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Abstract: This paper discussed the virtual metrology (VM) modelling of multi-class quality to describe the 

relationship between the variables of a production machine's condition and the estimated/forecasted product 

quality soon after finishing the machine processing. Applications of PCA and LASSO technique of the 

Sparse modelling were introduced to define the multi-dimensional quality. Because the high accuracy and 

quick computations are required for the VM modelling, in this study, the PCA-LASSO combination was 

applied before building the VM models based on the kernel SVM (kSVM), particularly the linear kernel for 

real-time use. As the result of evaluation of a CVD (Chemical vapor deposition) process in an actual 

semiconductor factory, LASSO and linear-SVM could reduce the scale of the machine variable's set and 

calculation time by almost 57% and 95% without deterioration of accuracy even without PCA. In addition, 

as the PCA-LASSO, the multi-dimensional quality was rotated to the orthogonality space by PCA to 

summarize the extracted variables responding to the primary independent hyperspace. As the result of the 

PCA-LASSO combination, the scale of machine variables extracted was improved by 83%, besides the 

accuracy of the linear-SVM is 98%. It is also effective as the pre-process of Partial Least Square (PLS). 

1 INTRODUCTION 

Semiconductor manufacturing is characterized by a 

sequence of sophisticated manufacturing processes, 

often exceeding several hundred production steps. 

The process basically consists of main 10 or less 

types of processes repeated, for example, washing, 

deposition of materials on a semiconductor wafer, a 

photo-lithography, an etching, a polishing, an 

annealing, an intermediate test, and so on (Y.Naka, 

K.Sugawa, and C. McGreavy, 2012).  

Here the intermediate test is a quality check process 

which occupies 30% of the whole of the production 

process. Though the intermediate test aims the fast 

detection of the quality defects to prevent to pile 

more cost and time before the final test, the time and 

the cost for the intermediate test is also serious in 

100%-inspections ． Virtual metrology (VM) has 

become widely studied all over the world to reduce 

both the defects and the cost of the test (or the test 

itself) as the research area of “advanced process 

control” since 2005 as in AEC/APC (Advanced 

equipment control/Advanced process control) 

symposium around the world. 

2 QUALITY DISCRIMINATION 

MODELLING FOR VIRTUAL 

METROLOGY 

This study has advanced in 3 phases. As the first, 

Arima (2011) applies kSVM for multi-class VM 

modelling mainly for high accuracy. Second is the 

application of the LASSO (Least Absolute 

Shrinkage and Selection Operator) for automatic 

variable extractions and fast computation of kSVM 

(Arima, Ishizaki, and Bu, 2015). The third phase is 

for all of those; automated variable extraction, the 

high accurate quality detection, and the fast 

computation. This paper mainly describe the third 

phase in Section 3 after explaining the results and 
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issues of the first and the second phases in this 

section. 

2.1 Problem Descriptions 

The target process in this study is a plasma-CVD 

(Chemical vapor deposition) process. CVD is one 

type of thin-film formation processes and uses the 

vapor process of a target material such that the snow 

falls into the ground. The thickness of the film is 

measured by nine points on a wafer after the CVD 

process as the quality test for the CVD process 

(Fig.2-1). Note that there are some types of layout of 

the nine points. The measured data is composed into 

2 factors (dimensions), “Design conformity (Dc)” 

and “Uniformity (Uf)” for every wafer. Table. 2-1 

shows one example of nine classes (3x3).  

Not only Dc but also Uf is very important because 

the larger wafer size leads the more defects besides 

the higher throughput [wafers/unit time]. For 

example, 30mm-size wafer is used in the target 

factory, and the thickness sometimes much varies on 

a wafer. The thickness influences the final quality of 

the product such as the electrical resistance and the 

current value. 

 

Figure 2-1: Film thickness measured by nine points. 

Table 2-1: Multi-dimensional quality class definition (nine 

classes for 2-dimension). 

 

For VM, quality was categorized by multi classes of 

2 factors (dimensions), “Uniformity” and “Design 

conformity” as shown in Table.2-1.  Table 2-1 

shows the case of nine classes as the result of 3-class 

definition for each factor. The measures and 

thresholds depend on the definition of the class. For 

example of Table. 2-1, Dc was defined by the sum 

total of square error between designed and actual 

film thickness, and the boundaries of classes ‘A' and 

‘B' or ‘B' and ‘C' were set as 3-quantiles between the 

minimum and maximum values. Surface uniformity 

(Uf) was defined by the standard deviation of the 

film thickness, and the boundaries of classes ‘a' and 

‘b' or ‘b' and ‘c' were set similarly as 3-quantiles. 

This is only one example as the first phase 

definition. The i-th wafer belongs to one of those 

3x3=9 classes, and maintains the multi-dimensional 

quality class expression as YC (i). Number in 

Table.2-1 is the probability of the sample data. Note 

that a different engineering action should be done 

for the different colour in it. 

On the other hand, conditions of a production 

machine, used to explain the product quality, are 

monitored on 18 sensors (EQC) settled in four types 

of subunits of a machine (Fig.2-2). Soon after the 

process end, 5 basic statistics are calculated, and 90 

variables can be used for VM. Note that the original 

wave data of each EQC cannot be opened for any 

publications, and the statistics are used in this paper. 

Figure 2-2: Machine variable set for experiment. 

The challenge of VM here is to estimate/predict the 

class of each product quality only by using the 

machine data and the VM model that has been 

learned by the set of machine data and the class data 

of each product quality in a learning data set. 

Table.2-2 shows the combinations of machine 

variables to evaluate the VM accuracy. Note that 

only the average and the standard deviation (SD) for 

each EQC are used for the first phase. The choice of 

the statistics is also based on engineering knowledge.  

Table 2-2: 13 combinations of machine variables for the 

performance evaluations ((x): # of variables). 

 
 

 

 

a b c abc
A 46 18 6 70

B 14 2 8 24

C 2 0 4 6

ABC 62 20 18 100
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Uniformity

parameter

set No.
Avarage SD

parameter

 set No.
Avarage SD

1 EQC1-18(18) EQC1-18(18) 8 EQC8-14(7) EQC8-14(7)

2 EQC1-18(18) - 9 EQC8-14(7) -

3 - EQC1-18(18) 10 - EQC8-14(7)

4 EQC1-6(6) EQC1-6(6) 11 EQC5-18(7) EQC5-18(7)

5 EQC1-6(6) - 12 EQC5-18(7) -

6 - EQC1-6(6) 13 - EQC5-18(7)

7 EQC7(1) EQC7(1)
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2.2 The First Phase – SVM 
Applications 

As the first, S. Arima (2011) has examined VM of an 

actual plasma-CVD process. Before applying the 

kSVM, 2σ/3σ methods and the combination of the 

Hotelling-T2 and Q-statistics are evaluated for easier 

2-class discrimination problem. The former is a 

basic statistical process control (SPC), and the latter 

is a representative of the multivariate statistical 

process control (MSPC). The accuracy of the latter 

stays low (67%) though a false error (False Positive 

of confusion matrix) is much improved than the 

former case. The reason why the low accuracy is 

that the data is not ideally distributed along the 

normal distribution, for example, subunit4: 

temperatures.  

Support Vector Machines (SVM) was originally 

introduced to address the Vapnik’s (1995) structural 

risk minimization principle and is now famous for 

high accuracy in application fields (e.g. Lee,et.al., 

2015). The basic idea of SVM is to map the data into 

a higher dimensional space called feature space and 

to find the optimal hyperplane in the feature space 

that maximizes the margin between classes as shown 

in Fig.2-3. A kernel function, such as the 

Polynomial, the Gaussian (hereafter RBF: Radial 

basis function), the Linear, or the Sigmoid kernel are 

used to map the original data to feature space. the 

simplest SVM deals with a two-class classification 

problem—in which the data is separated by a 

hyperplane defined by a number of support vectors. 

Support vectors are a subset of the training data used 

to define the boundary between the two classes. 

The kernel-SVM (kSVM) is compared with the 

linear discriminant analysis for the binary 

classifications problem as the first. The kSVM 

performs better than the linear discriminant analysis 

for the 2-class model, though each of those achieves 

more than 80% of accuracy. Next is the multi-class 

discriminant in Table.2-1. The linear and the 

nonlinear discriminant analyses are compared with 

the kSVM (Fig. 2-4). Here, SVMs were originally 

designed for binary classifications. However, many 

real-world problems have more than two classes. 

Most researchers view multi-class SVMs as an 

extension of the binary SVM classification problem 

as summarized by Wong and Hsu (2006). Two 

approaches, one-against-all and one-against-one 

methods, are commonly used. The one-against-all 

method separates each class from all others and 

constructs a combined classifier. The one-against-

one method separates all classes pairwise and 

constructs a combined classifier using voting shemes 

In this study, the former approach is used.  

Independent from the combination of machine 

variables, the kernel-SVM achieves the best in the 

three methods. Beside that, the accuracy of the 

standard linear and non-linear discriminations (5-

dimension) are less than 60% and 20%, respectively.  

100% accuracy is achieved when the variables of all 

machine sub-units are used for the RBF-SVM 

learning (x=1, 2, or 3).  

However, it also shows that when there are not 

enough variables in the data set for leaning step, the 

accuracy in the test step stays lower level. Since the 

semiconductor manufacturing is going to be a high-

mix and low-volume production system in these 

years, and the number of samples can be used in the 

learning step (is limited to several tens in some 

cases. Therefore, we applied LOOCV (leave-one-out 

cross-validation) to the problem. LOOCV involves 

using one sample as the validation data in the test 

step and the remaining samples as the training data 

in the learning step. This is repeated on all samples 

one by one to cut the original samples on a 

validation data and the training data. We confirmed 

the high accuracy of SVM using LOOCV to respond 

to such a case of small data set. The 9-class 

discrimination can be solved by using several tens 

samples in this study. However, note that the 

accuracy of kSVM model depends on the variables 

considered, the number of classes, and the data size.   

 

 

Figure 2-3: Kernel SVM: (a) non-linear discrimination 

needed and (b) mapping from original space to feature 

space by a kernel function. 

As the summary of the first phase, SVM was applied 

to construct an accurate VM model that provided 

multi-class quality prediction of the product. The 

VM model predicted with 100% accuracy the quality 

of the product after a CVD process. The accuracy 

depends on the set of input variables, and the best 

here is a case variables of all subunits are included.  

We got the following issues for the practical use in 

the mass production as the result of the SVM 

applications of the first phase: 

1) Machine variables are selected manually based on 
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Figure 2-4: Case#2 -VM accuracy -nine classes. 

(x={1,2,…13}: # EQC variables set in Table 2-2 ). 

the engineering knowledge, and the best 

combination of the variables are empirically 

detected. The issue is to automatically extract the 

variables from the wider scope.  

2) SVM using the RBF kernel could achieve the 

highest accuracy for the VM model as the result of 

comparison of the Polynomial kernel or the Sigmoid 

kernel. However, for the large model it is difficult to 

build the VM model based on RBF-SVM in a 

realistic time period. For example, 10 hours for 

learning when RBF is used for the final test process 

of an actual factory. The issue is to utilize a different 

kernel function of high speed without unallowable 

deterioration of the accuracy. 

2.3 LASSO Applications 

Second phase is for automatic variable extractions 

and fast computation of SVM learning, and so 

LASSO technique is applied and evaluated. 

2.3.1 Problem Definition  

In the first phase, much adaptive accuracy of RBF-

SVM could be evaluated by numerical experiments 

of discrimination of multi-class quality by using 

actual fab data. However, 13 different variable sets 

are comparably evaluated to get the best accuracy in 

that case. The number of the variables (M=90) are 

larger than the number of samples (e.g. n=50), and 

thus some of those are selected based on engineering 

knowledge (Table.2-2). Here, the sparse modelling 

is a rapidly progressing in recent. It is one important 

research area of the compressed sensing, and it has 

very wide application fields such as a medical data 

processing (rapid image sensing of MRI or CT), the 

earth science (data-driven modelling and 

forecasting), and so on. Note that the deep learning 

method also can extract meaningful variables but it 

requires a big data to analyze, and so it cannot be 

used in this case. This paper focuses on the 

automatic variable extraction which can be used even 

when M >n. 

2.3.2 Methods - Lasso 

Basic Least-square method is used to estimate 

coefficients C  to minimize the estimation error 

(Eq.2) in the linear regression (Eq.1) from the data 

set { }. Here, if 

some variables in x may not contribute to estimate 

Y, some of values in “C” should be zero to reduce 

the variance of the estimation result. That responds 

to “parse” case. LASSO proposed by Tibshirani 

(1996) is the estimation method of the sparse 

coefficient vector to reduce the variance of the 

estimation result (Eq.3).  

𝑌 = 𝐶𝑇𝑋, 𝑌 = (𝑦1, 𝑦2, ⋯ 𝑦𝑛)𝑇 , 𝑋 = (

𝑥1
𝑇

𝑥2
𝑇

⋮
𝑥𝑛

𝑇

)   (1) 

𝐸𝑟 = ∑ (𝑦𝑖 − 𝑥𝑖
𝑇𝑐)2

𝑛

𝑖=1
= ‖𝑦 − 𝑋𝑐‖2

2 (2) 

min
𝑐

‖𝑦 − 𝑋𝑐‖ 2
2 𝑠. 𝑡. ‖𝑐‖1 ≤ λ   ( λ > 0) (3) 

2.3.3 Numerical Results 

In case of the class definition of Fig.2-1, we 

empirically selected variables of 2 kinds of statistics 

as the result (Table.2-2). Here, we try to 

“automatically extract the variables by applying the 

sparse modelling, and evaluate those accuracy as 

well. The significant variables for the design 

conformity (V(D)) and for the uniformity” (V(U)) 

are extracted (Table.2-4). The-10-hold cross 

validation is used for LASSO, and the set of 

variables are selected when the lambda is minimum 

as shown in Figures 2-5 and 2-6. 

VM model of kSVM is built by using conjoint 

form of variables (e.g. V(D)∪V(U)) as the first case.  

Its accuracy of each kernel is evaluated for 2-

demensional quality classification by using the 

LOOCV. A linear kernel is the best for the Lasso-

kSVM as shown in Table 2-5. 

2.3.4 Issues for the next 

We got the following issues for the practical use in 

the mass production as the result of the SVM 

applications of the second phase. Automated 

procedure of VM modelling should be proposed. 

1) LASSO regression model can achieve the 

compression of the variables and computational time 
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much, however, we have to consider about the 

multi-objective model. The multi-dimensional 

classes of product quality may not be in the 

relationship of linearly independent each other 

because it has been defined by the engineering 

knowledge. In that case, the join set of variables can 

be redundant. The exclusion is still 7 variables as 

common of Dc and Uf (Table 2-4). 

2) It is required to compare with other multi-

objectives models such as PLS (Partial Least 

Squares) often used in chemo-metrics research area. 

Table 2-4: Variable extractions by Lasso -(Design 

conformity(D) / Uniformity (U) /Both (B)). 

 

 

Figure 2-5: Cross validation for Lasso parameter (λ - 

[min, lse] = [ 0.1462973, 0.3540583] ) for i) D. 

 

Figure 2-6: Cross validation for Lasso parameter   ( λ - 

[min, lse] = [0.03037, 0.37440] )  for ii) U. 

Table 2-5: VM accuracy – Lasso-kSVM. 

 

 

 

3 PCA AND LASSO 

APPLICATIONS  

3.1 Problem Definition 

In this section, we will discuss an automated VM 

procedure using PCA-LASSO and the kernel SVM 

to solve the issues mentioned in section 2.3.4. PLS is 

able to analyze the case the sample size is less than 

the number of the variables.  

3.2 Method - PCA and PLS 

3.2.1 Basics of PCA and PLS 

Principal component analysis (PCA) is a 

mathematical procedure that transforms a number of 

possibly correlated variables into a smaller number 

of uncorrelated variables called principal 

components. PCA rotates the axes of the original 

variable coordinate system to new orthogonal axes, 

called principal axes, such that the new axes 

coincide with directions of maximum variation of 

the original observations (Fig.3-1(graph)).The 

regression is the modelling of relational expression 

between the objective variable(s) Y and the 

explanatory variables X. Coefficients are estimated 

under the conditions of lowest estimation errors by 

the Least-square or another method. There are some 

regression models using PCA (Fig.3-1). PCR is a 

representative in which PCA is applied only to X. 

On the other hand, both X and Y are rotated by PCA 

before regression in PLS.  

3.2.2 PCA Application for Quality 
Definitions 

The PCA is applied for a multi-dimensional quality 

definition. As the first case, PCA is used to 2-

demensional quality data (Design conformity (Dc) 

and Uniformity (Uf)) to rotate to the orthogonality 

space.  After the PCA, the class is defined under the 

threshold of 3-quantiles for each dimension. In the 

second PCA application, we newly define the multi-

dimension of the quality as shown in Table.3-2 as 

the result of PCA using original thickness values of 

9 points. The primary principle component (PC1) 

shows the level of thickness and it responds to the 

“Design conformity” (Dc’). The second and the third 

principle component (PC2, PC3) show the deflection 

of the thickness and respond to “Uniformity” (Uf ’).       

The threshold of quality class can be defined by: 

i) Probability (e.g. normal distribution case) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Min U U U U U U
Max U D U D U U B U B
Range U D U U U
Average B U U B B U D U U U
Std. dev. U U B U B U U

※D:Design conformity, U: Uniformity, B:Both

Sensor No. 

s
t
a
t
i
s
t
i
c
s

Variables
extracted

Quality class of VM 
variables set

[# of variables]
RBF Linear

Design conformity (A,B,C) V(D)  [11] 92 88

Uniformity (a,b,c) V(U) [35] 84 100

2D quality (A,B,C) X (a,b,c) V(D)∪V(U)  [39] 90 100

accuracy [%]

Kernel

↑# of variables selected. 

↑# of variables selected. 

ICORES 2019 - 8th International Conference on Operations Research and Enterprise Systems

358



 

ii) Quantiles (e.g. uniform distribution case, etc.) 

Based on the distribution of the principal component 

scores (Fig. 3-3), only PC1’s score is statistically 

adapt to the normal distribution as the result of One-

sample Kolmogorov-Smirnov test (D = 0.55944, p-

value = 2.998e-15, alternative hypothesis: two-

sided). Here, i) is selected for defining classes of Dc’ 

and ii) is used for defining classes of Uf ’. The 

threshold here is defined as shown in Table 3-5 for i). 

On the other hand, the 3-quantiles is used for ii). 

 

 

Figure 3-1: Multivariate regression models. 

Table 3-1: PCA result - factor loading (PC1, 2, 3). 

 

Table 3-2: PCA result - factor loading (PC1, 2, 3). 

 

 

Figure 3-3: PCA result -principal component scores. 

Table 3-5: The threshold for i (yi: the score, 

μ: average, σ:standard deviation). 

 

3.3 Numerical Results 

3.3.1 Automated VM Procedure 

The procedure of PCA-LASSO and kSVM  

STEP-1: PCA to define the multi-dimensional 

quality.  Select a few principal components by the 

cumulative contribution ratio becomes over 80*% or 

so. (*depend on the target accuracy) 

STEP-2: LASSO to extract the significant machine 

variables  

STEP-3: Select the principal component to use in the 

following step.  Check the LASSO result (e.g. PC2 

is excepted because of no variables selected.) 

STEP-4: Select the threshold type for each PCs. 

Check the distributions of principal component 

scores for selected PCs  (e.g. PC1 and PC3 is set to 

the probability-type and to the quantiles) 

STEP-5: Define the class for all samples (e.g. 

product wafer here) 

STEP-6: SVM learning and class discriminations. 

3.3.2 PCA-LASSO (1) and Kernel SVM 

As the first case, PCA is used to 2-demensional 

quality data (Dc2 and Uf2) to rotate to the 

orthogonality space. The threshold of quality class 

can be defined by the 3-quantiles for each dimension.  

Combination of LASSO and linear-SVM appear the 

best accuracy again (100%) even if PCA is used. In 

the same case, the accuracies of RBF-SVM and 

Polynomial-SVM result 82% and 92%, respectively. 

In case of PCA-LASSO (1), PC2 is excepted 

because no machine variables are selected in the 

LASSO regression, and only the primary principle 

QC1 QC2 QC3 QC4 QC5 QC6 QC7 QC8 QC9

PC1 0.292 0.350 0.350 0.335 0.352 0.350 0.303 0.288 0.370

PC2 0.177 0.189 0.263 0.454 0.076 0.010 (0.333) (0.076) (0.731)

PC3 (0.660) 0.087 0.126 0.390 0.155 (0.030) (0.396) (0.260) 0.373

Original variables of quality measured

QC1 QC2 QC3 QC4 QC5 QC6 QC7 QC8 QC9 Average

PC1 0.292 0.350 0.350 0.335 0.352 0.350 0.303 0.288 0.370 0.332

PC2 0.177 0.189 0.263 0.454 0.076 0.010 (0.333) (0.076) (0.731) 0.003

PC3 (0.660) 0.087 0.126 0.390 0.155 (0.030) (0.396) (0.260) 0.373 (0.024)

original variables of quality  

Principal

components

(PCA )

a 　μ-σ≦yi≦μ+σ

b μ-2σ≦yi<μ-σ, μ+σ<yi≦μ+2σ

c yi<μ-2σ, μ+2σ<yi 

PC1 

 PC2 
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component (PC1) represents both the “Design 

conformity” and “Uniformity” (PC1: Dc2 & Uf2). 

Note that PLS regression cannot work well in this 

case. Error is detected in calculation. 

3.3.3 PCA-LASSO (2) and Kernel SVM 

Here we use the result of PCA using original 

thickness values of 9 points (PC1: Revised design 

conformity (Dc’), PC3: Revised uniformity (Uf ’)). 

2nd-principal component PC2 is excepted because no 

machine variables are selected by LASSO. 

Three principal components were obtained by PCA, 

and 12 variables for PC1 and 4 variables for PC3 

were chosen. Variable sets for PC1 and PC3 are 

expressed as V(Dc’)and V(Uf ’). Since each principal 

component is orthogonal, the variables chosen for 

each principal component tend to be uncorrelated, 

that is, they are exclusive. Thus, variables included 

in the union can explain the original objective 

variables without waste. The variable set used for 

the SVM learning is defined as the union of the 

variables extracted by LASSO: V(Dc’) ∪ V(Uf ’) 

Linear-SVM appears again the best accuracy for all 

(98%) in addition to the shortest computational time. 

RBF-SVM is lower accuracy (82%) though it can 

keep its accuracy based on best parameters for the 

gamma function. In addition, the computational time 

is the largest for all. The accuracy of the 

Polynomial-SVM stays about 90%. 

Note that the result of the variable extraction of this 

PCA-LASSO is helpful pre-process for PLS 

regression though the PLS regression cannot be 

solved when the original input data without the 

representative object variables and extracted 

explanatory variables. This is one type of cases that 

PLS regression does not go well because the data set 

includes an explanatory (independent) variable 

irrelevant to an objective (dependent) variable. Even 

though in such a case, PLS regression can succeed 

by the pre-process of variable extraction of the PCA-

LASSO regression.  The best number of objective 

variables, that is principal components here, is the 

same as the number of selected objective variables 

in PCA. “3” is the best of the lowest RMSE (root-

mean-square error) as shown in Fig. 3-4. 

3.3.4 PCA-LASSO (3) and Kernel SVM 

We can use the result of PCA to define 

comprehensive index by using the contribution rate 

(thus Eigen values), Eigen vectors, and so on. 

However the result of LASSO for the 

comprehensive index is not so effective here. 

 

 

Figure 3-4: Selection of # of objective variables (principal 

components here) for PLS. 

3.4 Summary of Variable Extractions 

PCA is combined to LASSO regressions instead of 

PCR (Fig.3-1) or PLS (Fig.3-1, or as a pre-process 

of PLS) to extract the optimal and smallest set of 

variables for comprehensive VM modelling of 

multi-dimensional quality. As the result of 

comparison of PCA-LASSO (1) and (2), the 

compaction rate is improved by about 66.7% and 

83.3% besides the exclusion rate’ improvement 

(Table 3-7). In case of PCA-LASSO (1), PC2 is 

excepted because no machine variables are selected 

in LASSO regression, and only the primary principle 

component (PC1) represents both the design 

conformity and uniformity (Dc2 & Uf 2:PC1). That 

is caused the original definition of the 2 factors of 

thickness is not linearly independent. In such a case, 

compression rate is lower than the other case. The 

exclusion rate becomes much lower in the proposed 

PCA-LASSO cases (Tables 3-6, 3-8, 3-9, 3-10).  See 

appendix-A for the coefficients of the variables. 

3.5 Conclusions of the Third Phase 

In this section, automated VM procedure using 

PCA-LASSO and kernel SVM is proposed and 

evaluated. PCA is combined to LASSO regressions 

instead of using PCR or PLS to extract the 

reasonable and smallest set of variables for 

comprehensive VM modelling of multi-dimensional 

quality. In addition, the liner-kernel SVM using the 

variables selected LASSO regressions achieves the 

highest accuracy. LASSO and linear-kernel SVM 

can compress the scale and computational time 

much in the model learning without deterioration of 

the accuracy. 
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Table 3-6: The number of machine variables extracted. 

 

Table 3-7: Compaction rate and Exclusion rate. 

 

Table 3-8: Machine variables extracted by LASSO. (※   

D: Design conformity, U: Uniformity, B:both). 

 

Table 3-9: Variables extraction of PCA-LASSO (1). (※
PC1: Design conformity & Uniformity). 

 

Table 3-10: Variables extraction of PCA-LASSO (2). 

(PC1: Design conformity, PC3: Uniformity, B:both). 

 

4 CONCLUSIONS 

This study discussed the modelling of virtual 

metrology in 3 phases. The first is the application of 

SVM for multi-class virtual metrology mainly for 

high accuracy. The second phase is LASSO 

application for automatic variable extractions and 

fast computation of Linear-SVM learning. Finally 

the third phase is for all; automated extractions of 

the best set of machine variables, the high accurate 

quality discriminations for the multi-dimensional 

classes, and the fast computation for a practical use. 
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# of variables (total)

V(D+U)=V(D)⋃V(U)

# of depricated variables

V(D*U)=V(D)∩V(U)

Original 90 -

LASSO (Dc,  Uf)　 39 7

PCA-LASSO(1)

(pc1: Dc2 & Uf2)
30 0

PCA-LASSO(2)

(pc1: Dc', pc3:Uf')
15 1

[%]

Compaction rate

=(90-V(D+U))/90

Exclusion rate

={V(D+U)-V(D*U)}/V(D+U)

Original 0.00% -

LASSO (Dc,  Uf)　 56.67% 82.05%

PCA-LASSO(1)

(pc1: Dc2 & Uf2)
66.67% 100.00%

PCA-LASSO(2)

(pc1: Dc', pc3:Uf')
83.33% 93.33%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Min U U U U U U

Max U D U D U U B U B

Range U D U U U

Average B U U B B U D U U U

Std. dev. U U B U B U U

Sensor No. 
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a
t
i
s
t
i
c
s

Variables

extracted

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Min PC1 PC1 PC1 PC1

Max PC1 PC1 PC1 PC1 PC1 PC1 PC1 PC1 PC1

Range PC1 PC1 PC1 PC1

Average PC1 PC1 PC1 PC1 PC1 PC1

Std. dev. PC1 PC1 PC1 PC1 PC1 PC1 PC1

Sensor No. 

s
t
a
t
i
s
t
i
c
s

Variables

extracted

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Min PC1 PC3 PC1

Max PC1 PC1 PC1 PC1

Range PC1

Average PC3 PC1 B

Std. dev. PC3 PC1 PC1 PC1

Variables

extracted

Sensor No. 

s
t
a
t
i
s
t
i
c
s
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