
A Hybrid Neural Network and Hidden Markov Model
for Time-aware Recommender Systems

Hanxuan Chen and Zuoquan Lin*

Department of Information Science, School of Mathematical Sciences,
Peking University, Beijing 100871, China

Keywords: Hidden Markov Model, Neural Network, Collaborative Filtering, Recommender Systems.

Abstract: In this paper, we propose a hybrid model that combines neural network and hidden Markov model for time-
aware recommender systems. We use higher-order hidden Markov model to capture the temporal information
of users and items in collaborative filtering systems. Because the computation of the transition matrix of
higher-order hidden Markov model is hard, we compute the transition matrix by deep neural networks. We
implement the algorithms of the hybrid model for offline batch-learning and online updating respectively. Ex-
periments on real datasets demonstrate that the hybrid model has improvement performances over the existing
recommender systems.

1 INTRODUCTION

Recommender systems help the users find interesting
items from a large amount of products. Time-aware
recommender systems (TARS) (Campos et al., 2014)
exploit temporal information and track the evolution
of users and items that are beneficial for giving sat-
isfactory recommendations. Hidden Markov Models
(HMMs) and Neural Network (NNs) are two major
approaches to TARS.

As a probabilistic approach, HMMs use the hid-
den states to describe the dynamic of users and items
(Sahoo et al., 2012). In the literature, recommender
systems based on HMMs commonly use first-order
HMMs, i.e., the hidden states only depend on the last
one state. For real world recommendations, the users’
interests have long-term dependencies. For example,
on an online-shopping website, the customers of ma-
ternity dress are likely to look articles for babies sev-
eral months later. If there is not long-term affect in
the transitions of the hidden states, this interest prop-
agations will be covered by more frequent purchases
of daily uses. Higher-order HMMs (HOHMMs) are
natural way to model the problem of long-term de-
pendencies. However, it is impractical for recom-
mender systems depended on HOHMMs, since the
cost to compute the state transitions is exponential for
the length of dependencies.

*Correspondent author

With the development of deep learning, NNs have
got much attention at recommender systems in re-
cent years (Zhang et al., 2017). Recurrent neural net-
works (RNNs) are suitable for sequential data with
long-term dependencies and successful in natural lan-
guage process (Hochreiter and Schmidhuber, 1997;
Cho et al., 2014). There are a number of recom-
mender systems based on RNNs (Hidasi et al., 2016a;
Hidasi et al., 2016b; Jannach and Ludewig, 2017;
Chatzis et al., 2017; Wu et al., 2017; Soh et al., 2017;
Devooght and Bersini, 2016; Chen et al., 2018). They
concentrate on the sessions or the behavior sequences
of users in which RNNs are used to model the se-
quential data. Although the RNNs are usable for the
sequence of users’ behavior with long-term depen-
dencies, they have several shortages compared with
HMMs. Firstly, most RNNs use the order of the users’
behaviors, but neglect the time span between the be-
haviors. Secondly, there is not an overall time axis in
RNNs to indicate the actual time point of each behav-
iors. RNNs can not describe the temporal relations of
the behaviors from multiple users. Thirdly, a single
RNN to model the sequences from all the users makes
the model lack of personalization. Finally, HMMs
have the meaning of the hidden states for the anal-
ysis of users’ types, while RNNs can not have such
meaning.

In this paper, we propose a hybrid model NHM
that combines NN and HMM for time-aware recom-
mender systems. We use HOHMM to capture the

204
Chen, H. and Lin, Z.
A Hybrid Neural Network and Hidden Markov Model for Time-aware Recommender Systems.
DOI: 10.5220/0007380402040213
In Proceedings of the 11th International Conference on Agents and Artificial Intelligence (ICAART 2019), pages 204-213
ISBN: 978-989-758-350-6
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

temporal information of both users and items in col-
laborative filtering. Because the computation of the
transition matrix of HOHMM is hard, we replace the
transition matrix by NN. The hybrid model takes ad-
vantages of NN and HOHMM and has improvement
efficiency and better precision for recommendations.
We implement the algorithms of NHM for offline
batch-learning and online updating respectively. Ex-
periments on real datasets show that the hybrid ap-
proach has better performances over the existing rec-
ommender systems.

The rest of this paper are organized as follows. In
section 2, we present the hybrid model NHM. In sec-
tion 3, we apply NHM in collaborative filtering and
provide the algorithms for the routines of the recom-
mendation. In section 4, we show the improvement
performance of our algorithms. In section 5, we dis-
cuss related works. Finally, we make conclusions in
the concluding section.

2 THE HYBRID MODEL

2.1 Model

What follows, we present the hybrid model NHM.
We introduce the temporal state random variable Xt
and the temporal evidence random variable Et, whose
possible values are in {1, . . . ,N} and {1, . . . ,K} respec-
tively. Let these variables follow HOHMM assump-
tions:

P(Xt |Xt−1,Xt−2, . . . ,Et−1,Et−2, . . .)
=P(Xt |Xt−1,Xt−2, . . . ,Xt−L)
=P(X0|X−1,X−2, . . . ,X−L),

(1)

P(Et |Xt,Xt−1,Xt−2, . . . ,Et−1,Et−2, . . .)
=P(Et |Xt)
=P(E0|X0),

(2)

where L is the order. In HOHMM, a transi-
tion matrix with NL rows is needed to describe
P(Xt |Xt−1,Xt−2, . . . ,Xt−L) in (1) for the NL possible
value combinations of Xt−1,Xt−2, . . . ,Xt−L .

We use a neural network to replace the transition
matrix for the consideration of computation. Given
the marginal distribution of X at the previous L time
points,

P(Xt−i) = −−→xt−i, i = 1,2, . . . ,L. (3)

Then, P(Xt) is defined as

P(Xt) = φ(−−→xt−1,
−−→xt−2, . . . ,

−−−→xt−L), (4)

where φ(·) is a neural network, in which the input
and output are vectors whose dimensions are LN and
N respectively. The output satisfies 0 ≤ φ j ≤ 1 and∑N

j=1φ j = 1.
Note that we do not specify the type or structure

of the neural network φ(·). It can be a multilayer per-
ceptron, an RNN or any NN that can deal with the
requirement of such input and output. For instance,
we take GRU (Cho et al., 2014) to implement φ, that
can be represented as follows:

ht−L = GRU(−−−→xt−L,
−→
0),

hi = GRU(−→xi ,hi−1), t−L < i ≤ t,

φ = softmax(
−→
ht).

(5)

The observation and initial states of the model
NHM are simply defined with a matrix and a vector
as usual in HMM:

P(Et = k|Xt = j) = B j,k, (6)

P(Xt = i) = πi, −L ≤ t < 0. (7)

2.2 Inference

The inference task is to find the conditional distribu-
tion P(Xt |E0:T−1 = −→e), given an evidence sequence
−→e = [e0,e1, . . . ,eT−1]. To do this, we use the neural
network approximated forward-backward algorithm.
It imitates the procedure of the forward-backward al-
gorithm of HMM (Rabiner, 1989), and calculates an
approximate γ(t) = P(Xt |E0:T−1 = −→e).

Firstly, we take the forward steps:

α(t) =

{
π, −L ≤ t < 0,
φ(α′(t−1), . . . ,α′(t−L)), 0 ≤ t; (8)

where

α′(t) = normalize(α(t)�B:,et). (9)

The symbol � means element-wise product of two
vectors. B:,et means the et column of the matrix B.
If there is not evidence at t (for t < 0 or t ≥ T), B:,et

is normalize(
−→
1). The function normalize(·) is defined

as follows:

normalize(−→v) =
−→v∑N

j=1 |v j|
. (10)

Then, we take the backward steps:

β(t) =

{
normalize(

−→
1), T ≤ t < T + L,

ψ(β′(t + 1), . . . ,β′(t + L)), t < T ;
(11)

A Hybrid Neural Network and Hidden Markov Model for Time-aware Recommender Systems

205

where

β′(t) = normalize(β(t)�B:,et). (12)

ψ(·) is another neural network whose input and out-
put have the same lengths as φ(·). We call it the re-
verse sequence neural network of φ. Intuitively, if φ
is the function (−→vL,

−−−→vL−1, . . . ,
−→v1)→−−−→vL+1, ψ is the func-

tion (−→v2,
−→v3, . . . ,

−−−→vL+1)→−→v1.
Finally, we find γ in the following:

γ(t) = normalize(α′(t)�β(t)). (13)

Another inference task is to find the distribution at
the next time point:

γ(T) = P(XT |E0:T−1 = −→e) = φ(γ(T −1), . . . ,γ(T −L)). (14)

By the above equation, we can find γ(T + 1) by
γ(T), . . . ,γ(T −L + 1) and find any γ(t) for t > T .

2.3 Learning

We provide the learning algorithm of the model
NHM. Suppose that we have some evidence se-
quences ES = {−→e (1),−→e (2), . . . ,−→e (R)}, where −→e (r) =

[e(r)
0 ,e(r)

1 , . . . ,e(r)
T (r)−1

]. We need to learn the parameters
θ = {φ,ψ,π,B}.

The learning algorithm works by inference-
updating iterations. At first, we use some initial pa-
rameters θ in the inference steps and calculate z =

{α,α′,β,β′,γ} for every evidence sequences. Then,
we use z in updating steps to find a better θ∗. Finally,
we use θ∗ in inference steps and carry on until we find
satisfactory parameters.

The updating steps of π and B follow the Baum-
Welch algorithm of HMM (Rabiner, 1989) as follows:

π∗ = normalize(
R∑

r=1

−1∑
t=−L

γ(r)(t)), (15)

B∗j,k =

∑R
r=1

∑T (r)−1
t=0 1e(r)

t =kγ
(r)
j (t)∑R

r=1
∑T (r)−1

t=0 γ(r)
j (t)

; (16)

where

1e(r)
t =k =

{
1, e(r)

t = k,
0, else.

(17)

To update the neural networks φ and ψ, we need
to build training sets for them. The sampling method
is as follows: we firstly select a random −→e (r) ∈ ES ,
then select a random t such that 0 ≤ t < T (r). Accord-
ing to the input and expected output of φ and ψ, we
add the following two examples to the training sets,
respectively:

(α′(r)(t−1),α′(r)(t−2), . . . ,α′(r)(t−L))→ γ(r)(t), (18)

(β′(r)(t+1),β′(r)(t+2), . . . ,β′(r)(t+ L))→ γ(r)(t). (19)

After building the training sets, we call standard
training algorithm for these neural networks.

3 RECOMMENDER SYSTEM

3.1 Model

What follows, we use NHM to build a model for
recommender system based on collaborative filtering.
Let RS =<User, Item,Time,Level,Rating > be a rec-
ommender system, where

• User is the set of users, and user (or u) ∈ User is
a user.

• Item is the set of items, and item (or i) ∈ Item is
an item.

• Time = Z is the set of time points, where Z is the
integers.

• Level = {1,2, . . . ,N} is the set of rating levels,
where N is a given integer.

• Rating is the set of ratings, where rating =

(user, item, time, level) (or r = (u, i, t, l)) ∈ Rating is
a rating, which means user gives item rating level
at time.

We make recommendations by analyzing the sim-
ilarity of both users and items. We introduce the user
types and the item types to describe common proper-
ties of users and items respectively. The users with
the same type have similar tastes. There are J user
types and K item types, where J and K are given in-
tegers respectively. Any user (or item) has a type at a
specific time. The users and items change, so do their
types. We use temporal random variables Xuser,t and
Yitem,t to represent their types at time t respectively.
For ratings, we define a random variable Ruser,item,t
for each triplet (user, item, t). By some known rat-
ings, Ruser,item,t are (partially) observed, while Xuser,t
and Yitem,t are hidden states. Namely, we have the fol-
lowing definitions:

• UserType = {1,2, . . . , J} is the set of user types.

• ItemType = {1,2, . . . ,K} is the set of item types.

• Xuser,t ∈ UserType is the random variable for the
user’s type at t.

• Yitem,t ∈ ItemType is the random variable for the
item’s type at t.

ICAART 2019 - 11th International Conference on Agents and Artificial Intelligence

206

• Ruser,item,t ∈ Level is the random variable for the
rating that the user gives the item at t.

For example, consider a recommender sys-
tem where User = {u1,u2,u3}, Item = {i1, i2}, N =

5, Rating = { (u1, i1,1,5), (u2, i2,3,3), (u1, i2,5,1),
(u3, i1,6,4) } and J = 2, K = 3. There are three user
random variables Xu1,t, Xu2,t and Xu3,t whose possi-
ble values are in UserType = {1,2}. The two item
random variables Yi1,t, Yi2,t have possible values in
ItemType = {1,2,3}. There are four observed rating
random variables Ru1,i1,1 = 5, Ru2,i2,3 = 3, Ru1,i2,5 = 1,
and Ru3,i1,6 = 4.

We consider how the users and items generate rat-
ings. The probability p j,k means that a user with the
j-th type meets an item with the k-th type. We use the
binomial distribution B(N−1, p j,k) to convert p j,k into
discrete ratings:

P(Ru,i,t = n | Xu,t = j,Yi,t = k)
=Pr(n−1; N −1, p j,k)

=

(
N −1
n−1

)
(p j,k)n−1(1− p j,k)N−n.

(20)

The transitions of Xu,t and Yi,t are described with two
L-order NHMs whose parameters are θ = {φ,ψ,π} and
θ̃ = {φ̃, ψ̃, π̃} respectively, where L is a given integer,
θ is shared by all the users and θ̃ is shared by all the
items. There is not matrix B in θ because p j,k plays
the role of generating evidences.

For users, we assume that the user u has ratings
at M(u) time points t1 < t2 < . . . < tM(u). For 1 ≤ m ≤
M(u), if we know P(Xu,tm−l) = −→x u,tm−l , l = 1,2, . . . ,L,
then P(Xu,tm) is as follows:

P(Xu,tm) = φ(tm− tm−1,
−→x u,tm−1 , . . . , tm− tm−L,

−→x u,tm−L).
(21)

Compared with (4), we make an adjustment here.
We only consider the time points that the user has rat-
ings, since there are a lot of time points that the user
has not ratings in recommender system. To indicate
the actual time length between tm and tm−l, we add
L dimensions in the input of the φ. For tl with index
l ≤ 0, we set tl = t1−τ and −→x u,tl = π, where τ is a small
given time span.

Similarly, for Yi,t, if the item i is rated at M(i) time
points t1 < t2 < . . . < tM(i) and we know P(Yi,tm−l) =
−→y i,tm−l , l = 1,2, . . . ,L for 1 ≤ m ≤ M(i), then P(Yi,tm)
is

P(Yi,tm) = φ̃(tm− tm−1,
−→y i,tm−1 , . . . , tm− tm−L,

−→y i,tm−L).
(22)

3.2 Inference

We consider that a user u who has ratings at M(u) time
points t1 < t2 < . . . < tM(u). At time points tm, the user
gives S (u, tm) ratings. These ratings are given to items
i1, i2, . . . iS (u,tm) and the levels are n1,n2, . . . ,nS (u,tm), re-
spectively.

Firstly, we calculate the conditional probability
that a type- j user gives these S (u, tm) ratings at tm,
which is denoted as bu,tm, j. By (20), we have

bu,tm, j

=P(Ru,i1,tm = n1, . . . ,Ru,iS (u,tm),tm = nS (u,tm) | Xu,tm = j)

=

S (u,tm)∏
s=1

P(Ru,is,tm = ns | Xu,tm = j)

=

S (u,tm)∏
s=1

K∑
k=1

Pr(ns−1; N −1, p j,k).P(Yis,tm = k).

(23)
The vector bu,tm,: = (bu,tm,1, . . . ,bu,tm,J) represents the
probability that the user generates these ratings at tm
with each type. It plays the role of B:,et in 2.2.

Algorithm 1 is the forward-backward algorithm
for users. When we refer to tl with index l < 1, we set
tl = t1 − τ and α′u(tl) = π. For tl with index l > M(u),
we set tl = tM(u) +τ and β′u(tl) = normalize(

−→
1).

Algorithm 1: Forward-backward algorithm for users.

1: function Inference User(u)
2: for m=1 to M(u) do
3: αu(tm) ← φ(tm − tm−1,α

′
u(tm−1), . . . , tm −

tm−L,α
′
u(tm−L))

4: α′u(tm)← normalize(αu(tm)�bu,tm,:)
5: for m = M(u) to 1 do
6: βu(tm) = ψ(tm+1 − tm,β′u(tm+1), . . . , tm+L −

tm,β′u(tm+L))
7: β′u(tm)← normalize(βu(tm)�bu,tm,:)
8: for m=1 to M(u) do
9: γu(tm)← normalize(α′u(tm)�βu(tm))

The inference steps for items are similar to the one
for users. Consider an item i that is rated at M(i) time
points and has S (i, tm) rating at tm. These ratings come
from u1, . . . ,uS (i,tm) and the levels are n1, . . .nS (i,tm).
Then, we have

bi,tm,k =

S (i,tm)∏
s=1

J∑
j=1

Pr(ns−1; N −1, p j,k)P(Xus,tm = j).

(24)
The forward-backward algorithm Inference Item(i)
for items is similar to Algorithm 1 except for the
function name, function input and indexes.

A Hybrid Neural Network and Hidden Markov Model for Time-aware Recommender Systems

207

Then, the inference steps are taken separately for
each user and each item. When we do it for user u,
we assume that the probability P(Yis,tm = k) in (23) is
known. Similarly, P(Xus,tm = j) in (24) is assumed to
be known for the inference steps of item i. In prac-
tical, we use P(Xu,t = j) = (γu(t)) j and P(Yi,t = k) =

(γi(t))k. The symbol (·) j means the j-th element of
the vector. We first initialize γu and γi, then take the
inference steps for u and i alternately to update them.

3.3 Learning

We update the parameters θ = {φ,ψ,π}, θ̃ = {φ̃, ψ̃, π̃}
and p j,k with the α, β and γ that we calculate in the
inference steps. The p j,k is updated according to the
parameter estimation of binomial distribution:

p∗j,k =

∑
(u,i,t,l)∈Rating(l−1)γu(t)γi(t)∑

(u,i,t,l)∈Rating(N −1)γu(t)γi(t)
. (25)

The prior π is updated as the sum of the distribu-
tion of all the users t−L+1, . . . , t0. To find γ(tl) with
l ≤ 0, we take backward steps several times to find β
and then γ.

π∗ = normalize(
∑

u∈User

0∑
l=−L+1

γu(tl)). (26)

In practical, a fixed π = normalize(
−→
1) often has good

performance because φ can generate the first L value
of α(tl) for l > 0 from normalize(

−→
1).

The φ and ψ are trained with standard training al-
gorithm of these neural networks as usually in deep
learning. We only need to build the training set for the
φ and ψ. To sample examples, we first select a random
user u ∈ User, then select a random tm from the M(u)
time points when the user generates ratings. The fol-
lowing two examples will be added to the training set
of φ and ψ, respectively:

(α′u(tm−1), . . . ,α′u(tm−L))→ γu(tm). (27)

(β′u(tm+1), . . . ,β′u(tm+L))→ γu(tm). (28)

The updating of π̃ and the training example sam-
pling steps of φ̃ and ψ̃ are the same as those of π, φ
and ψ except for indexes.

3.4 Algorithms

We provide the algorithms for the routines of the
model NHM, including batch learning, online updat-
ing and prediction, see Algorithm 2.

The batch learning algorithm learns the model
from a set of training ratings. It firstly initializes the

θ, θ̃, p j,k, γu(t), γi(t) and empty training sets for each
neural network. Then it takes the inference-learning
iterations for a given loop number. In the inference
steps, we randomly select an u ∈ User or an i ∈ Item,
and call the Inference User or Inference Item func-
tions to update γ. In the learning steps, we calculate
p j,k,π, π̃, build the training set for each neural net-
work and train them with standard training algorithm
of them.

The online updating algorithm updates the model
when receiving a rating r = (u, i, t, l). We take the in-
ference steps only for both the user and item that are
related to this rating. Then we update p j,k,π, π̃ with
(25) and (26). The first equation is a fraction of two
sums in Rating, and the second equation is the sum
in User (or Item). We only need to subtract the pre-
vious contribution of the updated rating, user or item
in these sums, and add their new contributions. We
don’t need to calculate the sums again. For the neu-
ral networks, we sample some examples from u and
i, and update the φ,ψ, φ̃, ψ̃ with these examples, i.e.,
only run several steps of the training algorithm of the
neural networks on them.

The prediction algorithm makes the prediction
about the rating that a user u will give to an item i
at time t. We firstly calculate γu(t) and γi(t) with the
γ in the model:

γu(t) = φ(t− tM(u),γu(t− tM(u)), . . . ,
t− tM(u)−L+1,γu(t− tM(u)−L+1)),

(29)

γi(t) = φ̃(t− tM(i),γi(t− tM(i)), . . . ,
t− tM(i)−L+1,γi(t− tM(i)−L+1)).

(30)

Then we use γu(t) and γi(t) to calculate P(Ru,i,t = n),
which is denoted as qu,i,t,n. The algorithm returns the
vector qu,i,t,: = (qu,i,t,1, . . . ,qu,i,t,N) as follows:

qu,i,t,n =

J∑
j=1

K∑
k=1

(γu(t)) j(γi(t))k Pr(n−1; N −1, p j,k). (31)

4 EXPERIMENTS

4.1 Setup

We make three kinds of experiments to test the per-
formance in different environments.

Classical experiment (CL): The ratings in the
datasets are randomly divided into training set (80%)
and test set (20%). The algorithms are trained by the
training set to provide prediction about the ratings in
the test set.

ICAART 2019 - 11th International Conference on Agents and Artificial Intelligence

208

Algorithm 2: Model routines.

1: function BatchLearning(Rating)
2: initialize θ = {φ,ψ,π}, θ̃ = {φ̃, ψ̃, π̃}, p j,k
3: initialize γu(t), γi(t)
4: initialize empty training sets for φ,ψ, φ̃, ψ̃
5: for l1 = 1,2, . . . ,LoopNum1 do
6: for l2 = 1,2, . . . ,LoopNum2 do
7: Select a random u ∈ User
8: Inference User(u)
9: Select a random i ∈ Item

10: Inference Item(i)
11: Calculate p j,k,π, π̃ with (25) and (26)
12: Build each training sets with (27) and (28)
13: Train φ,ψ, φ̃, ψ̃ with these training sets
14:
15: function OnlineUpdating(u, i, t, l)
16: Inference User(u)
17: Inference Item(i)
18: Update p j,k,π, π̃ with (25) and (26)
19: Sample examples from u and i with (27) and

(28)
20: Update φ,ψ, φ̃, ψ̃ with these examples
21:
22: function Prediction(u, i, t)
23: calculate γu(t) with (29)
24: calculate γi(t) with (30)
25: for n = 1,2, . . . ,N do
26: calculate qu,i,t,n with (31)
27: return qu,i,t,:

Time-order Experiment (TO): The ratings in the
datasets are reordered according to the time they are
generated. We take the former 80% as the training set
and the latter 20% as the test set. This is a reason-
able experiment setup for time-related recommender
systems for it ensures that the algorithms predict the
future by the past.

Time-order Online Experiment (TOO): The rat-
ings in the datasets are reordered according to the time
they are generated and imported one by one to the al-
gorithms. For every rating, the algorithms will first
be required to give their predicted rating, and then
updated their parameters every time they receive new
coming rating. This method simulates the situation of
real-world online recommendation applications and is
suitable to evaluate time-aware and online algorithms.

The algorithms are judged by RMSE (root mean
square error) and MAE (mean absolute error) scores
of the ratings in the test sets.

The test ratings related to the users or items that
have no ratings in the training set will not be counted
in the evaluation scores. In this case, the parameters
of some algorithms for the related users or items are

not defined, or just initialized by small random val-
ues. So the algorithms can not provide reasonable rat-
ings. For the same reason, in time-order online exper-
iments, the very first ratings for every user and item
(that means the user or item has not appeared before)
will not be counted in the scores.

4.2 Datasets

The experiments use the MovieLens100k dataset and
the Epinions dataset as illustrated in Table 1.

MovieLens100k (ML) (Harper and Konstan,
2015) is a famous movie dataset collected through the
web site MovieLens from 1997 to 1998. It consists
of 100,000 ratings from 943 users on 1,682 movies
by 1-5 level ratings. The dataset is cleaned up by
its provider to ensure each user has rated at least 20
movies.

Epinions (EP) (Tang et al., 2012a; Tang et al.,
2012b) is an e-commerce dataset collected through
the web site Epinions from 1999 to 2011. It con-
sists of users’ opinions on items in 27 categories by
1-5 level ratings. We made a clean-up preprocess to
produce a 20-core dataset (each user rated at least 20
items, and each item was rated by at least 20 users),
which has 2,874 users, 2,624 items and 122,361 rat-
ings. The additional information in this dataset, such
as item categories or users’ trust relationships, are not
used in our experiments.

Table 1: Datasets.

Datasets Users Items Ratings
MovieLens100k 944 1,683 100,000
Epinions 2,874 2,624 122,361

4.3 Results

We compare our algorithms of the model NHM with
several representative algorithms including matrix
factorization, neighborhood, hidden Markov model
and neural network.

Probabilistic Matrix Factorization (PMF)
(Salakhutdinov and Mnih, 2007): classical matrix
factorization model for recommender systems. The
model is batch-learning and time-independent. To
apply the batch-learning model in online experiment
settings, we retrain the whole model every 1% of the
experiment process.

Time Weight Collaborative Filtering (TWCF)
(Ding and Li, 2005): time-related item-based neigh-
borhood method. It firstly uses Pearson correlation
coefficient to calculate the similarity of items, and
then uses an exponential time weight function and

A Hybrid Neural Network and Hidden Markov Model for Time-aware Recommender Systems

209

the item similarity to make predictions. Similar to
other neighborhood methods, the algorithm is natu-
rally able to run in online experiments.

Collaborative Kalman Filter (CKF) (Gultekin
and Paisley, 2014): hidden Markov model that uses
Kalman Filter to make recommendations. The model
has continuous time axis and continuous random vari-
ables for users, items and ratings. It has an online up-
dating algorithm, and each update step only uses the
most recent one rating.

Recurrent Recommender Networks (RRN)
(Wu et al., 2017): recurrent neural network model.
It uses two separate RNN to model the temporal
changes of users and items, and uses inner product
as the interaction of them. An additional matrix fac-
torization model is included in the model as the sta-
tionary components. Like PMF, we retrain the batch-
learning model every 1% of the online experiment
process.

The hyperparameters of the tested algorithms
are decided by grid search. Each hyperparame-
ter is selected from a set of candidates to produce
the best performance. In detail, the learning rate
and regularization coefficient of PMF, RRN, NHM
and the decay rate λ of TWCF are selected from
{1,0.1,0.01,0.001,0.0001}. Because the authors of
CKF used a hyperparameter σ = 1.76 in their ex-
periments, we select σ from {0.5,0.6,0.7, . . . ,2.5} for
CKF. We use LSTM to implement the neural net-
works in NHM and RRN. Another hyperparameter is
latent vector length (for MF, CKF, RRN and NHM).
Because it is directly related to the time and space
cost, we set it 10 for every algorithm for the sake of
fairness.

Tables 2 and 3 show the results of the experiments.
The experiment setting CL, TO and TOO stand for
classical experiments, time-order experiments and
time-order online experiments, respectively. From the
experiment results, NHM has the best performance
on most of experiments. In the two experiments with
classical settings, our model has slightly better perfor-
mance than the classical algorithm PMF, while many
other time-related models fail to exceed PMF in this
setting. This shows our algorithm has a stable perfor-
mance even in a setting that is difficult for time-aware
algorithm. In time-order experiments and time-order
online experiments, our algorithm has the best perfor-
mance. On the last three experiments, our algorithm
has obvious improvement over other algorithms with
about 0.1 RMSE difference. Compared with the over-
all performance of the hidden Markov model CKF
and the neural network model RRN, our model shows
its advantage of integrating NNs into HOHMM to ex-
ploit the time-aware recommendations.

5 RELATED WORK
First-order HMM was introduced in (Sahoo et al.,
2012) for recommender systems. It has a lot of ap-
plications such as people-to-people recommendation
(Alanazi and Bain, 2013; Alanazi and Bain, 2016),
sport videos (Sannchez et al., 2012) and sequence pat-
tern mining (Gu et al., 2014; Le et al., 2016). In
(Zhang et al., 2016b; Zhang et al., 2016a), the au-
thors proposed a hidden Semi-Markov model for rec-
ommender systems. Their model can capture the du-
ration that a user stays in a state. This extends the
first-order HMM’s dependency length from one time
point to one staying state. But it can not describe
long-term affects in which the user turns to other in-
terest halfway and comes back at last. Another kind of
HMM that has been applied in recommender systems
is the Kalman Filter (Lu et al., 2009; Paisley et al.,
2010; Chang et al., 2017; Gultekin and Paisley, 2014;
Sun et al., 2012; Sun et al., 2014). This approach
has continuous state space and continuous time axis.
The dependency length in this model is extended to
the last time point that the user has ratings. But it has
the same problem about the long-term interest that is
covered by other purchases.

There are increasing interest in application of
deep learning for recommender systems, including
AE (Wang et al., 2015; Liang and Baldwin, 2015) ,
RBM (Salakhutdinov et al., 2007), CNN (Ding et al.,
2017) and MLP (He et al., 2017; Xue et al., 2017). We
pay attention to RNN for it models time-aware recom-
mender systems. The sequential models (Soh et al.,
2017; Devooght and Bersini, 2016; Chen et al., 2018)
regard the user behavior history as a sequence and ap-
ply RNN on it. These approaches use the sequential
order of the behavior generated by users but neglect
the time span between the records. The session-based
models (Hidasi et al., 2016a; Hidasi et al., 2016b; Jan-
nach and Ludewig, 2017; Chatzis et al., 2017) make
recommendations on the session data generated by
users. Similar to sequential models, they use the order
of user behavior sequence to make recommendations.
Because there are not overall time axes in these two
kinds of approaches, they can not find temporal re-
lationships between different users’ records and can
not describe the changes of multiple users at the same
time. In (Wu et al., 2017), time-aware model with two
separate RNNs for users and items was introduced ,
which is similar to our approach. Because RNNs do
not provide the meaning of hidden states, it’s difficult
to choose the function for interaction between users
and items. As a result, the RNN time-aware model
have to add some stationary components, i.e., an ad-
ditional matrix factorization model, to undertake the
recommendation task.

ICAART 2019 - 11th International Conference on Agents and Artificial Intelligence

210

Table 2: RMSE values of experiments.

Setting CL CL TO TO TOO TOO
Dataset ML EP ML EP ML EP
PMF 0.925 1.043 1.023 1.149 1.062 1.206
TWCF 0.959 1.219 1.141 1.324 1.017 1.495
CKF 1.101 1.133 1.081 1.151 1.041 1.276
RRN 0.924 1.112 1.021 1.118 1.065 1.199
NHM 0.923 1.043 1.020 1.066 0.952 1.065

Table 3: MAE values of experiments.

Setting CL CL TO TO TOO TOO
Dataset ML EP ML EP ML EP
PMF 0.733 0.808 0.816 0.885 0.830 0.923
TWCF 0.756 0.958 0.891 1.004 0.794 1.108
CKF 0.865 0.911 0.833 0.895 0.816 0.995
RRN 0.936 0.862 0.829 0.848 0.837 0.929
NHM 0.728 0.803 0.808 0.812 0.756 0.823

There are works that integrate NNs and HMMs in
other research fields. In speech recognition(Bourlard
and Wellekens, 1990), the authors proposed a widely-
used hybrid NN-HMM model which uses NN to im-
prove the discriminating power of HMM. In their
work, a neural network was considered as a general
form of Markov model and used to capture contextual
input information. However, their object and model
structure are quite different with ours. In molecular
biology (Baldi and Chauvin, 1995), the authors ap-
plied NN to reduce the parameter number of HMM.
They handled the problem where there are a huge
number of hidden states in HMM and used an NN to
reduce the parameter size. They discussed the long-
range dependencies problem, but chose multiple first-
order HMMs rather than higher-order HMM.

6 CONCLUSIONS

We proposed a hybrid NN and HMM model NHM
that takes advantages of NN and HOHMM for time-
aware recommender systems. It can describe long-
term dependencies of both users and items and is ex-
plainable to the interactions between users and items
in collaborative filtering. We provided the algorithms
of NHM for offline batch-learning and online updat-
ing that have better performance than the existing rec-
ommender systems.

We did not specify the type or structure of NNs in
our models for the consideration of generality. If we
use RNN implementation in our model to deal with
unfixed length input sequences, the model can be ex-
tended to unfixed order hidden Markov models. That
is, we do not need to assign the order of the hidden

Markov models. The other hyperparameters such as
the numbers of the user types and item types can have
a way to be adjusted automatically. We consider the
approach of NHM by combining NNs and HOHMMs
are general enough to various recommender systems.

ACKNOWLEDGMENTS

The work is supported by Natural Science Fund of
China under numbers 61672049/61732001.

REFERENCES

Alanazi, A. and Bain, M. (2013). A people-to-people
content-based reciprocal recommender using hidden
markov models. In Proceedings of the 7th ACM con-
ference on Recommender systems, pages 303–306.

Alanazi, A. and Bain, M. (2016). A Scalable People-to-
People Hybrid Reciprocal Recommender Using Hid-
den Markov Models. The 2nd International Workshop
on Machine Learning Methods for Recommender Sys-
tems.

Baldi, P. and Chauvin, Y. (1995). Protein modeling with
hybrid hidden markov model/neural network architec-
tures. In International Conference on Intelligent Sys-
tems for Molecular Biology.

Bourlard, H. and Wellekens, C. J. (1990). Links between
markov models and multilayer perceptrons. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 12(12):1167–1178.

Campos, P. G., Dı́ez, F., and Cantador, I. (2014). Time-
aware recommender systems: A comprehensive sur-
vey and analysis of existing evaluation protocols. User
Modeling and User-Adapted Interaction, 24(1–2):67–
119.

A Hybrid Neural Network and Hidden Markov Model for Time-aware Recommender Systems

211

Chang, S., Yin, D., Chang, Y., Hasegawa-johnson, M., and
Huang, T. S. (2017). Streaming Recommender Sys-
tems. In International Conference on World Wide
Web, pages 381–389.

Chatzis, S., Christodoulou, P., and Andreou, A. S. (2017).
Recurrent latent variable networks for session-based
recommendation. In the 2nd Workshop on Deep
Learning for Recommender Systems.

Chen, X., Xu, H., Zhang, Y., Tang, J., Cao, Y., Qin, Z., and
Zha, H. (2018). Sequential recommendation with user
memory networks. In ACM International Conference
on Web Search and Data Mining, pages 108–116.

Cho, K., Van Merrienboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. (2014).
Learning phrase representations using rnn encoder-
decoder for statistical machine translation. Computer
Science.

Devooght, R. and Bersini, H. (2016). Collaborative filtering
with recurrent neural networks.

Ding, D., Zhang, M., Li, S. Y., Tang, J., Chen, X., and Zhou,
Z. H. (2017). Baydnn: Friend recommendation with
bayesian personalized ranking deep neural network.
In Conference on Information and Knowledge Man-
agement, pages 1479–1488.

Ding, Y. and Li, X. (2005). Time Weight Collaborative Fil-
tering. In Proceedings of the ACM International Con-
ference on Information and Knowledge Management,
pages 485–492.

Gu, W., Dong, S., and Zeng, Z. (2014). Increasing rec-
ommended effectiveness with markov chains and pur-
chase intervals. Neural Computing & Applications,
pages 1153–1162.

Gultekin, S. and Paisley, J. (2014). A Collaborative Kalman
Filter for Time-Evolving Dyadic Processes. In IEEE
International Conference on Data Mining.

Harper, F. M. and Konstan, J. A. (2015). The MovieLens
Datasets: History and Context. ACM Transactions on
Interactive Intelligent Systems.

He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua, T.-S.
(2017). Neural collaborative filtering. In Proceedings
of the 26th International Conference on World Wide
Web.

Hidasi, B., Karatzoglou, A., Baltrunas, L., and Tikk, D.
(2016a). Session-based recommendations with recur-
rent neural networks. In the International Conference
on Learning Representations.

Hidasi, B., Quadrana, M., Karatzoglou, A., and Tikk, D.
(2016b). Parallel recurrent neural network architec-
tures for feature-rich session-based recommendations.
In ACM Conference on Recommender Systems, pages
241–248.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural Computation, 9(8):1735–1780.

Jannach, D. and Ludewig, M. (2017). When recurrent
neural networks meet the neighborhood for session-
based recommendation. In ACM Conference on Rec-
ommender Systems, pages 306–310.

Le, D. T., Fang, Y., and Lauw, H. W. (2016). Modeling
sequential preferences with dynamic user and context

factors. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases.

Liang, H. and Baldwin, T. (2015). A probabilistic rating
auto-encoder for personalized recommender systems.
In ACM International on Conference on Information
and Knowledge Management, pages 1863–1866.

Lu, Z., Agarwal, D., and Dhillon, I. S. (2009). A Spatio-
temporal Approach to Collaborative Filtering. In Pro-
ceedings of the Third ACM Conference on Recom-
mender Systems, pages 13–20.

Paisley, J., Gerrish, S., and Blei, D. (2010). Dynamic mod-
eling with the collaborative kalman filter. In NYAS 5th
Annual Machine Learning Symposium.

Rabiner, L. R. (1989). A Tutorial on Hidden Markov Mod-
els and Selected Applications in Speech Recognition.
Readings in Speech Recognition, pages 267–296.

Sahoo, N., Singh, P. V., and Mukhopadhyay, T. (2012).
A Hidden Markov Model for Collaborative Filtering.
Mis Quarterly, 36(4):1329–1356.

Salakhutdinov, R. and Mnih, A. (2007). Probabilistic Ma-
trix Factorization. In International Conference on
Neural Information Processing Systems, pages 1257–
1264.

Salakhutdinov, R., Mnih, A., and Hinton, G. (2007). Re-
stricted boltzmann machines for collaborative filter-
ing. In International Conference on Machine Learn-
ing, pages 791–798.

Sannchez, F., Alduan, M., Alvarez, F., Menendez, J. M.,
and Baez, O. (2012). Recommender system for sport
videos based on user audiovisual consumption. IEEE
Transactions on Multimedia, 14(6):1546–1557.

Soh, H., Sanner, S., White, M., and Jamieson, G. (2017).
Deep sequential recommendation for personalized
adaptive user interfaces. In International Conference
on Intelligent User Interfaces.

Sun, J. Z., Parthasarathy, D., and Varshney, K. R. (2014).
Collaborative kalman filtering for dynamic matrix fac-
torization. IEEE Transactions on Signal Processing.

Sun, J. Z., Varshney, K. R., and Subbian, K. (2012). Dy-
namic matrix factorization: A state space approach. In
IEEE International Conference on Acoustics, Speech
and Signal Processing.

Tang, J., Gao, H., and Liu, H. (2012a). mtrust: discerning
multi-faceted trust in a connected world. In Proceed-
ings of the fifth ACM international conference on Web
search and data mining, pages 93–102. ACM.

Tang, J., Liu, H., Gao, H., and Das Sarmas, A. (2012b).
etrust: Understanding trust evolution in an online
world. In Proceedings of the 18th ACM SIGKDD in-
ternational conference on Knowledge discovery and
data mining, pages 253–261. ACM.

Wang, H., Wang, N., and Yeung, D. Y. (2015). Collab-
orative deep learning for recommender systems. In
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 1235–1244.

Wu, C. Y., Ahmed, A., Beutel, A., Smola, A. J., and Jing,
H. (2017). Recurrent recommender networks. pages
495–503.

Xue, H. J., Dai, X. Y., Zhang, J., Huang, S., and Chen, J.
(2017). Deep matrix factorization models for recom-

ICAART 2019 - 11th International Conference on Agents and Artificial Intelligence

212

mender systems. In International Joint Conference on
Artificial Intelligence, pages 3203–3209.

Zhang, H., Ni, W., Li, X., and Yang, Y. (2016a). A Hidden
Semi-Markov Approach for Time-Dependent Recom-
mendation. In Pacific Asia Conference on Information
Systems.

Zhang, H., Ni, W., Li, X., and Yang, Y. (2016b). Mod-
eling the Heterogeneous Duration of User Interest in
Time-Dependent Recommendation: A Hidden Semi-
Markov Approach. IEEE Transactions on Systems,
Man and Cybernetics Systems, pages 2168–2216.

Zhang, S., Yao, L., and Sun, A. (2017). Deep learning based
recommender system: A survey and new perspectives.
ArXiv e-prints.

A Hybrid Neural Network and Hidden Markov Model for Time-aware Recommender Systems

213

