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Abstract: We analyse results from over 3.4million detailed market-trading simulation sessions which collectively 

confirm an unexpected result: in markets with dynamically varying supply and demand, the best-performing 

automated adaptive auction-market trading-agent currently known in the AI/Agents literature, i.e. 

Vytelingum’s Adaptive-Aggressive (AA) strategy, can be routinely out-performed by simpler trading 

strategies. AA is the most recent in a series of AI trading-agent strategies proposed by various researchers 

over the past twenty years: research papers contributing major steps in this evolution of strategies have been 

published at IJCAI, in the Artificial Intelligence journal, and at AAMAS. The innovative step taken here is to 

brute-force exhaustively evaluate AA in market environments that are in various ways more realistic, closer 

to real-world financial markets, than the simple constrained abstract experimental evaluations routinely used 

in the prior academic AI/Agents research literature. We conclude that AA can indeed appear dominant when 

tested only against other AI-based trading agents in the highly simplified market scenarios that have become 

the methodological norm in the trading-agents academic research literature, but much of that success seems 

to be because AA was designed with exactly those simplified experimental markets in mind. As soon as we 

put AA in scenarios closer to real-world markets, modify it to fit those markets accordingly, and exhaustively 

test it against simpler trading agents, AA’s dominance simply disappears. 

1 INTRODUCTION 

Automated algorithmic trading systems are a big 

business. In most major financial markets around the 

world, jobs previously done by highly-paid human 

traders are now routinely done by machines, 

autonomous adaptive computational systems that can 

process vast amounts of data and that can act and react 

at speeds that no human is physically capable of 

matching. Commonly referred to as “algo traders” or 

“robot traders”, such automated systems running in any 

one major investment bank might be responsible for 

order-flows of $100Bn or more per working week.  

When it comes to sub-second financial-market trading, 

we Homo Sapiens are simply made from the wrong 

hardware: in the global financial markets, the “rise of 

the robots” has been underway for the past 10 years or 

more. And, inside that industry, everybody knows the 

robots won (see e.g. Rodgers, 2016). 

The AI and Autonomous Agents research 

community should be claiming this as a victory, a 

major demonstration of success. If the annual 

compensation (salary and bonuses) paid to someone in 

a knowledge-intensive job is even a half-way 

reasonable indication of the intelligence required to do 

that job, then the fact that traders previously paid very 

high levels of compensation have now been replaced 

by machines costing only a tiny fraction of a trader’s 

salary is surely a sign that, in the domain of the 

financial markets, the widespread deployment of 

artificially intelligent “robot trader” autonomous 

agents is a major success story for AI/Agents research. 

Such a claim can be justified by reference to the key 

published literature on adaptive automated trading. 

Although a few significant publications contributing to 

the development of robot-trading systems came from 

academic economists, the landmark papers largely 

appeared in AI and autonomous-agent publication 

venues such as the International Joint Conference on 

Artificial Intelligence (IJCAI), the International 

Conference on Autonomous Agents and Multi-Agent 

Systems (AAMAS), the Artificial Intelligence journal 

(AIJ), and in previous ICAART papers: Section 2 
reviews in more detail eight major  publications in 
the development of this field. 

The review in Section 2 is important, because there we 
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trace the way in which the methodology of initial 

experiments published in 1962 by a young economist, 

Vernon Smith (who 40 years later would be awarded 

the Nobel Prize for his empirical research work) have 

since come to be fixed, or fixated upon, in the 

AI/agents literature. Motivated by what it seems fair to 

assume was a well-intentioned desire to show each set 

of the latest results in the context of what had gone 

before, papers that followed Smith’s replicated much 

or all of his 1962 experiment design and analysis. And 

this, it seems, may have led down a dead end.  

The papers reviewed here are a sequence of steps, 

each building on the earlier work, that lead to the most 

recent step: Vytelingum’s 2006 PhD thesis which 

described a trading algorithm called Adaptive 

Aggressive (AA) that, in an AIJ paper (Vytelingum et 

al., 2007), and in subsequent ICAART and IJCAI 

papers (De Luca and Cliff, 2012a, 2012b), was 

demonstrated to be the best-performing public-domain 

trading strategy. That is, AA was shown to perform 

better, for a specific definition of “better”, than all other 

notable strategies published in the literature up to that 

time. (It is possible that better strategies exist and are 

being used to profitably trade in real financial markets, 

but for obvious reasons any such strategies would be 

closely-guarded commercial secrets: we can only talk 

with any authority about those strategies known in the 

public domain).  

In this paper we demonstrate that the trading 

capabilities of AA are, when faced with realistic 

market dynamics, in fact really rather limited. While 

AA does very well in the type of minimally-simple 

abstract market experiments that had become the norm 

for evaluating and comparing trading-agent 

algorithms, we argue here that this success is due to AA 

having been seemingly (and perhaps subconsciously) 

designed specifically to address features of those 

abstract experimental markets, features that are absent 

or much more complicated in real-world markets. It is 

as if, somewhere along the line, people collectively lost 

sight of the fact that the ultimate test of any automated 

trading system claimed to be relevant to the real-world 

financial markets is simply stated: how much money 

can it actually make? The results presented here 

demonstrate that, when operating in a realistically 

dynamic market, AA routinely makes less money than 

simpler strategies.  

This paper reports on simulation experiments 

involving more than 3 million independent market 

sessions where AA and various other trading strategies 

interact and compete for limited profits, in a market 

with a Limit Order Book (LOB), the core data structure 

found in real-world financial markets, explained 

further in Section 2.2. We use the free open-source 

BSE LOB-market simulator (BSE, 2012; Cliff, 2018) 

available from GitHub since 2012. Using a well-

established public-domain market simulator makes it 

easier for other researchers to check, replicate, and 

extend our methods and results. 

After the review of past work in Section 2, in 

Section 3 we briefly discuss issues arising, 

modifications that need to be made, to adapt AA from 

its original design (which is extremely well-suited to 

minimal abstract market experiments) over to working 

in the much more realistic environments presented by 

a contemporary market simulator such as BSE. To 

distinguish between the original AA, which does not 

operate in realistic markets, and the version modified 

and extended to work in BSE, we here refer to the latter 

as Modified AA (MAA). We describe our methods in 

Section 4, and our results in Section 5.  

We start in Section 5.1 by replicating the spirit of 

prior work, comparing MAA’s performance to other 

trading agents in a BSE market that is deliberately 

constrained to match the simplifying assumptions and 

constraints of earlier experimental work. After that, we 

explore the effects of removing those simplifying 

assumptions and constraints: we report the resultant 

changes in the relative performance of MAA and those 

other trading strategies active in the market alongside 

it. We find that when the market’s underlying supply 

and demand schedules are stationary (i.e., are largely 

fixed for the course of an experiment) or suffer 

intermittent step-change “price shocks”, MAA does as 

well as all previous publications lead us to expect. 

However, when we introduce dynamic variation into 

the supply and demand schedules over the course of 

individual experiments, such that the market’s 

equilibrium price is continuously varying, we then find 

that MAA’s performance degenerates badly. Section 

5.2 then presents results from experiments where 

fluctuations in the equilibrium price are driven by a 

price-history taken from a real-world asset, for a 

variety of asset-classes. We find that these real-world 

dynamics lead MAA to always do worse than simpler 

strategies.  

Section 6 then discusses these results and 

concludes that the success of MAA seems to be due in 

large extent to “methodological over-fitting”, i.e. to 

being embedded in a research methodology so set on 

repeating the same style of experiments (admirably so, 

because replication is fundamental to validation), that 

it lost sight of what real-world phenomena those 

experiments were intended to be abstract models of. 

MAA does very well in the abstract experimental 

scenarios, but it does so well in comparison to its 

terrible performance in more realistic scenarios that it 

is hard to avoid the conclusion that AA was (perhaps 

Exhaustive Testing of Trader-agents in Realistically Dynamic Continuous Double Auction Markets: AA Does Not Dominate

225



 

subconsciously) designed specifically for those 

abstract models without much consideration of its 

performance in more realistic environments like actual 

financial markets. Unfortunately for MAA, 

practitioners in real financial markets are not at all 

forgiving of mismatches between models and reality. 

The ultimate message of this paper is that we should all 

be testing our systems in as realistic environments as 

we have reasonable access to. Free access to public-

domain open-source market simulators such as BSE, 

and to alternatives such as OpEx (De Luca, 2015) or 

ExPo (Stotter et al., 2013), coupled with cheaply 

available cloud computing, now makes this kind of 

study much easier for others to replicate. 

2 BACKGROUND 

The 2002 Nobel Prize in Economics was awarded to 

Vernon Smith, in recognition of Smith’s work in 

establishing and thereafter growing the field of 

Experimental Economics (abbreviated hereafter to 

“ExpEcon”). Smith showed that the microeconomic 

behaviour of human traders interacting within the rules 

of some specified market, known technically as an 

auction mechanism, could be studied empirically, 

under controlled and repeatable laboratory conditions, 

rather than in the noisy messy confusing circumstances 

of real-world markets. The minimal laboratory studies 

could act as useful proxies for studying real-world 

markets of any type, but one particular auction 

mechanism has received the majority of attention: the 

Continuous Double Auction (CDA), in which any 

buyer can announce a bid-price at any time and any 

seller can announce an offer-price at any time, and in 

which at any time any trader in the market can accept 

an offer or bid from a counterparty, and thereby engage 

in a transaction. The CDA is the basis of major 

financial markets worldwide.  

Smith’s initial set of experiments were run in the 

late 1950’s, and the results and associated discussion 

were presented in his first paper on ExpEcon, 

published in the highly prestigious Journal of Political 

Economy (JPE) in 1962. It seems plausible to speculate 

that when his JPE paper was published, Smith had no 

idea that it would mark the start of a line of research 

that would eventually result in him being appointed as 

a Nobel laureate. And it seems even less likely that he 

would have foreseen the extent to which the 

experimental methods laid out in that 1962 paper 

would subsequently come to dominate the 

methodology of researchers working to build adaptive 

autonomous trading agents by combining tools and 

techniques from artificial intelligence (AI), machine 

learning (ML), agent-based modelling (ABM), and 

agent-based computational economics (ACE). 

Although not a goal stated at the outset, this strand of 

AI/ML/ABM/ACE research converged toward a 

common aim: specifying an artificial agent, an 

autonomous adaptive trading strategy, that could 

automatically tune its behaviour to different market 

environments, and that could reliably beat all other 

known automated trading strategies, thereby taking the 

crown of being the current best trading strategy known 

in the public domain, i.e., the “dominant strategy”. 

Over the past 20 years the dominant strategy crown has 

passed from one algorithm to another. Here, we 

demonstrate that the current holder of the title, 

Vytelingum’s (2006) AA strategy, does not perform 

nearly so well as was previously believed from success 

in small numbers of simple trials. 

Given that humans who are reliably good at trading 

are generally thought of as being “intelligent” in some 

reasonable sense of the word, the aim to develop ever 

more sophisticated artificial trading systems is clearly 

within the scope of AI research, although some very 

important early ideas came from the economics 

literature: a comprehensive review of relevant early 

research was presented by Cliff (1997). Below in 

Section 2.1 we first briefly introduce eight key 

publications leading to the development of AA; then 

describe key aspects of ExpEcon market models in 

Section 2.2; and then discuss each of the eight key 

publications in more detail in Section 2.3. 

2.1 A Brief History of Trading Agents 

Our story starts with Smith’s 1962 JPE paper. The next 

major step comes 30 years later, with a surprising result 

published in the JPE by Gode and Sunder (1993): this 

popularised a minimally simple automated trading 

algorithm now commonly referred to as ZIC. A few 

years later two closely related research papers were 

published independently and at roughly the same time, 

each written without knowledge of the other: the first 

was a Hewlett-Packard Labs technical report by Cliff 

(1997) describing the adaptive AI/ML trading-agent 

strategy known as the ZIP algorithm; the second 

summarised the PhD thesis work of Gjerstad, in a paper 

co-authored with his PhD advisor (Gjerstad and 

Dickhaut 1998), describing an adaptive trading 

algorithm now widely known simply as GD.   

After graduating his PhD, Gjerstand worked at IBM’s 

TJ Watson Labs where he helped set up an 

ExpEcon laboratory that his IBM colleagues used in a 

study that generated world-wide media coverage when 

the results were published by Das et al. at IJCAI-2001. 

This paper presented results from studies exploring the 
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behaviour of human traders interacting with GD and 

ZIP robot traders, in a CDA with a Limit Order Book 

(LOB: explained in more detail in Section 2.2, below), 

and demonstrated that both GD and ZIP reliably 

outperformed human traders. Neither GD nor ZIP had 

been designed to work with the LOB, so the IBM team 

modified both strategies for their study. A follow-on 

2001 paper by Tesauro and Das (two co-authors of the 

IBM IJCAI paper) described a more extensively 

Modified GD (MGD) strategy, and later Tesauro and 

Bredin (2002) described the GD eXtended (GDX) 

strategy. Both MGD and GDX were each claimed to 

be the strongest-known public-domain trading 

strategies at the times of their publication.  

Subsequently, Vytelingum’s 2006 thesis 

introduced the Adaptive Aggressive (AA) strategy 

which, in an AIJ paper (Vytelingum et al., 2007), and 

in later ICAART and IJCAI papers (De Luca and Cliff 

2012a, 2012b), was shown to be dominant over ZIP, 

GDX, and human traders. Thus far then, AA holds the 

title.  

However Vach (2015) recently presented results 

from experiments with the OpEx market simulator (De 

Luca, 2015), in which AA, GDX, and ZIP were set to 

compete against one another, and in which the 

dominance of AA is questioned: Vach’s results 

indicate that whether AA dominates or not can be 

dependent on the ratio of AA:GDX:ZIP in the 

experiment: for some ratios, Vach found AA to 

dominate; for other ratios, it was GDX. Vach studied 

only a relatively small sample from the space of 

possible ratios, but his results prompted the work 

reported here, in which we exhaustively sample a wide 

range of differing ratios of four trading strategies (AA, 

ZIC, ZIP, and the minimally simple SHVR strategy 

described in Section 2.2), doing a brute-force search 

for situations in which AA is outperformed by the other 

strategies. The combinatorics of such a search are quite 

explosive, and in Section 5 we report on results from 

over 3.4 million individual simulations of market 

sessions. Our findings indicate that Vach’s observation 

was correct: AA’s dominance depends on how many 

other AA traders are in the market; and, in aggregate, 

AA is routinely outperformed by ZIP and by SHVR.  

2.2 On Laboratory Models of Markets 

Smith’s early experiments were laboratory models of 

so called open-outcry trading pits, a common sight in 

any real financial exchange before the arrival of 

electronic trader-terminals in the 1970s. In a trading 

pit, human traders huddle together and shout out their 

bids and offers, and also announce their willingness to 

accept a counterparty’s most recent shout. It’s a chaotic 

scene, now largely consigned to the history books. In 

the closing quarter of the 20th Century, traders moved 

en masse to interacting with each other instead via 

electronic means: traders “shouted” their offer or bids 

or acceptances by typing orders on keyboards and then 

sending those orders to a central server that would 

display an aggregate summary of all orders currently 

“shouted” onto the market. That aggregate summary is 

very often in the form of a Limit Order Book or LOB: 

the LOB shows a summary of all bids and offers 

currently live in the market. At its simplest, the LOB is 

a table of numbers, divided into the bid side and the ask 

side (also known as the offer side). Both sides of the 

LOB show the best price at the top, with less good 

prices arranged below in numeric order of price: for the 

bid side this means the highest-priced bid at the top 

with the remaining bid prices displayed in descending 

order below; and for the ask side the lowest-priced 

offer is at the top, with the remaining offers arranged 

in ascending order below. The arithmetic mean of the 

best bid and best ask prices is known as the mid-price, 

and their difference is the spread. For each side of the 

LOB, at each price on the LOB, the quantity available 

on that side at that price is also indicated, but with no 

indication of who the relevant orders came from: in this 

sense the LOB serves not only to aggregate all 

currently live orders, but also to anonymize them.  

Traders in LOB-based markets can usually cancel 

existing orders to delete them from the LOB. In a 

common simple implementation of a LOB, traders can 

accept the current best bid or best offer by issuing a 

quote that crosses the spread: i.e., by issuing an order 

that, if added to the LOB, would result in the best bid 

being at a higher price than the best ask. Rather than be 

added to the LOB, if a bid order crosses the spread then 

it is matched with the best offer on the ask side (known 

as lifting the ask), whereas an ask that crosses the 

spread is matched with the best bid (hitting the bid); 

and in either case a transaction then occurs between the 

trader that had posted the best price on the relevant side 

of the LOB, and the trader that crossed the spread. The 

price of the resulting transaction is whatever price was 

hit or lifted from the top of the LOB.  

Smith’s earliest experiments pre-dated the arrival 

of electronic trading in real financial markets, and so 

they can be thought of as laboratory models of open-

outcry trading pits. Even though the much later work 

by Gode and Sunder, Cliff, Gjerstad and Dickhaut, and 

Vytelingum all came long after the introduction of 

electronic LOBs in real markets, these academic 

studies all stuck with Smith’s original methodology, of 

modelling open-outcry markets (often by essentially 

operating a LOB with the depth fixed at 1, so the only 

information available to traders is the current best, or 
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most recent, bid and ask prices).  

Nevertheless, the studies by IBM researchers (Das 

et al., 2001; Tesauro and Das, 2001; Tesauro and 

Bredin 2012), and also the replication and confirmation 

of AA results by De Luca and Cliff (2011a, 2011b) and 

by Stotter et al. (2013), all used LOB-based market 

simulators. The IBM simulator Magenta seems to have 

been proprietary to IBM; developed at TJ Watson Labs 

and not available for third-party use. But De Luca 

made an open-source release of his OpEx simulator 

(De Luca, 2015) which was subsequently used by Vach 

(2015) in the studies that prompted our work reported 

here. Also of relevance here is the ExPo simulator 

described by Stotter et al. (2014): in the work by De 

Luca, by Vach, and by Stotter et al., Vytelingum’s 

original AA needed modifications to make it work in a 

LOB-based market environment: this is discussed 

further in Section 3.  

In the work reported here we used neither OpEx nor 

ExPo, but instead BSE (BSE, 2012; Cliff, 2018) which 

is another open-source ExpEcon market simulator, 

initially developed as a teaching aid but subsequently 

used as a platform for research (see, e.g. le Calvez and 

Cliff, 2018). BSE has the advantage of being relatively 

lightweight (a single Python script of c.2500 lines) and 

hence readily deployable over large numbers of virtual 

machines in the cloud. BSE maintains a dynamically 

updated LOB and also publishes a tape, a time-ordered 

record of all orders that have been executed. It comes 

with pre-defined versions of ZIC and ZIP, and also 

some additionally minimally-simple non-adaptive 

trading strategies that can be used for benchmarking 

against other more complex strategies added by the 

user. One of these, the Shaver strategy (referred to in 

BSE by the “ticker symbol” SHVR) simply reads the 

best prices on the LOB and, if it is able to do so without 

risking a loss-making deal then it issues an order that 

improves the current best bid or best ask by one 

penny/cent.  

2.3 Eight Key Papers, One 
Methodology 

2.3.1 Smith 1962 

Smith’s 1962 JPE paper is widely regarded as the first 

published study in ExpEcon. In it he reported on 

experiments in which groups of human subjects were 

randomly assigned to be either buyers or sellers.  

Buyers were given a supply of artificial money, and 

sellers were given one or more identical items, of no 

intrinsic value, to sell. Each trader in the market was 

assigned a private valuation, a secret limit price: for a 

buyer this was the price above which he or she should 

not pay when purchasing an item; for a seller this was 

the price below which he or she should not sell an item. 

These limit-price assignments model the client orders 

executed by sales traders in real financial markets; 

we’ll refer to them just as assignments in the rest of this 

paper. After the allocation of assignments to all 

subjects, they then interacted via an open-outcry CDA 

while Smith and his assistants made notes on the 

sequence of events that unfolded during the 

experiment: typically, buyers would gradually increase 

their bid-prices, and sellers would gradually lower their 

offer-prices (also known as ask-prices) until 

transactions started to occur. Eventually, typically after 

5 or 10 minutes, the experimental market reached a 

position in which no more trades could take place, 

which marked the end of a trading period or “trading 

day” in the experiment; any one experiment typically 

ran for n=5-10 periods, with all the traders being 

resupplied with money and items-for-sale at the start of 

each trading period. The sequence of n contiguous 

trading periods (or an equivalently long single-period 

experiment with continuous replenishment, as 

discussed in Section 5.1) is referred to here as one 

market session. Smith could induce specific supply and 

demand curves in these experimental markets by 

appropriate choices of the various limit-prices he 

assigned to the traders. As any high-school student of 

microeconomics knows, the market’s theoretical 

equilibrium price (denoted hereafter by P0) is given by 

the point where the supply curve and the demand curve 

intersect. Smith found that, in these laboratory CDA 

markets populated with only remarkably small groups 

of human traders, transaction prices could reliably and 

rapidly converge on the theoretical P0 value despite the 

fact that each human trader was acting purely out of 

self-interest and knew only the limit price that he or she 

had been assigned. Smith’s analysis of his results 

focused on a statistic that he referred to as , the root 

mean square (RMS) deviation of actual transaction 

prices from the P0 value over the course of an 

experiment. In his early experiments, P0  was fixed for 

the duration of any one experiment; in later work Smith 

explored the ability of the market to respond to “price 

shocks” where, in an experiment of N trading days, on 

a specific day S<N the allocation of limit prices would 

be changed, altering P0 from the value that had been in 

place over trading periods 1, 2, …, S, to a different 

value of P0 that would then remain constant for the rest 

of the experiment, i.e. in trading periods S+1, S+2, …, 

N. For brevity, in the rest of this paper Smith’s style of 

experiments will be referred to as S’62 experiments.   
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2.3.2 ZIC: Gode and Sunder 1993 

Gode and Sunder’s 1993 JPE paper used the S’62 

methodology, albeit with the CDA markets being 

electronic (a move Smith himself had made in his 

experiments many years earlier), so each trader was sat 

at a personal terminal, a computer screen and 

keyboard, from which they received all information 

about the market and via which they announced their 

orders, their bids or offers, to the rest of the traders in 

the experiment. Gode and Sunder first conducted a set 

of experiments in which all the traders were human, to 

establish baseline statistics. Then, all the human traders 

were replaced with automated trading systems, 

absolute-zero minimally-simple algo traders which 

Gode and Sunder referred to as Zero Intelligence (ZI) 

traders. Gode and Sunder studied markets populated 

with two type of ZI trader: ZI-Unconstrained (ZIU), 

which simply generated random prices for their bids or 

offers, regardless of whether those prices would lead to 

profitable transactions or to losses; and ZI-Constrained 

(ZIC), which also generated random order prices but 

were constrained by their private limit prices to never 

announce prices that would lead them to loss-making 

deals. Gode and Sunder used fixed supply and demand 

schedules in each experiment, i.e. there were no price-

shocks in their experiments.  

Not surprisingly, the market dynamics of ZIU 

traders were nothing more than noise. But the 

surprising result in Gode and Sunder’s paper was the 

revelation that a commonly used metric of market price 

dynamics known as allocative efficiency (AE, 

hereafter) was essentially indistinguishable between 

the human markets and the ZIC markets. Because AE 

had previously been seen as a marker of the degree to 

which the traders in a market were behaving 

intelligently, the fact that ZIC traders scored AE values 

largely the same as humans was a shock. Gode and 

Sunder proposed that a different metric should instead 

be used as a marker of the intelligence of traders in the 

market. This metric was profit dispersion (PD, 

hereafter) which measures the difference between the 

profit each trader accrued in an experiment, compared 

to the profit that would be expected for that trader if 

every transaction in the market had taken place at the 

market’s theoretical equilibrium price P0: humans 

typically showed very low values of PD (which is 

assumed to be good) while ZIC traders did not. On this 

basis, Gode and Sunder argued that PD should be used 

in preference to AE.  

2.3.3 Zip: Cliff 1997 

Taking direct inspiration from both Smith’s work and 

from the ZI paper by Gode and Sunder, Cliff (1997) 

developed a ZI trading strategy that used simple 

machine-learning techniques to continuously adapt the 

randomly-generated prices quoted by the traders: this 

strategy, known as ZI-Plus (ZIP) was demonstrated to 

show human-like market dynamics in experiments 

with flat supply and/or demand curves: Cliff also 

showed theoretical analyses and empirical results 

which demonstrated that transaction prices in markets 

populated only by ZIC traders would not converge to 

the theoretical equilibrium price when the supply 

and/or demand curves are flat (or, in the language of 

microeconomics, “perfectly elastic”). ExpEcon studies 

in which the supply and/or demand curve was flat had 

previously been reported by Smith and others, but 

Gode and Sunder had not explored the response of their 

ZIC traders to this style of market. Cliff’s work 

involved no human traders: all the focus was on 

markets populated entirely by autonomous agents, by 

ZIP traders. In total Cliff (1997) reported on fewer than 

1,000 simulated market sessions. The focus on 

homogenous markets can fairly be interpreted as 

continuing the tradition established by Gode and 

Sunder (who studied markets homogeneously 

populated with either human, ZIU, or ZIC traders) and 

by Smith (who studied all-human markets).  In all other 

regards Cliff continued the S’62 tradition: key metrics 

were Smith’s  AE, and PD.   

2.3.4 GD: Gjerstad and Dickhaut 1997 

Gjerstad’s PhD studies of price formation in CDA 

markets (Gjerstad and Dickhaut, 1998) also involved 

creating an algorithm that could trade profitably by 

adapting its behavior over time, in response to market 

events. In contrast to the ZI work, Gjerstad’s trading 

algorithm uses frequentist statistics, gradually 

constructing and refining a belief function that 

estimates the likelihood for a bid or offer to be accepted 

in the market at any particular time, mapping from 

price of the order to its probability of success. Gjerstad 

did not explicitly name his strategy, but it has since 

become known as the GD strategy. In all other regards, 

as with Cliff (1997) and Gode and Sunder (1993), 

Gjerstad’s work was firmly in the S’62 tradition: 

homogenous markets of GD traders interacting in a 

CDA, buying and selling single items, with the metrics 

being Smith’s  AE, and PD. 

2.3.5 MGD: IBM 2001 

In their landmark 2001 IJCAI paper, IBM researchers 

Das, Hanson, Kephart, and Tesauro studied the 

performance of GD and ZIP in a series of ExpEcon 

market experiments where, for the first time ever in the 

same market, some of the traders were robots while 
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others were human (recall that the earlier work of 

Smith, of Gode and Sunder, of Cliff, and of Gjerstad 

and Dickhaut had all studied homogeneous markets: 

either all-human or all-robot). Das et al. used a LOB-

based market simulator called Magenta, developed by 

Gjerstad, and ran a total of six experiments, six market 

sessions, in which humans and robots interacted and 

where there were three shock-changes to P0, i.e. four 

phases in any one experiment, each phase with a 

different P0 value that was held static over that phase. 

The surprising result in this paper was that robot 

trading strategies could consistently outperform human 

traders, by significant margins: a result that attracted 

worldwide media attention. Both GD and ZIP 

outperformed human traders, and in the six 

experiments reported by Das et al. the results from the 

two robot strategies are so similar as to not obviously 

be statistically significant. A subsequent paper by 

IBM’s Tesauro and Das (2001), reported on additional 

studies in which a Modified GD (MGD) strategy was 

exhibited what the authors described in the abstract of 

their paper as “…the strongest known performance of 

any published bidding strategy”.  

2.3.6 GDX: Tesauro and Bredin 2002 

Extensions to MGD were reported by IBM researchers 

Tesauro and Bredin (2002) at AAMAS 2002. This 

described extensions to MGD, using dynamic 

programming methods: this version was named GDX 

and its performance was evaluated when competing in 

heterogenous markets with ZIP and other strategies. 

Tesauro and Bredin reported that GDX outperformed 

the other strategies and claimed in the abstract of their 

paper that GDX “...may offer the best performance of 

any published CDA bidding strategy.”  

2.3.7 AA: Vytelingum 2006 

Vytelingum developed AA and documented it in full 

in his PhD thesis (2006) and in a major paper in the AIJ 

(Vytelingum et al., 2008). The internal mechanisms of 

AA are described in greater detail in Section 3 of this 

paper. Although Vytelingum’s work came a few years 

after the IBM publications reviewed in Sections 2.3.5 

and 2.3.6, the discussion within Vytelingum’s 

publications is phrased very much in terms of the S’62 

methodology: the P0 value in his AA experiments was 

either fixed for the duration of each market session, or 

was subjected to a single “price shock” partway 

through the session (as described in Section 2.3.1); and 

again the primary metrics studied are Smith’s , AE, 

and PD. Vytelingum presented results from 

heterogeneous market experiments where AA, GDX, 

and ZIP traders were in competition, and the published 

results indicated that AA outperformed both GDX and 

ZIP by small margins. In total, results from c.25,000 

market sessions are presented in (Vytelingum et al., 

2008).   

2.3.8 AA Dominates: De Luca and Cliff 2011 

As part of the research leading to his 2015 PhD thesis, 

De Luca used his LOB-based OpEx market simulator 

system (De Luca, 2012) to study the performance of 

AA in heterogeneous market experiments where some 

of the traders were AA, some were other robot 

strategies such as ZIP, and some were human traders 

sat at terminals interacting with the other traders 

(human and robot) in the market via the OpEx GUI, in 

the style introduced by the IBM team in their IJCAI 

2001 paper. De Luca and Cliff (2011a) had previously 

published results from comparing GDX and AA in 

OpEx, at ICAART-2011, and the first results from AA 

in human-agent studies were then published in a 2011 

IJCAI paper (De Luca and Cliff, 2011b), in which AA 

was demonstrated to dominate not only humans but 

also GDX and ZIP. For consistency with what was by 

then a well-established methodology, in De Luca’s 

experiments the P0 value was static for sustained 

periods with occasional “shock” step-changes to 

different values. Continuing the tradition established 

by the IBM authors, the abstract of (De Luca and Cliff 

2011b) claimed supremacy for AA: “We… 

demonstrate that AA’s performance against human 

traders is superior to that of ZIP, GD, and GDX. We 

therefore claim that… AA may offer the best 

performance of any published bidding strategy”.  

And, until the publication of Vach (2015), that claim 

appeared to be plausibly true.  

3 MAA: MODIFIED AA 

Taking the AA algorithm and attempting to run it in a 

LOB-based market reveals the extent to which AA 

seems designed to fit very well in the Smith’62 style of 

experiments with periodic replenishment, and is less 

well suited to a continuously varying market dynamic. 

In brief, AA’s internal mechanisms revolve around 

three questions that each AA trader attempts to answer: 

(1) What is my best estimate of the current equilibrium 

price P0? (2) What is my best estimate of the current 

volatility of transaction prices around P0? And (3) is 

the limit price on my current assignment intramarginal 

(i.e., could be sold/bought at P0 and still make a profit) 

or extramarginal? For its estimate of P0, the original 

AA trader computes a moving average of recent 

transaction prices. For its volatility estimate, it 
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computes Smith’s  metric, taking the difference 

between recent transaction prices and the trader’s 

current estimate of P0 (i.e., ignoring any trend in P0, 

which is safe to do if, as in the S’62 experiments, P0 

changes rarely or never). Deciding on whether the 

current assignment is intra/extra marginal is done by 

comparing its limit price to its P0 estimate.  

In MAA, our modified implementation of AA, 

these questions can instead each be answered by 

reference to information that is routinely available 

from an exchange: the LOB and the exchange’s “tape” 

(the record of timestamped transactions). P0 can be 

better estimated by using the volume-weighted mid-

price at the top of the book (known as the microprice): 

this is a better metric because it can be sensitive to 

shifts in the P0 value before any transactions go 

through that reflect the shift. Volatility can be 

estimated by reference not to only the current estimate 

of P0 but also to BSE’s tape data: a time-series of 

transaction-price values correlated with a time series of 

microprice values is better to use in situations where 

the P0 value is continuously changing: for each 

transaction on the tape, the microprice at the time of 

that transaction (or immediately before) is the better 

reference value for calculating Smith’s Extra-/intra-

marginality is still decided by reference to the trader’s 

P0 estimate, but in MAA that estimate can come from 

the microprice.  

Previous authors have also needed to adapt AA for 

LOB-based markets: De Luca (2011a, 2011b, 2015) 

and Vach (2015) each used AA in the OpEx simulator, 

and Stotter et al. (2013) used AA in the ExPo 

simulator. However, the modified AA proposed here is 

novel insofar as prior authors don’t report using the 

exchange’s tape data or the microprice.  

There is a tension between modifiying AA in an 

attempt to better fit it to a LOB-based market, and 

making claims about AA’s poor performance in those 

markets: the more heavily AA is modified, the more 

one is open to accusations that the modifications 

themselves are the cause of the poor performance, 

rather than that poor performance being a reflection of 

the original AA being badly-suited to LOB markets. 

For that reason, in this paper, we keep AA very close 

to the original, using only the microprice modification 

in generating the results presented here.  

4 EVALUATION METHODS 

Having modified AA to run in the more realistic CDA 

market scenarios provided by BSE, we evaluated its 

performance, measured as average profitability per 

trader, when tested against other trading strategies 

under a variety of supply and demand schedules, in 

markets of varying population sizes; and, for any one 

population size, testing across an exhaustive sequence 

of strategy-ratios (described in Section 4.1). In the 

experiments reported here, we chose to test AA against 

three other strategies: Gode and Sunder’s (1993) ZIC 

(see Section 2.3.2); Cliff’s (1997) ZIP (Section 2.3.3); 

and the BSE built-in strategy SHVR (Section 2.2). ZIC 

serves as a lower-limit non-adaptive baseline strategy, 

albeit one that ignores all information available on the 

LOB; SHVR as a minimally simple non-adaptive 

strategy that does actually use LOB data; and ZIP, also 

pre-coded into BSE, was argued by Vytelingum to be 

outperformed by AA; and was argued by Tesauro and 

Bredin to be outperformed by  GDX: so if AA cannot 

do better than ZIP in a specific type of experiment then 

it presumably also cannot do better than GDX.  
For brevity, the only metric that we discuss here for  

any given strategy, for any one trial or for aggregate 

results of multiple trials, is the average profit per trader 

(APPT) calculated across all traders playing that 

particular strategy, and the associated stddev.  

4.1 Varying Trader-Strategy Ratios 

The results published by Vach (2015) demonstrated 

that the measured performance of AA in a 

heterogeneous market (i.e. a market populated by 

trading agents with a variety of trading strategies) 

could be heavily dependent on the ratios of the various 

strategies active in the market. To control for this, in 

the experiments reported here we evaluate the 

performance of trading strategies by calculating 

summary statistics that aggregate over a large number 

of trials for any given ratio of the various trading 

strategies in the market: let T represent the number of 

trials we perform for any one ratio of trading strategies, 

and let S represent the number of different strategies 

we are testing in an experiment. We systematically and 

exhaustively vary the ratios of the different trading 

strategies in the market for a given total number of 

traders in the market, which we refer to as the 

population size P, which in turn is determined by the 

number NEqR of traders running each strategy when 

the ratio is equal across all strategies, such that 

P=2·S·NEqR. This is best illustrated with an example: 

in Section 5 we report on experiments with MAA, 

SHVR, ZIC, and ZIP, so S=4. Then let R  denote the 

ratio between the different trader types, such that R = 

MAA:SHVR:ZIC:ZIP. 

If we set NEqR to 3, that means when the ratio R is 

equal, it will be 3:3:3:3 on the buyer side (and 3:3:3:3 

on the seller side), so there will be S·NEqR=3x4=12 

traders on each side, so P=24. When we say that we are 
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exhaustively varying the ratios, this means that for any 

given number of buyer or seller traders P/2, we test all 

possible ratios for that given P/2, sweeping the counts 

of each trader-type in R through all valid nonnegative 

integers. Taking again the P=24 example from our 

experiments in Section 5, this means starting with 

R=0:0:0:12 on each side of the market, running T trials 

(independent market sessions) at that ratio, then 

running T trials at R=0:0:1:11, a further T at 

R=0:0:2:10, and so on systematically adjusting all 

counts in the ratio, through the equal-ration case of 

R=3:3:3:3 and on to the final ratio of R=12:0:0:0. The 

combinatorics are quite explosive: for any particular 

values of S and NEqR, total number of different viable 

ratios R is given by: 

R = (S·NEqR + S – 1)! / ((S·NEqR)! · (S-1)!)   

Hence the total number of market sessions that need to 

be run for any one value of NEqR is R·T. This gets quite 

big, quite fast: e.g., with S=4, NEqR=4, and T=100, we 

have R·T=96,900. And to rigorously explore 

population-size effects we sweep NEqR through a 

range of values. 

4.2 Varying Supply/Demand Schedules 

The review in Section 2.3 demonstrated that typically 

the supply and demand schedules induced by the 

experimenter (via the choice of limit prices in the 

traders’ assignments) are such that the equilibrium 

price P0 is either constant for the duration of the 

experiment, or undergoes one or more step-changes, 

(price shocks) in the course of the experiment, jumping 

from one constant value to another. Much of the work 

reviewed in Section 2.3 also involves periodic 

replenishment of all traders’ assignments, dividing the 

experiment into a number of trading “periods”. While 

this style of experiment design will certainly have been 

most convenient for Vernon Smith when he was 

running his early experiments, entirely manually, in the 

late 1950s and 1960s, once everything is under 

computer control it seems a curious thing way to 

organise things, especially given the observation that 

almost every real-world market of interest is quite 

clearly not fixed at a constant equilibrium price, 

undergoes step-changes in P0 only very rarely (if at all) 

and that in the course of a trading day for any 

reasonably liquid tradeable asset the flow of orders 

(i.e., trader assignments) into the market is not neatly 

periodic but instead is best modelled as a stochastic 

process, with random interarrival times. 

Fortunately, BSE offers the experimenter a lot of 

control over the supply and demand schedules (SDSs) 

used in any one experiment. Traditional ExpEcon 

constant-P0  SDSs can easily be specified in BSE, with 

or without step changes so that P0 jumps from one 

constant value to another, but BSE also allows for 

constantly-varying SDSs to be specified, driven by 

closed-form functions or by look-up tables (LUTs) 

which each specify an offset value, denoted P0
+(t)  that 

is added to P0 at time t  during the experiment. To study 

the response of MAA to continuously-varying P0, we 

used LUTs of real-world financial-asset intra-day time-

series drawn from a range of asset classes, as described 

in Section 5.2: in these experiments the supply and 

demand curves were totally flat, with all supply-curve 

limit prices PS=P0
+(t) + $0.95 and all demand-curve 

prices PS=P0
+(t) + $1.05. In contrast, in the S’62 

experiments reported in Section 5.1, the SDSs were 

constant (P0
+(t)=0 for all time) and symmetric over the 

range $0.10 to $1.90. 

5 RESULTS 

5.1 Experiments in the Style of 
Smith’62 

Our first set of S’62 experiments explores the 

profitability of MAA, SHVR, ZIC, and ZIP in market 

experiments run within BSE but modelled as closely 

as possible on Smith’s original experiments: 

individual traders are either buyers or sellers; trading 

happens in discrete periods (“days”), with all traders’ 

assignments of buy and sell orders being 

simultaneously replenished at the start of each period. 

The SDS are such that the underlying equilibrium 

price P0 is held fixed for the duration of the 

experiment, or is subjected to one or more step-

change “price shocks” which always occur at the start 

of a trading period. Figure 1 shows a comparison of 

the results, expressed as average profit per trader 

(APPT) from markets populated by a mix of MAA 

and ZIP traders, in ratios varying from roughly 

5%:95% through 50%:50% to 95%:5%.  

This is exactly the kind of comparison that is 

usually reported in the trading-agent literature. From 
Figure 1 it is clear that, for both MAA and ZIP, when 

either strategy is in the minority (<50% of the traders 

in the population), the profit scores are roughly the 

same; but as the proportion increases beyond 50%, 

MAA’s profit scores are significantly better than 

those of ZIP. The data in Figure 1 should cause no 

surprises to anyone familiar with the literature 

surveyed in Section 2.3: this is confirmation that 

MAA can outperform ZIP, which is to be expected 

from the results and analysis previously published by 

Vytelingum and by De Luca and Cliff. AA’s  
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Figure 1: Results from 7,800 separate S’62 market sessions 

pitting some number of MAA traders against some number 

of ZIP traders, in markets where the total number of traders 

varies from 8 (4 buyers + 4 sellers) to 48 (24+24). Upper 

graph is MAA results; lower graph is ZIP. Horizontal axis 

is percentage of that strategy within the population; vertical 

axis is average profit per trader (APPT). Small blue markers 

are results from individual market sessions; large solid-red 

markers show the mean, with error bars to plus and minus 

one standard deviation, for quintile bins (i.e., 0-20%, 20%-

40%, etc). For both strategies, when in the minority the 

results are broadly similar, but when MAA is in the majority 

it scores significantly higher profit than MAA.  

dominance is clearest when it is trading in markets 

where most other traders are also using the MAA 

strategy. Thus far though, the king retains the crown.  

While Figure 1 shows the effect of varying the 

proportion of two trading strategies in a two-trader 

market, summarising results from 7,800 separate 

market sessions, the number of different situations 

studied there is very small in comparison to the space 

of all viable ratios across some reasonable range of 

population sizes. Figure 2 illustrates aggregate 

statistics from 546,000 market sessions that 

exhaustively explore that whole space. Here the ratios 

of four strategies are systematically varied over all 

viable values (so this includes the data shown in Figure 

1, where the MAA:SHVR:ZIC:ZIP ratio R was 

restricted to match n:0:0:m). Figure 2 shows APPT for 

the four trading strategies plotted as NEqR varies over 

the range [1,6] (i.e., total number of traders in the range 

[8, 48]), with T=100 at each ratio.  

It is clear from Figure 2 that as NEqR increases 

there is a slight reduction in variance; and although the 

mean values of the four trader types differ, these 

differences are tiny in comparison to the standard 

deviations: when measured by APPT there are no 

major differences when the whole space is sampled.  

 

Figure 2: Results from 546,000 separate S’62 market 

sessions with periodic replenishment of traders’ 

assignments. Horizontal axis is NEqR values; vertical axis 

is APPT, with error bars at plus and minus one standard 

deviation. The explosive combinatorics of the exhaustive 

sweep through all combinations of ratios of the four trader 

types for any specific value of NEqR means that the number 

n of discrete experiments summarised by each marker on 

the graph for NEqR=1,2,…,6 are respectively: n=2,000; 

12,000; 36,400; 81,600; 154,000; and 260,000. 

This may seem like a counterintuitive result: in these 

experiments the zero-intelligence ZIC and SHVR are 

scoring just as well as MAA and ZIP. It can be 

explained by reference to three factors: choice of 

metric; heterogenous trader populations; and 

experiment design. On the choice of metric: if we had 

reported the traditional metrics of Smith’s  or PD, the 

differences between strategies would have been more 

clear; transaction prices in markets populated by ZIC 

and SHVR do show increased  (i.e., RMS deviation 

of transaction prices from the theoretical P0 value) and 

PD (i.e., differences between actual profit accrued, and 

profit expected if all transactions took place at the P0 

price), but as was argued above, the bottom line in a 

real-world trading environment is actual profit. On the 

heterogeneity of the trading population: in almost all of 

the market sessions summarised in Figure 1, the 

“dumb” traders playing the SHVR strategy can, in 

essence, get a free-ride from the AI/ML in MAA and 

ZIP: as traders playing those “intelligent” strategies 

post prices, SHVR traders can parasitically jump one 

cent better, immediately posting a better price, 

positioning themselves at the top of the LOB. On the 

experiment design, this classic SDS where the P0 is 

static for the entire experiment does not exactly 

provide the most taxing environment in which to trade;  

MAA  

ZIP  
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Table 1: Results table for S’62 experiments with periodic 

(upper sub-table: PR) and continuous (lower sub-table: CR) 

replenishment of trader assignments for NEqR=1…5. Each 

sub-table shows the sample mean  and standard deviation 

 of the APPT scores for the four strategies. The  values 

of the four strategies are so tightly clustered, relative to the 

 values, that the differences between the values are of no 

consequence. The column N is the total number of separate 

market sessions run for that sub-table.  

 

in the rest of this paper we test the strategies in more 

challenging environments, and the differences in their 

performance come much more starkly into view. Our 

second set of S’62 experiments uses the same SDS as 

our first, but we switch from periodically updating all 

trader’s assignments at the same time, at the start of 

each trading period or “day”, and instead have 

assignments made continuously, arriving at random 

during the course of the experiment which has the same 

overall duration but is no longer sensibly spoken about 

as being divided into distinct periods. To save space, 

we will move from graphical presentation of results to 

tabular. Table 1 presents the numeric values shown 

graphically in Figure 2 from our periodic-

replenishment (PR) experiment, along with the 

corresponding values from the same experiment, same 

SDS, run with continuous-replenishment (CR). As can 

be seen, the move to CR (which is much closer to real-

world markets) has no impact on the rank-ordering of 

the strategies. 

5.2 Real-World-Dynamics Experiments 

To explore whether AA dominates in more realistic 

environments, a set of experiments were run where 

the market’s underlying equilibrium price was varied 

dynamically using an appropriate P0
+(t) function with 

the SDS, as described in Section 4.2.  

A first set of experiments, involving 858,000 

simulated market sessions, was run where P0
+(t) was 

generated from a closed-form sinusoidal function. 

Results from these experiments (not presented here, 

due to space constraints) indicated that MAA did not 

do well in such circumstances, but were open to the 

criticism that the P0
+(t) functions involved were too 

artificial, too unlike real-world dynamics. For that 

reason, a second set of 1,716,000 experiments were 

run, referred to here as Real-World Dynamics (RWD). 

In the RWD experiments, P0
+(t) was determined by a 

LUT of intra-day price movements of a specific real 

financial asset on a particular date. In an attempt at 

mitigating any biases in the dynamics of a particular 

asset class, we ran sets of RWD experiments using 

intra-day price data from six different classes of asset: 

an equity; a foreign-exchange (FX) currency-pair; a 

government bond; a metal; a commodity; and an 

aggregate index. In any one RWD experiment the 

intra-day price time-series at one-minute resolution for 

a specific asset on a specific date was read into BSE 

and then normalised on the time and price axes to give 

a LUT that could return a P0
+ value at any point in the 

duration of the experiment, with prices in  the range [0, 

80] for ease of comparison across the six different asset 

classes. 

In the results shown here, the RWD-Equity 

experiment uses prices of IBM stock on 08/31/17; 

RWD-FX uses price data for GBP-USD (i.e., “Cable”) 

on 09/11/17; RWD-Bond uses prices of the US 

Government 10yr Treasury Note on 09/12/17; RWD-

Metal uses data for Copper on 09/12/17; RWD-

Commodity uses spot Brent Crude Oil on 15/29/18; 

and RWD-Index uses NASDAQ on 09/13/17. In each 

case, 1-minute intraday price data was taken from the 

free samples available at the website of 

BacktestMarket.com; the date chosen for use in each 

asset class is simply the first date available in the 

BacktestMarket sample data, and hence is arbitrary. 

For each asset-class of RWD experiment we ran an 

exhaustive sweep where NEqR values were varied over 

the range [1,5] (i.e., markets with P=8, 16, 24, 32, and 

40 traders, always 50% buyers and 50% sellers), where 

for each NEqR value all possible ratios R  of trading 

strategies were tested, and where for any specific 

(NEqR, R) combination we executed T=100 

independent simulated market sessions. This required 

a total of 1,716,000 market simulations across the six 

asset classes.  

Figure 3 shows summary data from these 

experiments: as is clear, MAA is again the 3rd-ranked 

strategy, and again it performs significantly worse than 

either SHVR or ZIP. After viewing these results, there 

is no reasonable way that MAA can continue to be 

seriously  considered as the best-performing published 

strategy. 

6 DISCUSSION AND 

CONCLUSIONS 

The results in Figure 1 and Table 1 confirm what 

anyone familiar with the CDA trading-agent literature 

would reasonably claim to already know: AA, when 

appropriately modified to work in a LOB-based  
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Figure 3: Summary of results from RWD experiments 

across six asset classes: this chart summarises results from 

1,716,000 separate market sessions. Horizontal axis is 

average profit per trader (APPT). Results are grouped by 

asset-class, with group-numbers on the vertical axis.  Group 

1 (at bottom) are from bond-price experiments; Group 2 are 

from commodity-price; Group 3 from equity-price; Group 

4 from metal-price; Group 5 from FX prices; and Group 6 

from index prices. Bars show mean APPT with error-bars 

indicating plus and minus one standard deviation. 

CDA, and when tested in the kind of simple market 

environment as has traditionally been used in the 

literature, scores just as well as well-known other 

trading strategies and is not dominated by them.  

But the results in Figure 3 blow a major hole in the 

status quo: merely by altering the nature of the market 

environment to have continuous stochastic 

replenishment (which is surely what happens in real 

markets) and to have the equilibrium price P0 

continuously varying over time (which is also surely 

what happens in real markets), the results we get from 

MAA are very poor indeed. On the basis of these 

results, it is manifestly no longer correct to claim that 

AA/MAA is the best-performing trading strategy 

known in the published literature. How well the 

previous title-holder, i.e. GDX, fares in RWD 

experiments is an obvious line of further enquiry.  

It seems very hard to avoid the conclusion that 

AA’s success as reported in previous papers is largely 

due to the extent to which its internal mechanisms are 

designed to fit exactly the kind of experiment settings 

first introduced by Vernon Smith: AA is very well 

suited to situations in which all assignments are issued 

to all traders simultaneously, and in which the 

equilibrium price remains constant for sustained 

periods of time, with only occasional step-change 

“shocks”. Real markets are not like this, and when AA 

is deployed in the more realistic market setting 

provided by BSE, its dominance disappears. 

But surely the broader lesson here is that we should 

not allow ourselves to be seduced by results from 

small-scale studies in minimally simple 

approximations to real-world markets. Smith 

developed his experimental methods in the late 1950’s 

when there were no realistic alternative ways of doing 

things. Running experiments with human subjects is 

laborious and slow, but experiments in electronic 

markets populated entirely by robot traders can 

proceed in appropriate simulators at speeds much 

faster than real-time, and are “embarrassingly 

parallelizable”: the experiments reported in this paper 

took a couple of weeks; if I’d used more virtual 

machines they could have been done in a couple of 

days or even in a couple of hours.  

At this point in time, 20% of our way into the 21st 

Century, surely trading-agent researchers should 

collectively abandon the simple minimal test-beds that 

worked well for Vernon Smith in the middle of the 20th 

Century and instead start to tolerate the minor 

inconvenience of running very large numbers of trials 

on reasonably accurate simulations of realistic market 

situations: the methods used here should be the norm, 

not the exception. The availability of open-source 

public-domain exchange simulators such as BSE, 

OpEx, and ExPo, coupled with readily available cheap 

cloud-computing for doing the necessary processing, 

means that there are now really no excuses for not 

doing so. 
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