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Abstract: Estimating the 3D model of the human body is needed for many applications. However, this is a challenging
problem since the human body inherently has a high complexity due to self-occlusions and articulation. We
present a method to reconstruct the 3D human body model from a single RGB-D image. 2D joint points
are firstly predicted by a CNN-based model called convolutional pose machine, and the 3D joint points are
calculated using the depth image. Then, we propose to utilize both 2D and 3D joint points, which provide more
information, to fit a parametric body model (SMPL). This is implemented through minimizing an objective
function, which measures the difference of the joint points between the observed model and the parametric
model. The pose and shape parameters of the body are obtained through optimization and the final 3D model
is estimated. The experiments on synthetic data and real data demonstrate that our method can estimate the
3D human body model correctly.

1 INTRODUCTION

Human body reconstruction is needed in many appli-
cations such as virtual and augmented reality, video
games and medical research. Various approaches
have been proposed to obtain 3D models of human
bodies during past decades. However, it is still a chal-
lenging problem from using one single image since
human body may have high complexity such artic-
ulation, self-occlusion, clothing and so on. Com-
mercial laser scanning system can acquire 3D mod-
els with high accuracy. But it is not acceptable for
ordinary consumers because of high cost and cum-
bersome equipment. Some other methods based on
RGB-D image sequences are also popular to build the
3D model (Izadi et al., 2011; Innmann et al., 2016;
Newcombe et al., 2015; Slavcheva et al., 2017). They
often requires the object to be static and rigid during
acquiring the image sequence, which is not appropri-
ate for a moving person.

It is possible now to create 3D human body mod-
els through combining human pose estimation and
some parametric models, especially with the imple-
mentation of deep neural network to 2D- (Xu et al.,
2017) and 3D- (Mehta et al., 2017) human pose es-
timation. These methods (Bogo et al., 2015; Huang
et al., 2017; Kanazawa et al., 2018) utilize a paramet-
ric body model to fit 2D or 3D human pose which

can be well estimated by deep neural networks. They
are more efficient and convenient because they do not
need to use expensive devices and too much images
with different views. This makes it possible to recon-
struct 3D human body through only one image. The
key step of these methods is to construct an objective
function to measure the difference between the para-
metric model and the person in the image. In many
cases only 2D pose is utilized to construct the objec-
tive function, which can not fully represent the joints
points of the human body in 3D space. Currently,
many methods based on deep neural networks have
been proposed to estimate 3D human pose, but are
not in general as accurate as 2D pose estimation.

In this paper we propose to use both 2D human
pose which is estimated by deep neural network and
3D human pose which is calculated from a depth im-
age to construct objective function. The 3D human
body models based on the skinned multi-person lin-
ear model (SMPL)(Loper and Black, 2014) are then
estimated by optimizing the objective function. This
parametric model gives means to better to describe
the pose and shape of the human body. More specif-
ically, the 2D human pose is estimated by Convolu-
tional Pose Machines (CPM) (Wei et al., 2016) which
predicts the 2D joint points by stacking convolutional
neural networks. For the 3D pose, we use a Kinect
sensor to acquire RGB-D images and the depth im-
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Figure 1: The original image and the corresponding 3D
model from different view reconstructed by our method.

age provides depth information which can be used
for the computation of the corresponding 3D joint
points. Then, an objective function considering the
difference between the estimated pose and the pose
of the SMPL model is defined. Through minimizing
the objective function, pose and shape parameters of
the SMPL model are estimated, which creates a 3D
human body model with certain accuracy. We com-
pare our method with an existing method which only
considers 2D pose to reconstruct the 3D human body
model and the experiments quantitatively and quali-
tatively show that our method has better performance
both on the accuracy of pose parameters and 3D ver-
tices.

In summary the contribution of our method is that
we use both 2D and 3D pose information based on the
SMPL human body model to estimate the 3D model
from a single RGB-D image.

2 RELATED WORK

Non-parametric model based methods often recon-
struct 3D scenes directly from images acquired by a
camera or depth sensor from multiple views. Regis-
tration is an important step for these methods, which
has been solved well for rigid transformations. How-
ever, the human body is inherently non-rigid and it is
a great challenge for non rigid registration. KinectFu-
sion (Izadi et al., 2011) is a well-known algorithm to
create 3D models in real time by incrementally merg-
ing the partial scans from a moving RGB-D sensor.
Inspired by this research, a number of methods (Ari
et al., 2014; Cui et al., 2012) have been proposed to
reconstruct 3D human body models for static persons.
However, they are not ideal approaches for the recon-
struction of the dynamic human body due to its com-
plex pose and the non-rigidity of the human body. In
order to tackle the non rigid problem, DynamicFu-
sion (Newcombe et al., 2015) is the pioneering work
and can reconstruct scene geometry in real time for
a slowly moving person. Some other methods such
as VolumeDeform (Innmann et al., 2016), Killing-
Fusion (Slavcheva et al., 2017) and BodyFusion (Yu
et al., 2017) have been proposed to improve the re-

sults based on the DynamicFusion. However, these
approaches only show good performance when the
motion of the human body is slow and only half of
the body is reconstructed. For more complex condi-
tions, researchers try to use multiple Kinect sensors
or several calibrated cameras to create the 3D human
body models, which can acquire accurate 3D mod-
els. In (Dou et al., 2016), the authors propose to
use eight Kinects to create accurate 3D models for
dynamic scenes. Multiple cameras are also used in
(Leroy et al., 2017) used to obtain the 3D shape of
the human body with complex actions. Although it
yields more accurate 3D human body models by us-
ing multiple devices, it is inconvenient and expensive
to require such an environment.

Parametric model-based methods reconstruct 3D
body models through using a template which always
encodes the pose and shape parameters to fit the ob-
served images. Some methods firstly scan a model
as the template, and then insert a skeleton into the
template and use the template to fit other dynamic
data. In (Guo et al., 2015; Li et al., 2009) the au-
thors propose novel nonrigid registration algorithms
and they implement the algorithms to register the pre-
scanned models to the partial scans of Kinect. (Zhang
et al., 2014) utilize KinectFusion to get the template
of the human body before fitting the input data. Some
other algorithms based on this pipeline are also pre-
sented in (Xu et al., 2017; Zollhofer et al., 2014).
However, prescanning a templete depends on the al-
gorithm of reconstructing algorithm for rigid objects.
In order to better represent the human body, a number
of statistic human body models based on training on
thousands of individuals have been developed, such as
SCAPE (Anguelov et al., 2005), SMPL (Loper et al.,
2015) and so on (Pons-Moll et al., 2015). The SCAPE
model is used in (Weiss et al., 2011) to fit the depth
image acquired by Kinect. Authors in (Bogo et al.,
2015) propose a detailed body reconstruction method
using an improved SCAPE model called Delta. There
are also many methods in which the SMPL model is
used. In (Bogo et al., 2014), the authors propose to
use a CNN model to extract 2D joint points and used
the information to fit a parametric model. Huang et al
(Huang et al., 2017) use a similar idea but they extend
it to multiple view problems. In (Kanazawa et al.,
2018) an end-to-end adversarial learning method is
used to estimate the human pose and shape by fitting
a parametric model. Alldieck et al (Alldieck et al.,
2018) propose to get the 3D human body model from
video based on the SMPL model using pose informa-
tion and transforming silhouettes to visual hull. In this
paper we also use a template based method to recon-
struct the 3D body model.
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Figure 2: The overview of our method.

3 METHOD

The overview of our method is shown in Figure 2.
We firstly use an RGB-D camera with known intrin-
sic parameters to capture an RGB image and a depth
image. The skeleton is estimated by CPM, which de-
signs a sequential architecture composed of convolu-
tional networks to predict the 2D human pose. The
corresponding 3D pose can be computed through the
depth image and the intrinsic parameters of the cam-
era using

X(i, j,z) =
(
(i− cx)z

fx
,
( j− cy)z

fy
,z
)T

, (1)

where i, j are the coordinates of 2D joint points in the
image plane, z is the corresponding depth for the point
(i, j) and fx, fy,cx,cy are focal lengths and the optical
center of the camera. Then, using 2D and 3D pose si-
multaneously, we build an objective function to mea-
sure the difference between the SMPL model and the
observed person. Finally, the pose and shape param-
eters of the SMPL model can be estimated through
minimizing the objective function.

3.1 The SMPL Model

As stated in (Loper et al., 2015), the SMPL model
is a state-of-the-art human model for representing the
pose and shape of a human body model. The model
is a triangulated mesh with N = 6980 vertices and
is defined as a function of shape and pose param-
eters. The shape parameters are represented as β
and they are the coefficients of a linear shape space
which is learned from a dataset containing thousands
of registered scans. The pose parameters θ are de-
fined as the joint angle rotations. There are 24 joint
points which contain 1 parent point and the pose of
each joints is represented as vector in R3 encoding
the relative rotation with respect to its parent in the

kinematic tree. Therefore, the pose parameters have
23× 3+ 3 = 72 elements. One of the advantages of
SMPL model is that the position of skeleton joints is
also defined as a function of the shape parameters,
J(β). Then, the global coordinates of the joint points
which are represented as Rθ(J(β)) can be calculated
by considering the pose parameters θ. Using a per-
spective camera model, the joint points of the SMPL
model in global coordinates can be projected to the
image plane, which converts 3D joint points to 2D
joint points in the image. Here we have to note that
the order of the joint points in SMPL model is differ-
ent with the 2D human pose estimated by CPM.

3.2 Objective Function

In this part we will give the definition of the objective
function. In (Bogo et al., 2014), the objective func-
tion only takes 2D pose as prior knowledge. Although
some methods (Xu et al., 2017) also consider 3D pose
as the prior information, the data term in (Xu et al.,
2017) is defined as an L2-distance function, which is
not stable and robust enough. The objective function
in our method will combine both 2D and 3D pose to
define the errors between joint points of the SMPL
model and the joint points estimated by the CPM. The
new data term can better represent the position of the
joint points, especially when the human body has oc-
clusions. Our experiments will demonstrate the per-
formance of the method. The error function is defined
by the Geman-McClure penalty function ρ (Geman
and McClure, 1987) so that it can deal with the noisy
estimates (Bogo et al., 2014; Bogo et al., 2015; Huang
et al., 2017; Weiss et al., 2011). The Geman-McClure
function is defined as

ρσ =
e2

σ2 + e2 , (2)

where e is the error which is defined by 2D and 3D
poses and σ is a constant (set to 100 in our experi-
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ments). In addition, regularization terms are also de-
fined according to the prior information provided by
the SMPL model to make the results more stable and
natural. This gives the complete objective function in
our method as

E(β,θ) =EJ(β,λ)+

λαEα(θ)+λθEθ(θ)+λβEβ(β),
(3)

where EJ(β,λ) is the data term combining 2D and 3D
pose, Eα(θ) and Eθ(θ) are two pose penalty functions
and Eβ(β) is the shape prior function. λα, λθ and λβ

are the weights for the pose and shape prior function.
The data term in our method is built based on

(Bogo et al., 2014). The difference of our method is
that we consider the 3D information in the data term.
The function is defined as

EJ(β,λ) = ∑
joints

ρ(Π(Rθ(J(β)))− J2d)+

λ3d ∑
joints

ρ(Rθ(J(β))− J3d),
(4)

where Π(Rθ(J(β))) denotes the projection of 3D joint
points of the SMPL model by the camera Π. λ3d is
the weight of the data term using 3D pose and it will
help to improve the robustness of the whole method.
The distance between the two joint points is measured
by a Geman-McClure penalty function. This new data
term, taking into account 3D pose, provides more spa-
tial information of joint points, which is useful when
some body parts are occluded by other objects or the
torso.

The regularization term is there to keep the pose
and shape of the human body natural and probable.
As shown in (Loper et al., 2015), SMPL is a statis-
tical human body model which is learned from large
datasets and it can provide strong prior information.
We use some of the pose and shape penalty functions
in (Bogo et al., 2014) in our method. For the pose reg-
ularization, the first part is to keep elbow and knees
bending naturally and is defined as

Eα(θ) = ∑
i

exp(θi), (5)

where θi is the pose of the i-th joint. The second part
for the pose penalty is defined as

Eθ(θ) = min
j

(
− log(cgiN(θ;µθ, j,Σθ, j)

)
, (6)

where N is a mixture of Gaussians function, gi is
the weight and c is a positive constant. The Gaussian
function is fit to approximately 1 million poses which
are obtained by fitting SMPL to the CMU marker data
using MoSh (Loper et al., 2014). There are more de-
tails in (Bogo et al., 2014). For the shape regulariza-
tion part, because the shape parameters of the SMPL

model are obtained by training a dataset, the shape
penalty function is also defined based on this

Eβ(β) = β
T

Σ
−1
β

β, (7)

where Σ
−1
β

is a diagonal matrix and the elements on
the diagonal are the squared singular values. These
values can be estimated by Principal Component
Analysis from the SMPL training shape set.

3.3 Optimization

The optimization has two steps. The first step is to
estimate the camera translation. Here the focal length
of the camera is known. The camera translation can
be estimated through similar triangles defined by the
torso length of SMPL and the predicted 2D pose.

The second stage is to fit the model through min-
imizing Eq. (3). The parameters for λθ and λβ will
decrease gradually during the optimization. Because
the human body may either be facing the camera or
not, we can firstly try an initialization and then rotate
by 180 degrees. And we choose the one with smaller
errors.

The procedure of minimization is implemented
through Powells dogleg method which is provided by
the python module OpenDR (Loper and Black, 2014)
and Chumpy. For a single image with size 240×320,
it takes about 3 minutes for the minimization on a
desktop machine.

4 EXPERIMENTS

Our method is qualitatively and quantitatively tested
on the synthetic dataset SURREAL (Varol et al.,
2017), the real dataset Human3.6M (Ionescu et al.,
2014) and some data acquired by Kinect. We com-
pare our method with SMPLify (Bogo et al., 2014)
which only used 2D joints to construct the data term.
The setting of the parameters in our experiments
were λ3d = 100, λα = 10. The optimization has
four stages and in each stage the maximum itera-
tion is 20. The weights λθ and λβ for each stage
are (404,404,57.4,4.78) and (100,50,5,1). For the
Geman-McClure penalty function, the parameter σ =
100.

4.1 Results on SURREAL

SURREAL is a synthetic dataset containing more
than 40,000 videos in which the human body mod-
els are generated based on the SMPL model. Each
video consists of 100 frames and the person in the
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Figure 3: The results of some samples from the video in
SURREAL. The first column is the sample from the video.
The second column is the ground truth. The third column is
the result of SMPLify. The last column is the result of our
method.

Figure 4: The error of the video in Figure 3. The left is the
error of 3D vertexes between the results from our method
and SMPLify and the ground truth.The right is the error of
pose parameters between the results from our method and
SMPLify and the ground truth.

video has different actions and backgrounds. Espe-
cially, the ground truth of the pose and shape pa-
rameters of the person in this dataset are known and
the 3D mesh of the person can be generated by us-
ing these parameters. Because the number of videos
in the dataset is too large, we only use two of them
to do the experiments. Figure 3 and 5 are qualita-

Figure 5: The results of some samples from the video in
SURREAL. The first column is the sample from the video.
The second column is the ground truth. The third column is
the result of SMPLify. The last column is the result of our
method.

Figure 6: The error of the video in Figure 5. The top is the
error of 3D vertices between the results from our method
and SMPLify and the ground truth.The bottom is the error
of pose parameters between the results from our method and
SMPLify and the ground truth.

tive results of the experiments. In the first column
of Figure 3 and 5, three frames of the two examples
are shown. The corresponding ground truth of the
3D mesh are given in the second column. The re-
sults of SMPLify and our method are shown in the
third and fourth columns of Figure 3 and 5. The er-
rors of the pose parameters and 3D vertices between

ICPRAM 2019 - 8th International Conference on Pattern Recognition Applications and Methods

578



(a) Direction (b) Phoning

(c) Sitting (d) Greeting
Figure 7: The 3D model by our method from Human3.6M. For each subfigure the 2D and 3D joint points and 3D model from
different views are given. There are 4 actions: (a) Direction; (b) Phoning; (c) Sitting; and (d) Greeting.

Figure 8: The 3D model of images acquired by ourselves estimated by our method. From left to right: the image with 2D
joint points estimated by CPM, 3D joint points and 3D model from different view.

the ground truth and the estimated results are shown
in Figure 4 and 6, which is the quantitative results.
We can see from the two figures that the errors of
our method are smaller than SMPLify in general. In
addition, our method is more robust because the er-
rors of each frame in the two videos are more stable
when the 3D pose is used. Moreover, as shown in Fig-
ure 5, the results of SMPLify are obviously incorrect

because the human body bends to another direction.
This demonstrates that using only 2D pose can not
provide enough space information for the algorithm.
By contrast, our method can avoid this problem and
obtain more accurate results because the 3D joints can
provide more space information.
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4.2 Results of Human3.6M

Human3.6M is a dataset containing 3.6 million 3D
human poses and corresponding images. The whole
dataset is obtained from four calibrated cameras
which ensures the accuracy of the 3D joint positions.
There are 11 subjects ( 6 males, 5 females ) in the
dataset and each of them perform 15 different actions.
In this experiment we only give the qualitative results
using some images from the first subject (Direction,
Phoning, Sitting and Greeting) to test our method,
since the dataset does not have the ground truth of
pose parameters and 3D mesh. Figure 7 shows the
reconstructed 3D models of subject 1 with different
actions by our method.

We can see from Figure 7 that the 3D models es-
timated by our method for different actions roughly
have the same pose as the person in the original im-
ages. These images are taken from the back of the
person and some body parts are in the front of the
torso. For example, the arms of the person in Figure
7 (a) and (c) are occluded by the torso, which makes
it hard to to estimate the 3D model only using 2D in-
formation. Because the 3D joint points provide the
spatial information, our method can roughly estimate
the position of the arms. However, it also shows that
the shape of the body is not perfect for the person in
the original image. This is because the 2D and 3D
joint points have stronger prior information for the
pose but these cues do not provide enough shape in-
formation. We should also note that the pose of the
hands in the 3D body model is not estimated well be-
cause our method does not consider the hand pose.

4.3 Results from our Own Data

Here we show results on RGB-D images acquired by
Kinect. The person stands in front of the camera and
has different poses. The intrinsic parameters of the
camera used are fx = 262.5, fy = 262.5,cx = 159.75,
and cy = 119.75. The 2D points are detected through
the CPM model and the corresponding 3D joints are
computed by considering the depth image using the
intrinsic parameters.

Fitting results for the images are shown in Figure
8. The 2D joint points predicted by CPM are roughly
correct from the first column in Figure 8. The 3D
pose is computed based on the 2D pose and depth im-
age and are also shown in the second column in Fig-
ure 8. The 3D model observed from several different
views is also shown from the third to sixth columns
in Figure 8. The 3D shape models are recovered from
one single RGB-D image. Although only one image
is used, the 3D model obtained by our method looks

quite close to the action of the person in the original
image.

5 CONCLUSIONS

We have presented a template-based 3D human body
reconstruction method using a single RGB-D images.
Our method considers both 2D joint points which can
be estimated by a CNN-based model and 3D joint
points which can be computed by the depth image.
Then, these joint points are used simultaneously to
fit a parametric human body model, SMPL. The pose
and shape parameters can be estimated through mini-
mizing the distance of joint points between observed
images and the SMPL model. We test our method
on the data taken by ourselves and the Human3.6M
dataset. The results demonstrate that our method can
estimate the 3D mesh of the observed images well.

In future work, more shape information should be
considered to add to the objective function so that the
final 3D model has good shape appearance. In addi-
tion, it is also possible to improve the accuracy of the
reconstruction by using more images from different
views.
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