an injectionπ
from S1 to S2 (resp., from S2 to S1). For exam-
ple, let S1 and S2 be multisets such thatS1(a) = 3,
S1(b) = 0, S2(a) = 2 andS2(b) = 2. Then, by re-
gardingS1 and S2 as the sequences[a(1),a(2),a(3)]
and [a(1),a(2),b(1),b(2)] (where the superscript de-
notes the order of the element), the functionπ such
that π(a(1)) = a(2), π(a(2)) = b(2) andπ(a(3)) = a(1)

is an injection fromS1 to S2. When|S1| ≤ |S2| (resp.,
|S1| > |S2|), we denote the set of all the injections
from S1 to S2 (resp., fromS2 to S1) by Π1 (resp., Π2).

Lemma 1. The following equation holds.
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µ(S1,S2)

=





min
π∈Π1

{

∑
a∈S1

γ(a,π(a))+ ∑
b∈S2\π(S1)

γ(ε,b)

}
,

if |S1| ≤ |S2|,

min
π∈Π2

{

∑
b∈S2

γ(π(b),b)+ ∑
a∈S1\π(S2)

γ(a,ε)

}
,

otherwise.

Proof. Suppose that|S1| ≤ |S2|. By the minimality of
Definition 5, an injectionπ ∈ Π1 mapsa ∈ S1 to the
samea∈S2 as possible, that is,π(a) = a with the cost
γ(a,π(a)) = 0, and the remainedc∈ S1 to π(c) ∈ S2
with the costγ(c,π(c)). Then, the sum of the costs is
represented by∑

a∈S1

γ(a,π(a)). Furthermore, everyb∈

S2 \ π(S1) is inserted with the cost ∑
b∈S2\π(S1)

γ(ε,b).

Hence, the total cost implies the first formula.
Suppose that|S1| > |S2|. By the minimality of

Definition 5, an injectionπ ∈ Π2 mapsb ∈ S2 to the
sameb∈S1 as possible, that is,π(b) = b with the cost
γ(π(b),b) = 0, and the remainedc∈ S2 to π(c) ∈ S1
with the costγ(π(c),c). Then, the sum of the costs
is represented by∑

b∈S2

γ(π(b),b). Furthermore, every

a∈S1\π(S2) is deleted with the cost ∑
a∈S1\π(S2)

γ(a,ε).

Hence, the total cost implies the second formula.

If we adopt a unit cost function, then we can give
the following simpler form of Lemma 1 which coin-
cides with abag distance(Deza and Deza, 2016) be-
tween multisets.

Lemma 2. If γ is a unit cost function, then the follow-
ing statement holds.

µ(S1,S2) = max{|S1\S2|, |S2\S1|}.

Proof. Suppose that|S1| ≤ |S2|. Then, by Lemma 1,
it holds that:

∑
a∈S1

γ(a,π(a))

= ∑
a∈S1⊓S2

γ(a,a)

︸ ︷︷ ︸
=0

+ ∑
a∈S1\S1⊓S2,b∈S2\S1⊓S2,a6=b

γ(a,b)

= |S1\S1⊓S2|= |S1|− |S1⊓S2|.

On the other hand, sinceπ is an injection, it holds
that ∑

b∈S2\π(S1)

γ(ε,b) = |S2\π(S1)|= |S2|− |S1|. As a

result, it holds thatµ(S1,S2) = |S1|−|S1⊓S2|+ |S2|−
|S1|= |S2|− |S1⊓S2|= |S2\S1|.

Furthermore, in this case, by the supposition that
|S1| ≤ |S2| and since|S2\S1|= |S2\S1⊓S2|= |S2|−
|S1⊓S2| and|S1\S2|= |S1\S1⊓S2|= |S1|−|S1⊓S2|,

it holds that|S2 \S1| ≥ |S1 \S2|. Hence,|S2 \S1| =
max{|S1\S2|, |S2\S1|}.

By using the same discussion, if|S1| > |S2|, then
µ(S1,S2) = |S1\S2|= max{|S1\S2|, |S2\S1|}.

Lemma 3. We can compute µ(S1,S2) in
O(m2M) time, where m= min{|S1|, |S2|} and
M = max{|S1|, |S2|}. Furthermore, if we adopt the
unit cost function, then we can compute µ(S1,S2) in
O(m+M) time.

Proof. By Lemma 1 and by using the same technique
based on the maximum weighted bipartite matching
algorithm for the complete bipartite graph consisting
of S1 andS2 (cf., (Yamamoto et al., 2014; Zhang et al.,
1996)), we can computeµ(S1,S2) in O(m2M) time.
On the other hand, by Lemma 2, we can compute
µ(S1,S2) in O(m+M) time.

Hence, we formulate vertical and horizontal dis-
tances between caterpillars. Here, we regard a setL
of leaves as a multiset of labels onΣ occurring inL,
which we denote bỹL.

Definition 6 (Vertical and horizontal distances). For
i = 1,2, let Ci be a caterpillar such thatr i = r(Ci),
Bi = bb(Ci), Li = lv(Ci) andEi = ch(e(Bi)). Then, we
define twovertical distances dV andd∗

V as follows.

dV(C1,C2) = σ(s(B1),s(B2)).

d∗
V(C1,C2) = dV(C1,C2)+µ(Ẽ1, Ẽ2)

+ ∑
v∈L1\E1

γ(v,ε)+ ∑
w∈L2\E2

γ(ε,w).

Also we define twohorizontal distances dH andd∗
H as

follows.

dH(C1,C2) = µ(L̃1, L̃2).
d∗

H(C1,C2) = dH(C1,C2)+ γ(r1, r2)
+ ∑

v∈B1\{r1}

γ(v,ε)+ ∑
w∈B2\{r2}

γ(ε,w).

Theorem 4. Let C1 and C2 be caterpillars. Then, the
following statement holds.

max{dV(C1,C2),dH(C1,C2)}
≤ τTAI (C1,C2)≤ min{d∗

V(C1,C2),d∗
H(C1,C2)}.

Proof. In order to show the left inequality, it is suf-
ficient to show how the values ofdV(C1,C2) and
dH(C1,C2) change whenC2 is obtained by applying
one edit operation toC1.

If C2 is obtained by substituting to an element
in bb(C1), then it holds thatdV(C1,C2) = 1 and
dH(C1,C2) = 0. If C2 is obtained by substituting to
a leaf inlv(C1), then it holds thatdV(C1,C2) = 0 and
dH(C1,C2) = 1. If C2 is obtained by deleting an el-
ement inbb(C1), then it holds thatdV(C1,C2) = 1
anddH(C1,C2) = 0. If C2 is obtained by deleting a
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leaf in lv(C1), then it holds thatdV(C1,C2) = 0 and
dH(C1,C2) = 1.

As a result, ifC2 is obtained by applying one
edit operation toC1, then both values ofdV(C1,C2)
and dH(C1,C2) change at most one. Hence, it
holds thatdV(C1,C2)≤ τTAI (C1,C2) anddH(C1,C2)≤
τTAI (C1,C2), which implies the left inequality.

On the other hand, it order to show the right in-
equality, by regarding the correspondences between
B1 and B2 in σ(s(B1),s(B2)) and those betweenL1

andL2 in µ(L̃1, L̃2) as the pairs ofV(C1)×V(C2), the
set of correspondences between nodes indV(C1,C2)
and dH(C1,C2) form Tai mappings. Then, it is ob-
vious that all the correspondences ind∗

V(C1,C2) and
d∗

H(C1,C2) are one-to-one.
Since the correspondences indV(C1,C2) preserve

ancestor relation and every node inEi is a descendant
of the node ine(Bi) (i = 1,2), all the correspondences
in d∗

V(C1,C2) preserve ancestor relation. Also, since
every leaf inLi is an descendant of the rootr i in Ci (i =
1,2), all the correspondences ind∗

H(C1,C2) preserve
ancestor relation.

As a result, all the correspondences ind∗
V(C1,C2)

and d∗
H(C1,C2) form Tai mappings betweenC1 and

C2, respectively, which implies thatτTAI (C1,C2) ≤
d∗

V(C1,C2) and τTAI (C1,C2) ≤ d∗
H(C1,C2) by Theo-

rem 1. Hence, the right inequality holds.

Theorem 5. Let C1 and C2 be caterpillars, where h=
max{h(C1),h(C2)} and λ = max{|lv(C1)|, |lv(C2)|}.
Then, we can compute dV(C1,C2), d∗V(C1,C2),
dH(C1,C2) and d∗H(C1,C2) in O(h2) time, O(h2+λ3)
time, O(λ3) time and O(λ3 + h) time, respectively.
Furthermore, if we adopt the unit cost function, then
we can compute dV(C1,C2), d∗V(C1,C2), dH(C1,C2)
and d∗H(C1,C2) in O(h2) time, O(h2 + λ) time, O(λ)
time and O(λ+h) time, respectively.

Proof. It is obvious by Lemma 3 and since we can
computeσ(s(B1),s(B2)) in O(h2) time (cf., (Deza and
Deza, 2016)).

Hence, if we adopt the unit cost function, then we
can compute the vertical distances ofdV(C1,C2) and
d∗

V(C1,C2) in quadratic time and the horizontal dis-
tances ofdH(C1,C2) andd∗

H(C1,C2) in linear time.

4 EXPERIMENTAL RESULTS

In this section, we give experimental results to eval-
uate the inequality in Theorem 4 and the running
time in Theorem 5 (under the unit cost function).
Here, concerned with Theorem 4, we denote the lower
bound distance max{dV ,dH} of τTAI by lbd and the

upper bound distance min{d∗
V ,d

∗
H} of τTAI by ubd.

Also letdiff = ubd− lbd.
In this paper, we use the real data illustrated from

Table 1, which illustrates the number of caterpillars in
N-glycans and all-glycans from KEGG1, CSLOGS2,
dblp3. Here, #cat is the number of caterpillars and
#data is the total number of data.

Table 1: The number of caterpillars in N-glycans and all-
glycans from KEGG, CSLOGS and dblp.

dataset #cat #data %

N-glycans 514 2,142 23.996
all-glycans 8,005 10,704 74.785
CSLOGS 41,592 59,691 69.679
dblp 5,154,295 5,154,530 99.995

We deal with caterpillars for N-glycans, all-
glycans, CSLOGS and the largest 5,154 caterpillars
(0.1%) in dblp (we refer to dblp−). Table 2 illus-
trates the information of such caterpillars. Here, # is
the number of caterpillars,n is the average number of
nodes,d is the average degree,h is the average height,
λ is the average number of leaves andβ is the average
number of labels.

Table 2: The information of caterpillars in N-glycans, all-
glycans, CSLOGS and dblp−.

dataset # n d h λ β

N-glycans 514 6.40 1.84 4.22 2.18 4.50
all-glycans 8,005 4.74 1.49 3.02 1.72 2.84
CSLOGS 41,592 5.84 3.05 2.20 3.64 5.18
dblp− 5,154 41.74 40.73 1.01 40.73 10.62

First, Table 3 illustrates the running time to com-
pute the vertical distancesdV andd∗

V , the horizontal
distancesdH andd∗

H and the edit distanceτTAI (Mu-
raka et al., 2018) for all the pairs of caterpillars in
Table 2.

Table 3: The running time of computing distancesdV , d∗V ,
dH , d∗H andτTAI (sec).

dataset dV d∗
V dH d∗

H τTAI

N-glycans 0.15 0.26 0.17 0.19 635.97
all-glycans 20.35 48.08 29.98 20.35 57,011.10
CSLOGS 336.72 1,821.36 1,564.28 1,788.53 —
dblp− 2.86 149.17 137.20 143.22 6,363.79

1Kyoto Encyclopedia of Genes and Genomes, http://
www.kegg.jp/

2CSLOGS: http://www.cs.rpi.edu/∼zaki/www-new/pm
wiki.php/Software/Software

3dblp computer science bibliography: http://dblp.uni-
trier.de/
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Table 3 shows that, as the experimental evaluation
of Theorem 5 (and 3), the running time of comput-
ing all the distances ofdV , d∗

V , dH and d∗
H is much

smaller than that of the edit distanceτTAI , and the run-
ning time of computing the horizontal distanced∗

H is
smaller than that of the vertical distanced∗

V .
Note that, the reason why the running time of

computingdV for dblp− is extremely small is that the
height in every caterpillar in dblp− is either 1 or 2
and then the running time ofσ(s(B1),s(B2)) is small.
Also, the height of 88% in caterpillars for CSLOGS is
from 1 to 3, which is the reason why the running time
of computingdV is smaller than that of other distances
for CSLOGS. Furthermore, in contrast to Theorem 5,
the running time of computingdV andd∗

V (in O(h2)
andO(h2+λ) time in theoretical) is not much larger
than that ofdH andhd∗ (in O(λ) andO(λ+ h) time
in theoretical), because we conjecture that the height
in caterpillars for all the data is too small to influence
the running time.

Next, we compare the distances ofdV , d∗
V , dH , d∗

H
andτTAI . Figure 2 illustrates the distributions of the
distances for N-glycans and all-glycans. Also Fig-
ure 3 and 4 illustrate the distributions of the distances
to 10, from 10 to 30, from 30 to 100 and from 100,
for CSLOGS and dblp−, respectively. Since we can-
not computeτTAI for CSLOGS, Figure 3 presents the
distances ofdV , d∗

V , dH and d∗
H . Since the vertical

distancedV for more than 99% pairs of caterpillars in
CSLOGS is 0 or 1, Figure 4 presents the distances of
d∗

V , dH , d∗
H andτTAI

Figure 2 shows that the forms of all the distribu-
tions in are nearly normal,lbd is left to τTAI andτTAI

is left toubd. On the other hand, Figure 3 and 4 show
that the forms of distributions are not normal, but con-
centrate small values. Figure 3 shows that more than
90% pairs of caterpillars for CSLOGS concentrate on
the distances within 30, where the maximum values of
dV , d∗

V , dH andd∗
H are 70, 579, 403 and 473, respec-

tively. Also Figure 4 shows that more than 90% pairs
of caterpillars for dblp− concentrate on the distances
within 40, where the maximum values ofτTAI . d∗

V , dH
andd∗

H are 746, 813, 745 and 746, respectively.
Figure 5 illustrates the scatter charts oflbd, ubd

and τTAI for N-glycans, all-glycans, CSLOGS and
dblp−. Here, the representation ofdy/dx means that
the number of pairs of caterpillars with the distance
dx is pointed at thex-axis and that with the distance
dy at they-axis.

Since the number of caterpillars in N-glycans is
small, so the scatter charts in Figure 5 are sparse. For
N-glycans and all-glycans, the difference between a
pair of ubd, lbd and τTAI is almost within 10. For
CSLOGS and dblp−, the difference is not large.
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Figure 2: The distributions of distances for N-glycans and
all-glycans.

In order to cofirm it in more detail, we evaluate
how the lower bound distances and the upper bound
distances approximate to the edit distance. Then, Ta-
ble 4 illustrates the differencediff for N-glycans, all-
glycans, dblp− and CSLOGS.

Table 4 shows that more than 93% of caterpillars
for N-glycans satisfy thatdiff ≤ 5, more than 94% of
caterpillars for all-glycans satisfy thatdiff ≤ 4, more
than 99% of caterpillars for dblp− satisfy thatdiff ≤ 1
and more than 92% of caterpillars for CSLOGS sat-
isfy thatdiff ≤ 5.

Hence, since more than 90% (resp., 98%) of cater-
pillars satisfy thatdiff ≤ 5 (resp., diff ≤ 10), we can
conclude that max{dV ,dH} and min{d∗

V ,d
∗
H} succeed

to approximateτTAI within 5 (resp., 10). This result is
important for the case that the running time of com-
putingτTAI is large as CSLOGS.
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Figure 3: The distributions of distances for CSLOGS.
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5 CONCLUSION

In this paper, we have formulated thevertical dis-
tances dV andd∗

V and thehorizontal distances dH and
d∗

H to approximate the edit distanceτTAI . Then, we
have shown the following inequality:

max{dV ,dH} ≤ τTAI ≤ min{d∗
V ,d

∗
H}.

Furthermore, we have shown that, if we adopt the
unit cost function, then we can computedV andd∗

V
in quadratic time anddH andd∗

H in linear time.
Finally, we have given the experimental results to

evaluate the inequality and the running time for N-
glycans, all-glycans, CSLOGS and dblp−. Then, we
can conclude that by combiningdV , d∗

V , dH andd∗
H ,

we can approximate to the edit distance well such that
min{d∗

V ,d
∗
H}−max{dV ,dH} ≤ 5

for more than 90% of caterpillars.
It is a future work to give experimental results

for other data such as SwissProt, TPC-H, Auction,
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Figure 5: The scatter charts of oflbd, ubd andτTAI for N-
glycans, all-glycans, CSLOGS and dblp−.

University, Protein and Nasa from UW XML Reposi-
tory4. Note that, whereas the last four data contain no
caterpillars, we can obtain many caterpillars by delet-
ing the root (cf., (Muraka et al., 2018)).

4UW XML Repository, http://aiweb.cs.washington.edu
/research/projects/xmltk/xmldata/www/repository.html
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Table 4: The differencediff for N-glycans, all-glycans,
dblp− and CSLOGS.

N-glycans

diff # %

0 2,448 1.86
1 17,091 12.96
2 32,404 24.58
3 33,949 25.75
4 24,240 18.46
5 13,420 10.18
6 5,801 4.40
7 1,751 1.33
8 475 0.36
9 109 0.08

10 47 0.04
11 6 0.00

dblp−

diff # %

0 6,960,854 52.42
1 6,198,038 46.67
2 119,889 0.90
3 500 0.00

all-glycans

diff # %

0 1,105,515 3.47
1 11,619,644 34.46
2 10,547,139 33.10
3 4,633,275 14.54
4 2,108,501 6.62
5 1,001,311 3.14
6 458,637 1.44
7 203,334 0.64
8 110,184 0.35
9 49,385 0.16

10 20,461 0.06
11 6,999 0.02
12 2,393 0.01
13 801 0.00
14 350 0.00
15 147 0.00
16 30 0.00
17 18 0.00
18 8 0.00
19 3 0.00
20 1 0.00

CSLOGS

diff # %

0 10,513,132 1.22
1 174,777,470 20.21
2 301,960,142 34.91
3 175,761,327 20.32
4 90,141,737 10.42
5 42,955,474 4.97
6 23,342,365 2.70
7 14,094,693 1.63

diff # %

8 8,791,664 1.02
9 5,472,715 0.63

10 3,612,677 0.42
11 2,667,528 0.31
12 2,046,998 0.24
13 1,567,370 0.18
14 1,247,637 0.14

≥ 15 5,973,407 0.69

One of the reason that the approximation suc-
ceeds is that every node in a caterpillar is either an
element of the backbone or a leaf, that is,V(C) =
bb(C)∪ lv(C). Also dV andd∗

V are based on a string
edit distance forbb(C) anddH andd∗

H are based on
a multiset edit distance forlv(C). When we can ex-
tend these distances to standard trees, it is necessary
how to determine a backbone and to deal with internal
nodes, which is a future work.

Concerned with the horizontal distances, we can
consider the repetition of the bag distance between
leaves after removing leaves from trees as possible.
Then, it is a future work to analyze such a distance.
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