A Decentralized Solution for Combinatorial Testing of Access Control
Engine

Said Daoudagh'?, Francesca Lonetti! and Eda Marchetti'
Vstituto di Scienza e Tecnologie dell’Informazione "Alessandro Faedo”, CNR, Pisa, Italy
2 University of Pisa, Pisa, Italy

Keywords:

Abstract:

Access Control Systems, Web Service, Testing.

In distributed environments, information security is a key factor and access control is an important means

to guarantee confidentiality of sensitive and valuable data. In this paper, we introduce a new decentralized
framework for testing of XACML-based access control engines. The proposed framework is composed of
different web services and provides the following functionalities: i) generation of test cases based on combi-
natorial testing strategies; ii) decentralized oracle that associates the expected result to a given test case, i.e. an
XACML request; and finally, iii) a GUI for interacting with the framework and providing some analysis about
the expected results. A first validation confirms the efficiency of the proposed approach.

1 INTRODUCTION

Nowadays, the management of (personal) data be-
comes extremely important in many distributed en-
vironments, especially when it involves data that are
subject to different regulations depending on the con-
text in which they are stored or accessed.

A key means for guaranteeing confidentiality and
security of data is represented by access control
mechanisms, which grant or deny access to the re-
sources according to subjects attributes and specific
environment conditions. A standard language for
specifying policies ruling these accesses is the eX-
tensible Access Control Markup Language (XACML)
(OASIS, 2013), an XML-based standard language
proposed by OASIS. It relies on the Policy Decision
Point (PDP) evaluation engine in order to grant or
deny the access based on the defined XACML poli-
cies. Testing of this component is very important
to assure its robustness and accuracy and avoid se-
curity flaws of the access control system. Testing of
PDP usually consists of probing the PDP with a set of
XACML requests and checking its responses against
the expected decisions.

Many approaches exist in literature using combi-
natorial techniques in order to generate such sets of
XACML requests (Bertolino et al., 2013; Martin and
Xie, 2006). These techniques have been proven to
be effective in revealing faults of the PDP and im-
proving its effectiveness in terms of mutation score or

126

Daoudagh, S., Lonetti, F. and Marchetti, E.
A Decentralized Solution for Combinatorial Testing of Access Control Engine.
DOI: 10.5220/0007379401260135

code coverage (Martin et al., 2006; Bertolino et al.,
2014). As well known in literature, the main draw-
back of these combinatorial approaches is the high
number of derived combinations that prevent their use
in real contexts. Specifically, the execution of a large
set of combinatorial requests represents a challeng-
ing task, mainly due to the oracle problem: determin-
ing the correct result that should be expected from the
PDP for each test request.

Existing XACML-based test generation tech-
niques leverage combinatorial methods such as
AETG (Cohen et al., 1997), able to support n-way
coverage of inputs, and to reduce the total number
of combinations. Even though they allow to gener-
ate less test cases and are proven to be effective in
terms of fault detection, the number of derived test
cases could remain unmanageable when applied to
XACML policies due to the generally high number
of policy attributes.

In general, test suite parallelization can be adopted
to speed-up tests execution. However, this has a lim-
ited usage in practice because of the effort required
to deal with concurrent issues (Candido et al., 2017).
The advancements on cloud and parallel computing
solutions offer unlimited storage as well as virtualized
resources and shared infrastructures. These can help
to eliminate required computational resources as well
as to reduce the execution time of large test suites in
a cost-effective manner. To overcome the computa-
tional cost of combinatorial testing, recent proposals

In Proceedings of the 5th International Conference on Information Systems Security and Privacy (ICISSP 2019), pages 126-135

ISBN: 978-989-758-359-9

Copyright © 2019 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved



A Decentralized Solution for Combinatorial Testing of Access Control Engine

(Tsai et al., 2015; Tsai and Qi, 2016) leverage cloud
environments to: partition the testing tasks; allocate
these testing tasks to different processors in the cloud
platform for test execution; and then collect results.
Our proposal goes in this direction and provides
an efficient decentralized and costly effective frame-
work for the overall testing process of the access con-
trol evaluation engine .

The main contributions of our proposal deal with:

e A general solution able to leverage parallel com-
putational resources in order to use all the power
of combinatorial approaches for the generation of
XACML requests. Specifically, our solution al-
lows to execute all XACML policy attributes com-
binations without the need of applying test suites
reduction techniques for cost saving purposes;

e A decentralized framework for the PDP oracle
problem. Well-known approaches for automated
XACML oracle derivation rely on voting mecha-
nisms such as that of (Li et al., 2008). Specifically,
the authors of (Li et al., 2008) propose to imple-
ment a PDP automated oracle through voting, i.e.
collect responses of more than one PDP engine
for the same request and choose as correct deci-
sion value the most frequent one. This approach
has a high computation and implementation cost.
Our decentralized framework is able to reduce this
cost by leveraging parallel resources. In litera-
ture, an alternative solution for automated PDP
testing oracle derivation is XACMET (Bertolino
et al., 2018). It represents a more complex model
based approach that requires a formal model of
the XACML policy that could be not available in
real contexts.

The proposed framework allows cost saving of the
overall testing process by reducing the time needed
of all the main phases of the PDP testing that are:
test cases generation, test case execution and oracle
derivation. Moreover, efficient testing of all possible
combinations of the policy values might provide rea-
sonably high assurance of the PDP.

It is out of scope of the paper to compare the cost
reduction of a parallel solution with respect to that of
a not distributed one, neither to show the effectiveness
of our solution with respect to the application of test
suites reduction techniques.

The rest of this paper is structured as follows. Sec-
tion 2 presents an overview of XACML based access
control systems. Section 3 presents the distributed ar-
chitecture of our solution, whereas Section 4 shows its

'In this paper, we focus on testing of XACML 3.0 based
access control engines but our solution can be easily gener-
alized to other access control specification language.

application to a simple access control evaluation en-
gine. Section 5 briefly presents related work whereas
Section 6 draws conclusions and gives hints for future
works.

2 BACKGROUND

XACML (OASIS, 2013) is a de facto standard-
ized specification language that defines access
control policies and access control decision re-
quests/responses in an XML format. An XACML
policy defines the access control requirements of a
protected system. An access request aims at access-
ing a protected resource and is evaluated against the
policy, then the access is granted or denied. The
main components of an access control systems ar-
chitecture are the Policy Enforcement Point (PEP)
and the Policy Decision Point (PDP). A PEP inter-
cepts a user’s request, transforms it into an XACML
format and transmits it to the PDP. As showed in
Figure 1, the PDP evaluates the request against the
XACML policy and returns the access response (Per-
mit/Deny/NotApplicable/ Indeterminate). The PAP
(Policy Administration Point) writes policies and
make them available to the PDP, whereas the PIP
(Policy Information Point) acts as a source of attribute
values.

Briefly, an XACML policy has a tree structure
whose main elements are: PolicySet, Policy, Rule,
Target and Condition. The PolicySet includes one or
more policies. A Policy contains a Target and one or
more rules. The Target specifies a set of constraints on
attributes of a given request. The Rule specifies a Tar-
get and a Condition containing one or more boolean
functions. If a request satisfies the target of the policy,
then the set of rules of the policy is checked, else the
policy is skipped. If the Condition evaluates to true,
then the Rule’s Effect (a value of Permit or Deny) is
returned, otherwise a NotApplicable decision is for-
mulated (Indeterminate is returned in case of errors).
More policies in a policy set and more rules in a pol-
icy may be applicable to a given request. The Pol-
icyCombiningAlgorithm and the RuleCombiningAl-
gorithm define how to combine the results from mul-
tiple policies and rules respectively in order to derive
a single access result.

We show in Figure 3 an example of XACML pol-

icy.

127



ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

XACML Request

Subject attributes ]

Resource attributes ]

Action attributes ]

access

(
T (
=3 |
[Environment attributes ]

Policy
Administration
L Point (PAP) )
XACML
policy
— N

© request -
—_— Policy
Enforcement
Point (PEP)

Permit/Deny
access

XACML Response

Permit/Deny/
NotApplicable/
Indeterminate

Policy Decision
Point (PDP)

attributes

-~

~

Policy Information
Point (PIP)

Figure 1: XACML Architecture.

3 ARCHITECTURE

Considering the problem of testing of the access con-
trol engine, here we propose a decentralized solution.
Thus, we describe the distributed architecture con-
ceived for the generation, execution, and testing re-
sults collection able to improve the quality of PDP
testing and drastically reduce its computational cost.
In particular, we focus on XACML 3.0 based access
control engine and we target the application of mas-
sive combinatorial testing for assessing the correct-
ness and robustness of the PDP.

The considered architecture includes the follow-
ing components:

e XACMLClient: it is the entry point of the
proposed architecture. It includes a GUI for
user interaction with four distinct operations: 1)
loading of an XACML policy (or a set of policies)
and selection of the test strategy to be used for the
generation of test cases, i.e. XACML requests; ii)
retrieving of already uploaded XACML policies;
iii) retrieving of the XACML requests associated
with a given policy for a specific test strategy;
iv) execution of the set of requests, visualization
of the results obtained, i.e. the authorization
decisions associated with each request, and
computation of final verdict (pass/fail) of each
test case.

e XACMLgenerator WS: it is in charge of
automatically generating a set of XACML 3.0
requests from an XACML policy according
to a combinatorial testing strategy through a
distributed approach. =~ XACMLGenerator WS
provides a set of policy testing strategies, that
users can select through the XACMLClient. They
have been included either by directly implement-
ing the corresponding algorithm or by integrating,

128

wherever possible, the associated test case gener-
ation tool. Among them, in this paper we focus on
the Multiple Combinatorial testing strategy.
Very briefly, the Multiple Combinatorial testing
strategy relies on the combinatorial approaches of
subject, resource, action and environment values
taken from the XACML policy (Bertolino et al.,
2010; Bertolino et al., 2013). It is out of the scope
of this paper to focus on the definition of test
strategies. The XACMLGenerator WS has been
voluntarily conceived to be independent from
the test strategies adopted. The only mandatory
constraints are that the strategies considered
are based on XACML language and there exist
a tool or at least a detailed specification that
lets the implementation and the integration into
the XACMLGenerator WS. In case for a given
XACML policy, the set of test cases for the
selected test strategy was already generated,
the XACMLGenerator WS is also in charge of
retrieving the required data.

XACMLPDP WS: it is the component in charge
of executing the test cases on the PDP under test.
By means of a MapReduce approach, the set of
test cases id divided into sub sets, each one hav-
ing a similar complexity, and distributed over dif-
ferent instances of PDP under test. The test re-
sults, i.e. the authorization decisions, computed
by the PDP under test, are finally collected into
a specific database managed by the XACMLTest-
ingDB component.

XACMLOracle WS: for each XACML request,
derived by a given policy, the XACMLOracle
WS derives the correct authorization decision.
Specifically, through a map reduce approach,
the set of test cases is divided into subsets each
one having a similar complexity, and distributed
to groups of different PDPs. Each group is



A Decentralized Solution for Combinatorial Testing of Access Control Engine

composed by an odd number of PDPs, different
from the one under test. From a practical point
of view, each PDP in each group receives a set
of policies and their corresponding subset of
XACML requests. It executes them, derives
the authorization decisions, and sends back
the collected results. The XACMLOracle WS
collects for each request all the authorization
decisions derived by the different PDPs in each
group, and associates the correct authorization
decision with the decision value most frequently
received. The correct authorization decisions are
finally collected into a specific database managed
by the XACMLTestingDB component. If for a
given XACML policy, the set of correct autho-
rization decisions for the selected test strategy
was already generated the XACMLOracle WS is
also in charge of retrieving the required data.

¢ XACMLComparator WS: for each XACML
request, the XACMLComparator retrieves the
corresponding test result, computed by the
XACMLPDP WS, and the correct authorization
decision, computed by XACMLOracle WS and
checks if they are equal. In this case a pass
value verdict is associated to the request, fail
otherwise. The final verdicts are finally collected
into a specific database managed by the XACML-
TestingDB component.

e XACMLRouter Servlet: according to the
operation chosen by the user through the
XACMLClient, it forwards the request to the
appropriate web service.

o XACMLTestingDB: it is the manager of the dif-
ferent databases that allows for the persistence of
test activity data.

Figure 2 shows the relationships between the dif-
ferent components of the proposed framework. As
shown in the figure, the communication between
XACMLClient and the services takes place through
an intermediary node, proxy / router, which forwards
the client’s request to the appropriate service based on
the content of the request. Communications with all
services require secure communication able to guar-
antee the identity of the parties involved. Interactions
with XACMLTestingDB database are not exposed to
SQL Injection attacks. We used the so-called Pre-
pared SQL statement in order to prevent SQL Injec-
tion attacks. Prepared Statements are static prevention
techniques that attempt to prevent SQL Injection by
allowing developers to accurately specify the struc-

ture of an SQL query, and pass the parameters values
to it separately such that any unsanitary user-input is
not allowed to modify the structure and the semantic
of the query. The developed services take SQL In-
jection attacks into account and the interactions with
XACMLTestingDB, that provide parameters supplied
by XACMLClient, are managed via Java Prepared-
Statement.

4 APPLICATION EXAMPLE

In this section, we provide an example of application
of the proposed framework for testing a policy eval-
uation engine. For this example, we asked to four
groups of three students of a secure software engi-
neering course to realize a simplified version of a pol-
icy execution engine. Each group received the same
small subset of functionalities to be implemented into
a Java prototyped engine based on XACML 3.0 speci-
fication. At the end, one of the realized PDP has been
randomly selected as SUT (System Under Test) and
called SUTPDP. The other three PDPs have been used
as oracle and called Oraclel, Oracle2 and Oracle3 in
the remaining of the section. Even if the realized ver-
sion of PDPs were very simple and limited due to the
small set of functionalities implemented, the applica-
tion of a combinatorial testing approach may require
considerable amount of time and effort. Thus a de-
centralize testing framework could be a valid solution
for decreasing the testing cost and increasing the final
PDP quality and security.

For better quantify the cost reduction, the evalu-
ation of the proposed approach has been performed
considering four different research questions:

¢ RQ1 Generation Cost: Is the distributed frame-
work able to reduce the time for test cases gener-
ation?

e RQ2 Execution Cost: Is the distributed frame-
work able to reduce the time for test cases execu-
tion?

¢ RQ3 Oracle Derivation Cost: Is the distributed
framework able to reduce the time for the correct
authorization decisions derivation?

e RQ4 Verdict Computation Cost: Is the dis-
tributed framework able to reduce the time for ver-
dicts computation?

In the remaining part of this section the details about
the application example execution and the investiga-
tions about the above research questions are provided.

129



ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

XACML Proxy / Router

XacmlinfoDB
XACMLRouter Serviet
XACMLClient XACMLPDPWS L — /
Parsing Sen_ding
'Hlut: WS l SOAP MSG el o _ »
- Eﬂr ! ExecutionDB
XACMLOracle WS
- ~ ﬁCMLTestlngEN‘
s
s
~
- | OracleDB
- ~ XACMLComparatorws - — — — _— |
- _ _ | e
WS-Secutiy ——

WSDL WS n
Figure 2: System Architecture.

4.1 Testing Environment Set-up POLICY trrrnrnrnnn root element
rule-combining-

For the investigation of the target research we asked algorithm:first-applicable
the master students to develop also a set of policies permit-overrides
example to be used for testing the SUTPDP. A total | Target ......... Sample Policy rules the
amount of 100 access policies has been pre-included access to foo resource
into XACMLTestingDB, each one targeting a set of | AnyOf ....... Or Operator
different either functionalities, or subjects, resources LAllOf .... resource = foo
or activities, or hierarchical structures. The simpli- | Rule ........... Ruleld = rulel, Effect =
fied listing in Figure 3 represents one of the developed Permit
policies example. The policy example is composed | Target ...... The barl action can be
by one XACML Policy containing a Target and three L done by bob on resource
XACML rules: foo/fool

AnyOf . Or Operator

o The Target specifies that the XACML policy is ap-

. Al110f resource = foo/fool
plicable to the foo resource;

Al10f action = barl

e The first Rule states that the barl action can | Condition .. subject=bob
be performed only by the user bob on resource | Rule ..o........ Ruleld = rule2, Effect =
foo/fool; Permit
e The second Rule says that the user alice can ac- p=drget ...... and The bar2 action can be
cess to resource foo/foo2 only in bar2 mode; done by alice on resource
. . foo/foo2
e And finally, the third Rule denies all the accesses AnyOf . Or Operator
which are not allowed explicitly and represents a A110f resource = f0o/foo2
default XACML rule. A110f action = bar2
The experiment has been executed using the 20 | Condition .. subject = alice
working stations available in the university laboratory, | Rule ........... default: deny all, which is
which can be considered similar in the overall perfor- not allowed explicitly.
mance?. In particular, the execution of the combinato- Ruleld = rule3, Effect =
rial testing of the SUTPDP has been logically divided Deny
into three steps: Figure 3: An XACML policy.
2To run the experiment we used 10 working stations 1. Generation of test case from the policies set;
having a Core i7-4790 (4.0GHz) Intel processor machine .
with eight virtual CPUs and 16GB of memory, running 2. Parallel execution of the test cases on:
Ubuntu 14.04 (64-bit version) and 10 working stations hav-
ing a Core 17-4700 (4.2GHz) Intel processor machine with e The SUTPD.P’ and
eight virtual CPUs and 16GB of memory, running Ubuntu e The three different oracles (Oraclel, Oracle2
14.04 (64-bit version). and Oracle3) for the correct authorization de-

130



A Decentralized Solution for Combinatorial Testing of Access Control Engine

cision identification;
3. Derivation of the final verdicts.

Considering the generation of the test cases, through
the XACMLClient graphical interface the Multiple
Combinatorial testing strategy has been selected
and applied in parallel to each of the 100 policies gen-
erating the corresponding set of test cases. This oper-
ation generated a set of around 50,000 test requests
considering all the access policies available. As an
example, for the access policy of listing depicted in
Figure 3 a total amount of 945 requests has been gen-
erated through the operation GetXacmlRequests, as
summarized in Figure 4.

From a practical point of view, in this case the
XACMLGenerator WS distributes the 100 policies
over all the 20 working stations, thus each one re-
ceived a group of 5 policies to be used for executing
the Multiple Combinatorial testing strategy.

In parallel, through the XACMLClient graphical
interface and specifically using the operation Exe-
cuteAlIXacmlRequests, each policy and the relative
set of test cases:

e Have been executed on the SUTPDP through
XACMLPDP WS;

e Have been used for correct authorization defini-
tion by using the XACMLOracle WS.

Figure 5 shows an extract of the derived SUTPDP
decisions for the test set relative to the policy of listing
in Figure 3.

For the parallel execution of the test cases on the
SUTPDP and on the three different oracles, the 20
working stations has been divided as in the following:

e 5 of them have been randomly selected and as-
signed to the SUTPDP testing. In this case,
XACMLPDP WS instantiated a version of the
SUTPDP on each of the 5 machines and selected
for each of them around 10,000 test cases trying
uniform load balancing.

e The remaining 15 have been divided into 5 groups
of 3 working stations each. Through XACMLO-
racle WS, Oraclel, Oracle2 and Oracle3 PDPs
have been deployed on the different machines of
each group. The 50,000 test cases have been suc-
cessively divided into 5 sets of around 10,000
each and executed in parallel on Oraclel, Oracle2
and Oracle3 so to collect the authorization deci-
sions and finally compute the correct ones.

Finally, through the XACMLComparator WS the
final verdict for each of the 50,000 test case has been
derived. Due to the simplicity of the operation a sin-
gle working station has been used for this task.

Even if the SUTPDP implemented a subset of
functionalities, a final amount of 127 fail verdicts
have been highlighted. These were due to an incor-
rect implementation of a rule combining algorithm
and a specific set up of the environment condition in
the SUTPDP that have been successively corrected.

In the next subsections, detailed results for each
of the proposed research questions are reported and
discussed.

4.2 RQ1: Generation Cost

In this section, we investigate the cost of test cases
generation. Thus, supposing that each test case has
potentially the same impact on the overall testing ef-
fort, the generation time becomes directly connected
with the number of test cases generated: i.e. the size
of a test suite represents also its cost. In the experi-
ment reported in this paper (Section 4.1) the possibil-
ity of executing the Multiple Combinatorial test-
ing strategy in a distributed way on the 20 working
stations, lets the test generation completion in around
5.30 minutes. By a more detailed analysis of the
data collected during the experimentation, consider-
ing the different nature of the XACML policies, the
application of the Multiple Combinatorial testing
strategy requires on average from 30 to 80 seconds;
therefore, the execution of a group of 5 policies re-
quires on average from 150 to 400 seconds. Indeed
the differences were manly due to the complexity of
the policies analyzed, the performance of the working
stations and the communications delay. With these es-
timations, an idea of the reduction of the time required
for test generation, in case less then 20 working sta-
tions, were used can be derived.

For aim of completeness, we repeated the exper-
iment of test case generation on a randomly selected
working station and it took around 1.5 hours. In this
case, the test generation time was not affected by
communication delay. Comparing the distributed so-
lution with the not distribute one a positive answer to
the research question RQ1 can be collected, i.e. the
distributed framework is able to reduce time for test
case generation.

For aim of completeness it is important to notice
that:

e Because of the didactic nature of the experiment,
the policies developed by the students were quite
simple in the structure and in the number of val-
ues used for subjects, resources, actions and en-
vironment attributes. Therefore, the computation
time required for the test cases generation could
be also tolerable for the not distributed solution

131



ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

| £ Xacml Testing Framework
Xacml Generator WS Operations

| AddXacmlPolicy | | GetXacmiPolicies |

L GetiacmiRequests ]

- O X
Xacml PDP WS Operations

ExecuteAllXacmiRequests |

[ AdaxacmiPolicyOp - PolicyiD 1 | GetxacmiRequests Result:: PolicyiD 1 |

Number of XacmIRequests:: 945

XacmlRequestName | XacmIRequestiD

| XacmlPolicylD

| XacmIRequestContent |

xacml3Request_00000000... 1
xacml3Request_00000000... 2
*xacml3Request_00000000... 3
xacml3Request_00000000... 4
xacml3Request_00000000. 5
xacml3Request_00000000 6
xacml3Request_00000000... 7
xacml3Request_00000000... B8
xacml3Request_00000000... 9
xacml3Request_00000000... 10
xacml3Request_00000000. hhl
xacml3Request_00000000 12
xacml3Request_00000000... 13
xacml3Request_00000000... 14
xacml3Request_00000000... 15
xacml3Request_00000000... 16
xacml3Request_00000000. 17

1

R

<Requestxmins="um:oasis...

v

=Requestxmins="urn:oasis...
=Requestxmins="urn:oasis.

=Requestxmins="urn:oasis...
=Requestxmins="urn:oasis.
=Request xmins="um:oasis

=Request xmins:
=Requestxmins="urn:oasis.

"L

Figure 4: Result of GetXacmlRequests Operation.

even if around 16 times greater than the computa-
tion time in the distributed one.

e The test case generation can be performed one and
for all for the entire policies set. Once available
the test suite can be reused several times in differ-
ent experimentations. Consequently, the test gen-
eration cost would be only the time for test cases
retrieval.

4.3 RQ2: Execution Cost

For investigation of the execution cost as in the previ-
ous section, we suppose that each test case has poten-
tially the same impact on the overall testing execution
time. Thus the execution cost becomes directly con-
nected with the size of a test suite. Considering the
experiment set up of Section 4.1, the test cases execu-
tion on the SUTPDP has been performed in parallel
on 5 working stations for a total amount of around
3.5 minutes. Of course, this estimation can vary by
augmenting or diminishing the number of working
stations dedicated to the SUNPDP testing. For hav-
ing a clearer idea, an estimation of the number of test
cases executed in each minute of testing has been de-
rived from the data collected. In the experiment, the
tests executed per second varies from 40 to 60, con-
sequently the total amount of time necessary for exe-
cuting 10,000 test cases could vary from around 4.20
to 2.8 minutes. As in the previous section, the differ-
ences were manly due to the complexity of the poli-
cies analyzed, the performance of the working sta-
tions, and the communications delay.

132

As for the previous question, for aim of complete-
ness, we repeated the experiment of test case gener-
ation on a randomly selected working station and it
took around 16 minutes. In this case, the test gener-
ation time was not affected by communication delay.
Comparing the distributed solution with the not dis-
tribute one, a positive answer to the research question
RQ2 can be collected, i.e. the distributed framework
is able to reduce the time for test cases execution.

4.4 RQ3: Oracle Derivation Cost

For investigation of the evaluation cost as in the previ-
ous section, we suppose that each test case has poten-
tially the same impact on the overall testing execution
time. Thus the evaluation cost becomes directly con-
nected with the size of a test suite.

Considering the experiment set up of Section 4.1,
the test cases execution on the three versions of or-
acle has been performed in parallel on 5 groups of
three oracles each. Because the number of tests to be
executed (10,000) and the oracles performance were
similar to that of the SUTPDP, the time necessary
for the derivation of correct authorization decision for
each test case does not evidence important differences
from the execution time. Indeed, the total amount was
around 3.7 minutes. In this case the differences were
manly due the communications delay.

For aim of completeness we repeated the experi-
ment on a randomly selected working station. In this
case we deployed one per time the different oracle
versions on the working station, we collected the au-



A Decentralized Solution for Combinatorial Testing of Access Control Engine

| £ Xacml Testing Framework
Xacml Generator WS Operations

| AddxacmiPolicy | | GettacmlPolicies |

| GetlacmiRequests |

- O X
Xacml PDP WS Operations

ExecuteAllXacmiRequests

[AdancmlPulicyOp PolicylD 1 I Get{acmIRequests Result:: PolicylD 1 T ExecuteAllXacmIRequests Result :: PolicylD 1

Number of XacmIDecisions:: 845
Permit = 360 Deny :: 522 MotApplicable = 63

Decision | ResponselD

| PolicylD

Indeterminate = 0

| RequestiD |

Permit 1
Permit
Permit
Permit
Permit
Permit
Permit
Permit
Permit
Permit
Permit
Permit
Permit
Permit
Permit
Permit
Permit

GO

1

VG

3w
I

o
R
"L

Figure 5: Result of EvaluateAllXacmIRequests Operation.

thorization decision sets and then we compared them
for deriving the correct authorization decisions set. In
practice, we repeated the execution of all the 50,000
test cases on an oracle version for three times. With-
out considering the time necessary for the different
oracles instantiation, the total amount of time neces-
sary for the correct authorization decisions set was 49
minutes.

Comparing the distributed solution with the not
distribute one a positive answer to the research ques-
tion RQ3 can be collected, i.e. the distributed frame-
work is able to reduce the time for oracle derivation.
For aim of completeness it is important to notice that
the correct authorization decisions can be performed
one and for all for the entire test suite. Once available,
correct authorization decisions can be reused several
times in different experimentations. Consequently the
test evaluation cost would be only the time for data re-
trieval.

4.5 RQ4: Verdict Computation Costs

For investigation of the verdict computation cost, as in
the previous section, we consider the size of the test
suite. Actually this operation is just a binary com-
parison between two values: the authorization deci-
sion computed by the SUTPDP with the correct one.
Due to the simplicity of the operation and the number
of data compared, mainly the cost of this operation
depends on the data retrieval for the different DBs.
Comparing the distributed solution with the not dis-
tribute one, no difference can be noticed, therefore no

answer can be given to research question RQ4.

S RELATED WORK

This work spans over several research directions, in-
cluding: combinatorial approaches for test case gen-
eration and testing of the PDP.

Combinatorial Approaches for Test Cases Gener-
ation. In combinatorial testing, test cases are de-
signed to execute combinations of input parameters
(Nie and Leung, 2011). Because providing all combi-
nations is usually not feasible in practice, due to their
extremely large numbers, combinatorial approaches
able to generate smaller test suites for which all com-
binations of the features are guaranteed, are pre-
ferred. Among them, common approaches rely on
t-way combinatorial criteria of input parameters (Co-
hen et al., 1997; Kuhn et al., 2013) and include sup-
port for constraints and variable-strength tests (NIST,
2016). Other approaches review existing solutions for
the oracle problem for combinatorial testing includ-
ing crash testing, embedded assertions, and model
checker-based test generation (Kuhn et al., 2008).

In combinatorial testing, some tools exist (Aggar-
wal et al., 2016; Sabharwal and Aggarwal, 2017) that
are able to identify interaction faults in the source
code using for instance data flow techniques (Sabhar-
wal and Aggarwal, 2017). They are able to generate a
test set for only the failure triggering interactions with

133



ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

the aim of reducing the test set size without much af-
fecting the fault detection capability. Differently from
these works, the advantage of our proposal is the pos-
sibility to exploit parallel computational resources to
generate a large set of test cases without applying test
suite reduction techniques.

In the context of XACML based access control
systems, combinatorial test cases generation strate-
gies are proposed for testing on the one side the
XACML policy specification and on the other that
the PDP behavior conforms to the policy specifica-
tion. Among them, the Targen tool (Martin and Xie,
2006) generates test inputs using combinatorial cov-
erage of the truth values of independent clauses of
XACML policy values. A more recent tool is X-
CREATE (Bertolino et al., 2013) that provides dif-
ferent strategies based on combinatorial approaches
of the subject, resource, action and environment val-
ues taken from the XACML policy for deriving the
access requests. Among the X-CREATE generation
strategies, we selected in this paper Multiple Combi-
natorial strategy for deriving test suites used to val-
idate the effectiveness of the proposed approach. It
allows combinations of more than one subject, re-
source, action and environment values and automat-
ically establishes the number of subjects, resources,
actions and environments of each request according
to the complexity of the policy structure. Other works
(Xu et al., 2012; Xu et al., 2015) focus on model
based testing and apply combinatorial analysis to the
elements of the model (role names, permission names,
context names) or pairwise combinations of tokens of
a predicatetransition net to derive test cases. Finally,
ACPT tool (NIST, 2018) uses combinatorial testing
with model checking to produce tests for access con-
trol policies. To overcome the computational cost
of combinatorial testing, recent solutions (Tsai et al.,
2015; Tsai and Qi, 2016) rely on cloud environments
where a large number of processors and distributed
databases are adopted to perform large combinatorial
tests execution in parallel. Differently from our pro-
posal, these approaches use concurrent test algebra
execution and analysis for identifying faulty interac-
tions and reducing combinatorial tests, moreover they
are not specifically tailored to access control systems.

Testing of the PDP. Test oracle automation has
been for long time investigated in literature and still
remains a challenging problem (Barr et al., 2015). In
the context of access control systems, few proposals
address PDP testing aiming to automatically check
whether the test outputs are correct. The authors of
(Li et al., 2008) propose to simultaneously observe
the responses from different PDPs on the same test

134

inputs, so that different responses can highlight pos-
sible issues. Although effective, the proposal is quite
demanding, because it requires using different PDP
implementations. Our approach is in line with this
proposal, but it uses a distributed solution. A differ-
ent approach proposed in (Bertolino et al., 2018) deals
with PDP testing providing a completely automated
model-based oracle derivation proposal for XACML-
based PDP testing.

6 CONCLUSIONS

In this paper, we proposed a new decentralized frame-
work for testing of XACML-based access control en-
gines. The main advantages of the proposed solu-
tion are: i) reducing the computational costs of the
generation and execution of large combinatorial test
suites without the adoption of test suites reduction
techniques; ii) providing a decentralized and cost ef-
fective automated oracle for the PDP testing.

The application of the proposed distributed solu-
tion to a simple application example showed its effec-
tiveness in reducing the cost of all the main phases
of the testing process: test cases generation, test case
execution and oracle derivation. Specifically, for the
policy example showed in the paper, the cost saving
was of around 90% (total testing process time was
of 12,5 minutes for our solution against 155 minutes
of a common single working station). This time sav-
ing is mainly due to the efficient decentralized oracle
derivation that represents the most challenging task
of the testing process. Our solution allows to reduce
testing costs also when test cases and correct autho-
rizations decisions are already available. In this last
case, the cost gain was around 78% (total testing pro-
cess time was of 3,5 minutes for our solution against
16 minutes of a common single working station).

As threat to validity, we have to observe that these
time measures are dependent on the computational
powers of the used working stations and the schedul-
ing of the test task on the different working stations.

In the future, we plan to investigate more about
efficient scheduling approaches dealing with power
constraints of different working stations as well as
to address scalability issues related to the proposed
framework. We would like also to study the relation-
ship between the cost saving and the performance of
the proposed approach in terms of fault detection ef-
fectiveness.



A Decentralized Solution for Combinatorial Testing of Access Control Engine

ACKNOWLEDGEMENTS

This work has been partially supported by the GAUSS
national research project (MIUR, PRIN2015, Con-
tract2015SKWREMX).

REFERENCES

Aggarwal, M., Sabharwal, S., and Dudeja, S. (2016). FTCI:
A Tool to Identify Failure Triggering Combinations
for Interaction Testing. Indian Journal of Science and
Technology, 9(38).

Barr, E. T., Harman, M., McMinn, P., Shahbaz, M., and
Yoo, S. (2015). The oracle problem in software test-
ing: A survey. IEEE Transactions on Software Engi-
neering, 41(5):507-525.

Bertolino, A., Daoudagh, S., Lonetti, F., and Marchetti,
E. (2018). An automated model-based test oracle
for access control systems. In Proceedings of 13th
IEEE/ACM International Workshop on Automation of
Software Test, Gothenburg, Sweden. May 28-29.

Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E., Mar-
tinelli, F.,, and Mori, P. (2014). Testing of polpa-
based usage control systems. Software Quality Jour-
nal, 22(2):241-271.

Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E., and
Schilders, L. (2013). Automated testing of extensible
access control markup language-based access control
systems. IET Software, 7(4):203-212.

Bertolino, A., Lonetti, F., and Marchetti, E. (2010). Sys-
tematic XACML Request Generation for Testing Pur-
poses. In Proc. of 36th EUROMICRO Conference
on Software Engineering and Advanced Applications
(SEAA), pages 3 —11.

Candido, J., Melo, L., and d’Amorim, M. (2017). Test
suite parallelization in open-source projects: a study
on its usage and impact. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated
Software Engineering, pages 838—848. IEEE Press.

Cohen, D. M., Dalal, S. R., Fredman, M. L., and Patton,
G. C. (1997). The AETG system: An approach to
testing based on combinatiorial design. IEEE Trans.
on Soft. Eng., 23(7):437-444.

Kuhn, D. R., Kacker, R. N., and Lei, Y. (2013). Introduction
to combinatorial testing. CRC press.

Kuhn, R., Lei, Y., and Kacker, R. (2008). Practical com-
binatorial testing: Beyond pairwise. It Professional,
10(3).

Li, N., Hwang, J., and Xie, T. (2008). Multiple-
implementation testing for xacml implementations. In
Proceedings of the 2008 workshop on Testing, analy-

sis, and verification of web services and applications,
pages 27-33. ACM.

Martin, E. and Xie, T. (2006). Automated test generation
for access control policies. In Supplemental Proc. of
ISSRE.

Martin, E., Xie, T., and Yu, T. (2006). Defining and measur-
ing policy coverage in testing access control policies.
In Proc. of ICICS, pages 139-158.

Nie, C. and Leung, H. (2011). A survey of combinatorial
testing. ACM Computing Surveys (CSUR), 43(2):11.

NIST (2016). Automated Combinatorial Testing for
Software. https:csre.nist.govprojectsautomated-
combinatorial-testing-for-softwaredownloadable-
tools.

NIST (2018). Access Control Policy Test (ACPT).
https:csrc.nist.govprojectsautomated-combinatorial-
testing-for-softwaredownloadable-tools#acpt.

OASIS (2013). eXtensible Access Control Markup
Language (XACML) Version 3.0. http:docs.oasis-
open.orgxacml3.0xacml-3.0-core-spec-os-en.html.

Sabharwal, S. and Aggarwal, M. (2017). A novel approach
for deriving interactions for combinatorial testing. En-

gineering Science and Technology, an International
Journal, 20(1):59 - 71.

Tsai, W.-T. and Qi, G. (2016). Integrated fault detec-
tion and test algebra for combinatorial testing in taas
(testing-as-a-service). Simulation Modelling Practice
and Theory, 68:108-124.

Tsai, W.-T., Qi, G., and Hu, K. (2015). Autonomous de-
centralized combinatorial testing. In IEEE Twelfth In-
ternational Symposium on Autonomous Decentralized
Systems (ISADS), pages 40-47. IEEE.

Xu, D., Kent, M., Thomas, L., Mouelhi, T., and Le Traon, Y.
(2015). Automated model-based testing of role-based
access control using predicate/transition nets. IEEE
Transactions on Computers, 64(9):2490-2505.

Xu, D., Thomas, L., Kent, M., Mouelhi, T., and Le Traon,
Y. (2012). A model-based approach to automated test-
ing of access control policies. In Proceedings of the
17th ACM symposium on Access Control Models and
Technologies, pages 209-218. ACM.

135



