A Comparison of Embedded Deep Learning Methods for Person

Keywords:

Abstract:

Detection

Chloe Eunhyang Kim!, Mahdi Maktab Dar Oghaz?, Jiri Fajtl?, Vasileios Argyriou?

and Paolo Remagnino®

YWCA Technology Ltd, Surrey, UK.
2Kingston University, London, U.K.

Embedded Systems, Deep Learning, Object Detection, Convolutional Neural Network, Person Detection,
YOLO, SSD, RCNN, R-FCN.

Recent advancements in parallel computing, GPU technology and deep learning provide a new platform for
complex image processing tasks such as person detection to flourish. Person detection is fundamental pre-
liminary operation for several high level computer vision tasks. One industry that can significantly benefit
from person detection is retail. In recent years, various studies attempt to find an optimal solution for person
detection using neural networks and deep learning. This study conducts a comparison among the state of the
art deep learning base object detector with the focus on person detection performance in indoor environments.
Performance of various implementations of YOLO, SSD, RCNN, R-FCN and SqueezeDet have been assessed
using our in-house proprietary dataset which consists of over 10 thousands indoor images captured form shop-
ping malls, retails and stores. Experimental results indicate that, Tiny YOLO-416 and SSD (VGG-300) are
the fastest and Faster-RCNN (Inception ResNet-v2) and R-FCN (ResNet-101) are the most accurate detectors
investigated in this study. Further analysis shows that YOLO v3-416 delivers relatively accurate result in a

reasonable amount of time, which makes it an ideal model for person detection in embedded platforms.

1 INTRODUCTION

The rise of industry 4.0, IoT and embedded systems
pushes various industries toward data driven solutions
to stay relevant and competitive. In the retail industry,
customer behavior analytic is one of the key elements
of data driven marketing. Metrics such as customer’s
age, gender, shopping habits and moving patterns al-
low retailers to understand who their customers are,
what they do and what they are looking for. these
metrics also enables retailers to push customized and
personalized marketing schemes to their customers
across various stages of the customer life-cycle. Ad-
ditionally, with the help of predictive models, retailers
are now enable to predict what their customers are li-
kely to do in the future and gain edge over their com-
petitors. In recent years, there has been an increasing
interest in the analysis of in-store customer behavior.
Retailers are looking for insights on in-store custo-
mer’s journey; Where do they go? What products do
they browse? and most importantly, which products
do they purchase (Ghosh et al., 2017) (Majeed and
Rupasinghe, 2017) (Balaji and Roy, 2017)?

Kim, C., Oghaz, M., Fajtl, J., Argyriou, V. and Remagnino, P.
A Comparison of Embedded Deep Learning Methods for Person Detection.
DOI: 10.5220/0007386304590465

Over the last decade, several tracking approaches
such as sensor based, optical based and radio based
have been proposed. However, The majority of them
are not efficient and reliable enough, or they expect
some form of interaction with customers which might
compromise their shopping experience (Jia et al.,
2016)(Foxlin et al., 2014). Analysis of in-store cu-
stomer behavior through optical video signal recor-
ded by security cameras has clear advantage over ot-
her approaches as it utilizes the existing surveillance
infrastructure and operates seamlessly with no inte-
raction and interference with customers (Ohata et al.,
2014)(Zuo et al., 2016). Despite the clear advan-
tage of this approach, analysis of video signal requi-
res complex and computationally expensive models,
which up until recent years, was impractical in the
real world. Recent advancements in parallel compu-
ting and GPU technology diminished this computatio-
nal barrier and allowed complex models such as deep
learning to flourish (Nickolls and Dally, 2010).

Aside from hardware limitations, classic compu-
ter vision and machine learning techniques had hard
time to model these complex patterns, however the

459

In Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2019), pages 459-465

ISBN: 978-989-758-354-4

Copyright (© 2019 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications

rise of data driven approaches such as deep learning,
simplified these tasks, eliminating the need for dom-
ain expertise and hard-core feature extraction. A reli-
able yet computationally reasonable person detection
model is fundamental requirement for in-store cus-
tomer behavior analysis. Numerous studies focused
on person detection using deep neural network mo-
dels. However, none of which particularly focused on
the person detection in in door retail environments.
Despite the similarity of these topics, there are a num-
ber of unique challenges, such as lighting condition,
camera angles, clutter and queues in retail environ-
ments, which questions the adaptability of the ex-
isting person detection solutions for retail environ-
ments.

In this regard, this research is mainly focused on
person detection as a preliminary step for in-store cu-
stomer behavior modeling. We are particularly in-
terested in evaluation and comparison of deep neu-
ral network (DNN) person detection models in cost-
effective, end-to-end embedded platforms such as the
Jetson TX2 and Movidius. State of the art deep le-
arning models use general purpose datasets such as
PASCAL VOC or MS COCO to train and evaluate.
Despite their similarities, these dataset cannot be true
representative of the retail and store environments.
In data driven techniques such as deep learning, this
adaptability issues are more pronounced than ever be-
fore (LeCun et al., 2015). To address these issues, this
research investigates the performance of state of the
art DNN models including variations of YOLO, SSD,
RCNN, R-FCN and SqueezeDet in person detection
using an in-house proprietary image dataset were cap-
tured by conventional security cameras in retail and
stores environments.

These images were manually annotated to form
the ground truth for training and evaluation of the
deep models. Having deep models trained by the si-
milar type of images that could be found in target en-
vironment, can significantly improve the accuracy of
the models. However, preparation of a very large an-
notated dataset is a big challenge. This research em-
ploys average precision metric at various intersection
over union (IoU) as the figure of merit to compare
model performance. As processing speed is a key fac-
tor in embedded systems, this research also conducts
a comprehensive comparison among the aforementi-
oned DNN techniques to find the most cost-effective
approach for person detection in embedded systems.

The major contributions of this study can be sum-
marized as: first, integration and optimization of the
state of the art person detection algorithm into em-
bedded platforms; second, an end-to-end comparative
study among the existing person detection models in

460

terms of accuracy and performance and finally, a pro-
prietary dataset, which can be used in indoor human
and analysis studies.

The paper is organized as follow. Section 2 briefly
describes the state of art object detection models used
in this research. Section 3 presents the overall frame-
work, data acquisition process as well as experimental
setup of the research. Section 4 describes the experi-
mental results and discussions and finally, sections 5
concludes the research.

2 CNN BASED OBJECT
DETECTION

Various DNN based object detector have been pro-
posed in the last few years. This research investiga-
tes the performance of state of the art DNN models
including variations of YOLO, SSD, RCNN, R-FCN
and SqueezeDet in person detection. The models have
been trained using an in-house proprietary image da-
taset were captured by conventional security cameras
in retail and stores environments. The following secti-
ons describes aforementioned DNN models in more
details.

2.1 RCNN Variants

The region-based convolutional neural network
(RCNN) solution for object detection is quite straig-
htforward. This technique uses selective search to
extract just 2000 regions (region proposal) from the
image and then, instead of trying to classify a huge
number of regions throughout the image only these
2000 region will be investigated. Selective search ini-
tially generates candidate regions, then uses a greedy
algorithm to recursively combine similar regions into
larger ones. Finally, it uses the generated regions to
produce the final candidate region proposals. The re-
gion proposals will be passed to a conventional neural
network (CNN) for classification. Despite RCNN has
lots of advantages over the conventional DNN object
detector (Girshick et al., 2016), this technique is still
quite slow for any real-time application. Furthermore,
a predefined threshold of 2000 region proposal cannot
be suitable for any given input image.

To address these limitations, other variants of
RCNN have been introduced (Ren et al., 2015). Fas-
ter RCNN is one popular variant of RCNN which
mainly devised to speed up RCNN. This algorithm
eliminates the selective search algorithm used in the
conventional RCNN and allows the network learn the
region proposals. The mechanism is very similar to
fast RCNN where an image is provided as input to a

A Comparison of Embedded Deep Learning Methods for Person Detection

CNN to generate a feature map but, instead of using a
selective search algorithm on the feature map to iden-
tify the region proposals, a separate network is used
to predict region proposals. The predicted region pro-
posals are then reshaped using a region of interest
(Rol) pooling layer and used to classify the image in-
put within the proposed region (Ren et al., 2015). To
train the Region Proposal Network, a binary class la-
bel has been assigned to each anchor (1: being object
and 0: not object). Any with IoU over 0.7 determines
object presence and anything below 0.3 indicates no
object exists. With these assumptions, we minimize
an objective function following the multi-task loss in
Fast R-CNN which is defined as:

L({pi}.{t:}) = ZNCIS pirpi’)+

N(,\ i

ZPi*Lreg(tiati*) (1)

reg

where i is the index of anchor in the batch, p; is its
predicted probability of being an object; p;* is the
ground truth probability of the anchor (1: represents
object, 0: represents non-object); ¢; is a vector which
denotes the bounding box coordinates; #;* is ground
truth bounding box coordinates; L. is classification
log loss and Lreg is regression loss. We have also de-
ployed the Faster RCNN model using the Google in-
ception framework which is expected to be less com-
putational intensive.

2.2 R-FCN Variants

In contrast to the RCNN model which applies a
costly per-region subnetwork hundreds of times, re-
gion based fully convolutional network (R-FCN) is
an accurate and efficient object detector that spre-
ads the computation across the entire image. A
position-sensitive score map is used to find a trade-
off between translation-invariance in image classifi-
cation and translation-variance in object detection. A
position-sensitive score defined as following:

r(i,j18)= Y

(x,y)€bin(i,j)

Zijc(X+x0,y+y0 |8)/n (2)

where 7 (i, j) is the pooled response in the (i, /)" bin
in the ¢ category; Zi,j,c 1s one score map out of the
k?(C + 1) score map; 7 in the number of the pixels in
the bin; (xo,uo) represents the top left corner of the
region of interest and 6 denotes network learning pa-
rameters. The loss function defined on each region of
interest which calculated by summation of the cross
entropy loss and box regression loss as following:

L(s,txywn) = Lets(s¢+) +Mc™ > 0]Lyeg (1,67) - (3)

where ¢* is the region of interest ground truth label;
Leis(se+) s cross entropy loss for classification; t* re-
presents the ground truth box and Lreg is the boun-
ding box regression loss. Aside from the original
R-FCN, this study also investigates the R-FCN mo-
del with the Google inception framework (Dai et al.,
2016).

2.3 YOLO Variants

You only look once (YOLO) is another state of the art
object detection algorithm which mainly targets real
time applications. it looks at the whole image at test
time and its predictions are informed by global con-
text in the image. It also makes predictions with a
single network evaluation unlike models such RCNN,
which require thousands for a single image. YOLO
divides the input image into an Sx§ grid. If the cen-
ter of an object falls into a grid cell, that cell is re-
sponsible for detecting that object. Each grid cell pre-
dicts five bounding boxes as well as confidence score
for those boxes. The score reflects how confident the
model is about the presence of an object in the box.
For each bounding box, the cell also predicts a class.
It gives a probability distribution score over all the
possible classes designate the object class. Combina-
tion of the confidence score for the bounding box and
the class prediction, indicates the probability that this
bounding box contains a specific type of object. The
loss function is defined as:

coardz Z 101)] _xl +(yi_)/};)2]+
i=0j=0
c(mrd Z Z 10bj \/Wi_ \% {V\i)z + (\/]71_ \/hjl)z]—"_
i=0j=0
s> B bi b
ZZ OJC C +7\'caordzzlojc C)
i=0j=0 i=0 j=0
obj ~
Zl 7Y (pile) = pile)?
ccclasses
“)
where lfbj indicates if object appears in cell i and

1;)%}". denotes the j* bounding box predictor in cell

i responsible for that prediction; x,y,w,h and C de-
note the coordinates represent the center of the box
relative to the bounds of the grid cell, the width and
height are predicted relative to the whole image and
finally C denotes the confidence prediction represents

461

VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications

the IoU between the predicted box and any ground
truth box. This study also investigates the other va-
riants of YOLO including YOLO-v2 as well as Tiny
YOLO models performance for person detection in
retail environments (Redmon et al., 2016)(Redmon
and Farhadi, 2017).

2.4 SSD Variants

Single shot multi-box detector (SSD) is one of the
best object detector in terms of speed and accuracy.
The SSD object detector comprises two main steps in-
cluding feature maps extraction, and convolution fil-
ters application to detect objects. A predefined boun-
ding box (prior) is matched to the ground truth ob-
jects based on IoU ratio. Each element of the fea-
ture map has a number of default boxes associated
with it. Any default box with an IoU of 0.5 or gre-
ater with a ground truth box is considered a match.
For each box, the SSD network computes two critical
components including confidence loss which measu-
res how confident the network is at the presence of an
object in the computed bounding box using categori-
cal cross-entropy and location loss which computes
how far away the networks predicted bounding boxes
are from the ground truth ones based on the training
data (Huang et al., 2017)(Liu et al., 2016). The over-
all loss function is defined as following:

1
L(x,c,l,8) = N(Lwnf(x,c) + 0oL (x,0,8)) (5)

where N is the number of matched default boxes. Ot-
her variants of the standard SSD with 300 and 512 in-
puts as well as MobileNet and Inception models has
been implemented and tested in this research (Howard
et al., 2017)(Szegedy et al., 2015).

2.5 SqueezeDet

SqueezeDet is a real-time object detector used for
autonomous driving systems. This model claims
high accuracy as well as reasonable response latency,
which are crucial for autonomous driving systems. In-
spired by the YOLO, this model uses fully convoluti-
onal layers not only to extract feature maps, but also
to compute the bounding boxes and predict the object
classes. The detection pipeline of SqueezeDet only
contains a single forward pass over the network, ma-
king it extremely fast (Wu et al., 2017). SqueezeDet
can be trained end-to-end, similarly to the YOLO and
it shares similar loss function with YOLO object de-
tection.

462

3 RESEARCH FRAMEWORK

Similar to any other machine learning task, this rese-
arch employs training/testing and validation strategy
to create the prediction models. All CNN models
were trained and tested using our proprietary dataset.
Predictions were compared against ground truth by
means of cross entropy loss function to back propa-
gate and optimize network weights, biases and other
network parameters. Finally, the trained models were
tested against an unseen validation set to identify the
models performance in real life. Figure 1 shows over-
all experimental framework.

Neural Networks
%7&»(! Forward—| 0
S == 7 3
T b-Sey i
Training . =0
<S5 =]
-7 S
%—Feedﬂnwam—» e 2 7T
w/ =3 T
Testing Set R-FCN le—Back Propagation—| (') W
s
#8ES Loss Annotated
=S Function Ground Truth
YOoLo
7 —eed Forward—| A
% Ef S fon
Validation -ﬁ_
RNCC
Set ‘ J
Results

Figure 1: Overall experimental framework.

3.1 Data Acquisition

We have prepared a relatively large dataset compri-
sing total number of 10,972 image were mostly captu-
red from CCTV cameras placed in department stores,
shopping malls and retails. Majority of the images
were captured in indoor environments under various
conditions such as distance, lighting, angle, and ca-
mera type. Given the fact that each camera has its
own color depth and temperature, field of view and
resolution, all images passed through a preprocessing
operation which ensures consistency across entire in-
put data. Figure 2 shows some examples of our data-
set.

Figure 2: An example of tilt (left) and top-down (right)
frame in dataset.

In order to ease and speed up the annotation pro-
cess, we have employed a semi-automatic annotation
mechanism which uses a Faster RCNN inception mo-
del to generate the initial annotations for each given

A Comparison of Embedded Deep Learning Methods for Person Detection

Table 1: Average precision at IoU 0.95 and 0.50.

AP AP
Model Framework [IoU=0.95] [IoU=0.50]
1 Faster RCNN (ResNet-101) Tensorflow 0.245 0.476
2 YOLOv3-416 Darknet 0.143 0.367
3 Faster RCNN (Inception ResNet-v2) Tensorflow 0.317 0.557
4 YOLOV2-608 Darknet 0.198 0.463
5 Tiny YOLO-416 Darknet 0.035 0.116
6 SSD (Mobilenet v1) Tensorflow 0.094 0.233
7 SSD (VGG-300) Tensorflow 0.148 0.307
8 SSD (VGG-500) Tensorflow 0.183 0.403
9 R-FCN (ResNet-101) Tensorflow 0.246 0.486
10 Tiny YOLO-608 Darknet 0.06 0.185
11 SSD (Inception ResNet-v2) Tensorflow 0.116 0.267
12 SqueezeDet Tensorflow 0.003 0.012
13 R-FCN Tensorflow 0.124 0.319

input image. The detection results were manually in-
vestigated and fine tuned to insure the reliability and
integrity of the ground truth. Moreover, images with
no person presence have been removed from the da-
taset. Finally, a random sampling process performed
over entire images. The final dataset consists of to-
tal number of 10,972 images no background overlap,
divided into training set (5,790 images), testing set
(2,152 images) and validation set (3,030 images).

3.2 Experimental Setup

To measure and compare the average precision (AP)
and IoU of the deep models, we have used a worksta-
tion powered by 16 GB of internal memory and Nvi-
dia GTX 1080ti graphics accelerator. To measure and
compare the time complexity metrics, we have utili-
zed two common embedded platforms including the
Nvidia Jetson TX?2 as well as Movidius to run the ex-
periments.

4 EXPERIMENTAL RESULTS
AND DISCUSSIONS

We investigated 13 different object detector deep
models including variants of YOLO, SSD, RCNN,
RFCN and SqueezeDet. To measure the accuracy of
these models, we have used AP at two different IoU
ratios, including 0.5 which denotes a fair detection
and 0.95 which indicates a very accurate detection.
Table 2 summarizes the AP across various object de-
tectors. It can be observed that, when IoU is 0.95, Fas-
ter RCNN (Inception ResNet-v2) with average preci-
sion of 0.317 outperforms other object detector in this
research. Faster RCNN (ResNet-101) alongside R-
FCN (ResNet-101) with respective AP of 0.245 and
0.246 are among the best performers in this category.

On the other hand, SqueezeDet and Tiny YOLO-
608 with respective AP of 0.003 and 0.06 performed
poorly in this category. Results with IoU = 0.50 show
a very similar trend. Once again, Faster RCNN (In-

Table 2: Total latency of inference in both CPU and GPU
modes.

Model CPU Latency (S) GPULatency (S)
1 Faster RCNN (ResNet-101) 3.271 0.232
2 YOLOv3-416 5.183 0.017
3 Faster RCNN (Inception ResNet-v2) 10.538 0.478
4 YOLOv2-608 11.303 0.035
5 Tiny YOLO-416 1.018 0.011
6 SSD (Mobilenet v1) 0.081 0.03
7 SSD (VGG-300) 0.361 0.015
8 SSD (VGG-500) 0.968 0.026
9 R-FCN (ResNet-101) 1.69 0.131
10 Tiny YOLO-608 2.144 0.025
11 SSD (Inception ResNet-v2) 0.109 0.04
12 SqueezeDet 0.14 0.027
13 R-FCN 3.034 0.084

ception ResNet-v2) with AP 0.557 outperformed ot-
her detector. R-FCN (ResNet-101), Faster RCNN
(ResNet-101) and YOLOvV2-608 with average preci-
sion of 0.486, 0.476 and 0.463 respectively, are sho-
wing superior performance. In contrast, SqueezeDet
and Tiny YOLO-416 with respective AP of 0.012 and
0.116 generate poor results. Results also indicates,
that, in terms of robustness and resiliency of the de-
tector against increase in IoU, all models perform
roughly equally and there is no significant variance.
Another noteworthy observation in this experiment is
the superiority of the Faster RCNN over other detec-
tors that could be influenced biased by the approach
used to prepared the ground truth. As we mentioned
earlier in section 3.1, the dataset annotation initiali-
zed with the help of Faster RCNN inception model
detector. Despite the significant manual adjustments
and fine-tuning in annotation, we believe it introduces
some level of bias to the results.

The time complexity of detectors were evaluated
with measurement of execution latencies in two dif-
ferent approaches. In the first approach total latency
of inference of a single test image has been measured
in both CPU and GPU modes. In the second approach
throughput of continuous inference with repeating ca-
mera capture. Table 3 shows the total latency of infe-
rence of a single test image on both CPU and GPU.
Apparently, GPU is considerably faster than a CPU
in matrix arithmetics such as convolution due to their
high bandwidth and parallel computing capabilities,
but it is always interesting to learn this advantage ob-
jectively. According to the results shown in table 3, in
CPU mode, SqueezeDet, SSD (Inception ResNet-v2)
and SSD (Mobilenet-v1) are the fastest deep models
in this study.

These models benefit relatively simpler deep net-
work with fewer arithmetic operations. This signifi-
cantly reduced their computational overhead and in-
creased their performance. However, considering the
AP result in table 2, it can be inferred that this per-
formance gains, came with an expensive cost of accu-
racy and precision. Results in GPU mode shows a

463

VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications

very similar trend however due to high bandwidth
and throughput of GPU, the variance in results are
significantly lower. According to Table 3, in GPU
mode, SSD (VGG-300), Tiny YOLO-608, and Squee-
zeDet are among the fastest models in our experi-
ments. Aside from CPU and GPU latency, we also
measured the throughput of continuous inference with
repeating image feed. Due to several factors in the ex-
perimental setup and model architecture throughput
of continuous inference might not be necessarily cor-
related with the CPU and GPU latency. Figure 3
shows, Tiny YOLO-416 followed by SSD (VGG-300)
with over 80 and 60 FPS respectively have the over-
all highest throughput among the models investigated
in this study. On the other hand, Faster RCNN (In-
ception ResNet-v2) and Faster RCNN (ResNet-101)
are slowest in this regard. In order to deploy the deep
models in embedded platforms, Caffe or Tensorflow
models should be optimized and restructured using
Movidius SDK or TensorRT. This enables the CNN
model to utilize the target height/width effectively.

R-FCN

SqueezeDet

SSD (Inception ResNet_v2)
Tiny YOLO-608

R-FCN (ResNet_101)

SSD (VGG-500)

SSD (VGG-300)

SSD (Mobil vl)

Tiny YOLO-416
YOLOv2-608

Faster RCNN (Inception ResNet_v2)
YOLOv3-416

Faster RCNN (ResNet_101)

0 10 20 30 40 50 60 70 80 90
Throughput (FPS)

Figure 3: Throughput of continuous inference across vari-
ous models.

However, the supported layers by Movidius SDK
or TensorRT are relatively basic and limited and com-
plex models such as ResNet cannot be truly deployed
in these platforms. As an example, leaky rectified li-
near unit activation function in inception models is
not supported by the Jetson platform and cannot be
fully replicated. Table 4 summarizes the throughput
of continuous inference across various deep models in
embedded platforms. It can be observed that the Nvi-
dia Jetson performed significantly better than the Mo-
vidius across all different models. Furthermore, Ten-
sorRT outperformed Caffe by a relatively large mar-
gin. However, in terms of features and functionality,
Caffe allows to reproduce more complex networks.

Finding the right deep model for embedded plat-
form is not about accuracy neither performance but
is about finding the right tradeoff between accuracy
and performance, which satisfies the requirements.
Deep models such as Tiny-YOLO can be extremely
fast. However, their accuracy is questionable. Fi-

464

Table 3: Throughput of continuous inference across various
models using embedded platform including Movidius and
Jetson.

Model Framework ~ Movidius Jetson
Caffe TensorRT
(FP16) (FP32) (FP16) (FP32)
Throughput Throughput Throughput — Throughput
1 AgeNet Caffe 18 56 192 127
2 AlexNet Caffe 10 37 65 54
3 GenderNet Caffe 18 62 198 119
4 GoogleNet Caffe 9 19 120 73
5 SqueezeNet Caffe 17 37 166 124
6 TinyYolo Caffe 7 19 -NA- -NA-
7 Inception vl Tensorflow 10 -NA- -NA- -NA-
8 Inception v2 Tensorflow 7 -NA- -NA- -NA-
9 Inception v3 Tensorflow 3 -NA- -NA- -NA-
10 Mobilenet Tensorflow 19 -NA- -NA- -NA-

gure 4 plots the deep models Average Precision across
their throughput. The closer to the top right corner
of the plot, the better the overall performance of the
model. Figure 4 shows among the various models
that we investigated in this research, YOLO v3-416
and SSD (VGG-500) are the best tradeoff between
Average precision and throughput.

05
@ Faster RCNN (inception)
05 R£CN (ResNet)
[
FShter RCNN (Rt @ otovz608
2 04 ® 55D (VGG-500)
3 ® vouais
T ® rfcn ® 550 (V66-300)
30 ® 55D (Inception) L ;
= ® 55D (Mobilenet)
o
02 ® Tiny Y0L0-608
3
Tiny YOLO-416
b @ SaueezeDet
0 10 20 30 40 50 60 70 80
Throughput

+

Figure 4: Average Precision [IoU=0.5] across throughput.

S CONCLUSION

Person detection is essential step in analysis of the in-
store customer behavior and modeling. This study fo-
cused on the use of DNN based object detection mo-
dels for person detection in indoor retail environments
using embedded platforms such as the Nvidia Jetson
TX2 and the Movidius. Several DNN models inclu-
ding variations of YOLO, SSD, RCNN, R-FCN and
SqueezeDet have been analyzed over our proprietary
dataset that consists of over 10 thousands images in
terms of both time complexity and average preci-
sion. Experiments results shows that Tiny YOLO-
416 and SSD (VGG-300) are among the fastest mo-
dels and Faster RCNN (Inception ResNet-v2) and R-
FCN (ResNet-101) are the most accurate ones. Howe-
ver, neither of these models nail the tradeoff between
speed and accuracy. Further analysis indicates that
YOLO v3-416 delivers relatively accurate result in re-
asonable amount of time, which makes it a desirable
model for person detection in embedded platforms.

A Comparison of Embedded Deep Learning Methods for Person Detection

ACKNOWLEDGEMENTS

We thank our colleagues from VCA Technology who
provided data and expertise that greatly assisted the
research. This work is co-funded by the EU-H2020
within the MONICA project under grant agreement
number 732350. The Titan X Pascal used for this re-
search was donated by NVIDIA.

REFERENCES

Balaji, M. and Roy, S. K. (2017). Value co-creation with in-
ternet of things technology in the retail industry. Jour-
nal of Marketing Management, 33(1-2):7-31.

Dai, J., Li, Y., He, K., and Sun, J. (2016). R-fcn: Object de-
tection via region-based fully convolutional networks.
In Advances in neural information processing sys-
tems, pages 379-387.

Foxlin, E., Wormell, D., Browne, T. C., and Donfrancesco,
M. (2014). Motion tracking system and method using
camera and non-camera sensors. US Patent 8,696,458.

Ghosh, R., Jain, J., and Dekhil, M. E. (2017). Acquiring
customer insight in a retail environment. US Patent
9,760,896.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2016).
Region-based convolutional networks for accurate ob-
ject detection and segmentation. /EEE transactions on
pattern analysis and machine intelligence, 38(1):142—
158.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D.,
Wang, W., Weyand, T., Andreetto, M., and Adam,
H. (2017). Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv pre-
print arXiv:1704.04861.

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fa-
thi, A., Fischer, 1., Wojna, Z., Song, Y., Guadarrama,
S., et al. (2017). Speed/accuracy trade-offs for mo-
dern convolutional object detectors. In IEEE CVPR,
volume 4.

Jia, B., Pham, K. D., Blasch, E., Shen, D., Wang,
Z., and Chen, G. (2016). Cooperative space ob-
ject tracking using space-based optical sensors via
consensus-based filters. IEEE Transactions on Aero-
space and Electronic Systems, 52(4):1908-1936.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep lear-
ning. nature, 521(7553):436.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu,
C.-Y., and Berg, A. C. (2016). Ssd: Single shot mul-
tibox detector. In European conference on computer
vision, pages 21-37. Springer.

Majeed, A. A. and Rupasinghe, T. D. (2017). Internet of
things (iot) embedded future supply chains for indu-
stry 4.0: an assessment from an erp-based fashion ap-
parel and footwear industry. International Journal of
Supply Chain Management, 6(1):25-40.

Nickolls, J. and Dally, W. J. (2010). The gpu computing
era. IEEE micro, 30(2).

Ohata, Y., Ohno, A., Yamasaki, T., and Tokiwa, K.-i.
(2014). An analysis of the effects of customers mi-
gratory behavior in the inner areas of the sales floor
in a retail store on their purchase. Procedia Computer
Science, 35:1505-1512.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time object
detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779—
788.

Redmon, J. and Farhadi, A. (2017). Yolo9000: better, faster,
stronger. arXiv preprint.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster
r-cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information
processing systems, pages 91-99.

Szegedy, C., Liu, W, Jia, Y., Sermanet, P., Reed, S., Angue-
lov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A.
(2015). Going deeper with convolutions. In Procee-
dings of the IEEE conference on computer vision and
pattern recognition, pages 1-9.

Wu, B, Iandola, F. N., Jin, P. H., and Keutzer, K. (2017).
Squeezedet: Unified, small, low power fully convolu-
tional neural networks for real-time object detection
for autonomous driving. In CVPR Workshops, pages
446-454.

Zuo, Y., Yada, K., and Ali, A. S. (2016). Prediction of
consumer purchasing in a grocery store using machine
learning techniques. In Computer Science and Engi-
neering (APWC on CSE), 2016 3rd Asia-Pacific World
Congress on, pages 18-25. IEEE.

465

