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Abstract: The idea of multi-sensor data fusion is to combine the data coming from different sensors to provide more

accurate and complementary information to solve a specific task. Our goal is to build a shared representation

related to data coming from different domains, such as images, audio signal, heart rate, acceleration, etc., in

order to anticipate daily activities of a user wearing multimodal sensors. To this aim, we consider the Stanford-

ECM Dataset which contains syncronized data acquired with different sensors: video, acceleration and heart

rate signals. The dataset is adapted to our action prediction task by identifying the transitions from the generic

“Unknown” class to a specific “Activity”. We discuss and compare a Siamese Network with the Multi Layer

Perceptron and the 1D CNN where the input is an unknown observation and the output is the next activity to

be observed. The feature representations obtained with the considered deep architecture are classified with

SVM or KNN classifiers. Experimental results pointed out that prediction from multimodal data seems a

feasible task, suggesting that multimodality improves both classification and prediction. Nevertheless, the

task of reliably predicting next actions is still open and requires more investigations as well as the availability

of multimodal dataset, specifically built for prediction purposes.

1 INTRODUCTION

The prediction of the future is a challenge that has al-

ways fascinated humans. As reported in (Lan et al.,

2014), given a short video or an image, humans can

predict what is going to happen in the near future. The

overall design of machines that anticipate future acti-

ons is still an open issue in Computer Vision. In the

state of the art, there are many applications in robotics

and health care that use this predictive characteristic.

For example, (Chan et al., 2017) proposed a RNN

model for anticipating accidents in dashcam videos.

(Koppula and Saxena, 2016; Furnari et al., 2017) stu-

died how to enable robots to anticipate human-object

interactions from visual input, in order to provide ade-

quate assistance to the user. (Koppula et al., 2016;

Mainprice and Berenson, 2013; Duarte et al., 2018)

studied how to anticipate human activities for impro-

ving the collaboration between human and robot. In

(Damen et al., 2018), the authors propose a new data-

set, called Epic-Kitchen Dataset, and action and anti-

cipation challenges have been investigated.

In this paper we consider the problem of pre-

dicting user actions. Since the information in the real

world comes from different sources and can be cap-

tured by different sensors, our goal is to predict an

action before it happens from multimodal observed

data.

Multimodal learning aims to build models that are

able to process information from different modalities,

semantically related, to create a shared representation

of them. For example, given an image of a dog and

the word “dog ”, we want to project these data in a

representation space that takes account of both source

domains.

As reported in (Srivastava and Salakhutdinov,

2014), each modality is characterized by different

statistical properties, and hence each one of it can

add valuable and complementary information to the

shared representation. A good model for multimodal

learning must satisfy certain properties. In fact the

shared representation must be such that resemblance

in the shared space of representation implies that the

similarity of the inputs can be easily obtained even in

the absence of some modalities.

Another aspect, not less important than the previ-

ous one, is represented by the data; in particular, they

are collected at different sampling frequencies, there-
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fore, before to features captioning, it is necessary to

synchronize the various inputs in order to have all the

related modalities properly aligned.

This paper presents a study of predicting a future

action from currently observed multimodal data. To

this aim, the Stanford-ECM Dataset (Nakamura et al.,

2017) has been considered. It comprises video, acce-

leration and heart rate data. We adapted this dataset

to extract transitions from unknown to specific acti-

vities. Siamese network with Multi Layer Perceptron

and 1D CNN are used for predicting next activity just

from features extracted from the previous temporal

sequence, labeled as “Unknown”. The feature repre-

sentations obtained with the considered deep architec-

ture are classified with SVM or KNN classifier.

The prediction accuracy of the tested models is

compared with respect to the classic action classi-

fication which is considered as a baseline. Results

demonstrate that the presented system is effective in

predic-ting activity from an unknown observation and

suggest that multimodality improves both classifica-

tion and prediction in some cases. This confirms that

data from different sensors can be exploited to en-

hance the representation of the surrounding context,

similarly to what happens for human beings, that ela-

borate information coming from their eyes, ears, skin,

etc. to have a global and more reliable view of the

surrounding world.

The remainder of the paper is organized as fol-

lows. Section 2 reviews the related work. Section 3

describes the dataset used in this paper. Section 4 de-

tails the building blocks of our system while section

5 presents the experimental settings and discusses the

results. Finally, conclusions are given in Section 6.

2 RELATED WORKS

We focus our review to related work which focus on

action anticipation and multimodal learning.

2.1 Action Anticipation

The goal of action anticipation is to detect and recog-

nize a human action before it happens. The work of

(Gao et al., 2017) proposes a Reinforced Encoder-

Decoder (RED) network for action anticipation that

takes multiple representations as input and learns to

anticipate a sequence of future representations. These

anticipated representations are processed by a classifi-

cation network for action classification. In (Lan et al.,

2014), it is presented a hierarchical model that repre-

sents the human movements to infer future actions

from a static image or a short video clip. In (Ma et al.,

2016), the authors proposed a method to improve trai-

ning of temporal deep models to learn activity pro-

gression for activity detection and early recognition

tasks. Since in the state of the art there are not suffi-

ciently large datasets for action anticipation task, the

work of (Damen et al., 2018) proposes a new data-

set, called Epic-Kitchen Dataset. The authors show

the great potential of the dataset for pushing appro-

aches that target fine-grained video understanding to

new frontiers.

2.2 Multimodal Learning

In this work, we are interested in considering mul-

timodal inputs to address action anticipation. One

of the first paper on Multimodal Learning is (Ngiam

et al., 2011) where video and audio signals are used

as input. The aim of the work is to embed the inputs

into a shared representation in order to be able to use

only a single modality at test time. The creation of

a shared representation has also been treated in other

works. In particular (Srivastava and Salakhutdinov,

2014; Aytar et al., 2017) build representations that are

useful for several tasks, such as cross-modal retrieval

or transferring classifiers between modalities.

In (Nakamura et al., 2017), a model for reasoning

on multimodal data to jointly predict activities and

energy expenditures is proposed. In particular, they

consider Egocentric videos augmented with heart rate

and acceleration signals. In (Wu et al., 2017), an on-

wrist motion triggered sensing system for anticipating

daily intention is proposed. The authors introduce a

RNN method to anticipate intention and a policy net-

work to reduce computation requirement.

3 DATASET

There are few publicly available multimodal datasets

in literature. Table 1 shows the relevant multimo-

dal datasets together with main characteristics and

the presence of transitions between actions. Since

sequences with transitions among activities are nee-

ded, in our experiments, we considered the egocen-

tric multimodal dataset, called Stanford-ECM Data-

set (Nakamura et al., 2017). This dataset comprises

31 hours of egocentric video (113 videos) synchroni-

zed with acceleration and heart rate data. The video

and triaxial accelerations were captured with a mobile

phone equipped with a 720× 1280 resolution camera

at 30fps and 30Hz, respectively. The lengths of the vi-

deos range from 3 minutes to about 51 minutes. The

heart rate was collected with a wrist sensor every 5

seconds (0.2 Hz). These multimodal data were time-
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Table 1: Relevant multimodal datasets together with main characteristics. The second and third columns indicate the acquisi-
tion modality. Fourth column indicates the number of action class, whereas column five is related to the number of subjects
involved into the acquisition. The last two columns are related to the resolution of frames and the presence of transitions
between actions.

Dataset First Person Third Person ♯ Class ♯ Subjects Resolution Transition

Multimodal Egocentric Activity Dataset (Song et al., 2016) X ✗ 20 - 1280x720 ✗

Daily Intention Dataset (Wu et al., 2017) X ✗ 34 3 640x480 X

Epic-Kitchen Dataset (Damen et al., 2018) X ✗ 149 32 1920x1080 ✗

CMU-MMAC Dataset (Torre et al., 2009) X X 31 39 800x600 X

Stanford-ECM Dataset (Nakamura et al., 2017) X ✗ 24 10 720x1280 X

Table 2: Activity classes of Stanford-ECM Dataset.

Activity Activity

1.BicyclingUphill 13.Shopping
2.Running 14.Strolling
3.Bicycling 15.FoodPreparation
4.PlayingWithChildren 16.TalkingStanding
5.ResistanceTraning 17.TalkingSitting
6.AscendingStairs 18.SittingTasks
7.Calisthenics 19.Meeting
8.Walking 20.Eating
9.DescendingStairs 21.StandingInLine
10.Cooking 22.Riding
11.Presenting 23.Reading
12.Driving 24.Background

synchronized through Bluetooth. Cubic polynomial

interpolation was used to fill any gap in heart rate data.

Finally, data have been aligned considering millise-

cond level at 30 Hz.

The activity classes present in the Stanford ECM-

Dataset are listed in Table 2. There are 24 classes in

total. “Background” is a miscellaneous activity class

which includes activities such as taking pictures or

parking a bicycle. The dataset has also an additio-

nal class, unknown, that is related to part of the data

before or after an action occurs.

Since this dataset was created for classification

task, we have reviewed it to be compliant to our action

prediction task.

We considered a transition, suitable to build trai-

ning and test sets: Unknown/Activity, where “Acti-

vity” means a generic activity different from “back-

ground” and “unknown”. We cut each video around

the Unknown/Activity transitions including 64 fra-

mes before and 64 after the transitions point. Since

some transitions were represented with few sam-

ples, we have concentrated the analysis to the fol-

lowing 9 activities: Bicycling, Playing With Child-

ren, Walking, Strolling, Food Preparation, Talking

Standing, Talking Sitting, Sitting Tasks and Shop-

ping. Hence, the final dataset contains 309 transitions

Unknown/Activity.

4 PROPOSED APPROACH

The proposed approach is synthetically sketched in

Figure 1. The model considers the three modalities vi-

deo, acceleration and heart rate as input after a feature

extraction process. Moreover details of the different

component of our approach will be given.

4.1 Problem

Let be yt = (vt ,at ,hrt)
T the input vector at time t

where vt ∈ R
2 is a video, at ∈ R

3 is an acceleration

signal and hrt ∈ R is a heart rate data, we define the

feature representation of video, acceleration and he-

art rate signal as xv
t , xa

t and xhr
t and xt = (xv

t ,x
a
t ,x

hr
t )T

the features vector at time t. Given xt as input, we

want to predict the label labelt+1 of the next action by

observing only data before the activity starts.

4.2 Features Extraction

In this section we describe the feature representation

xv
t , xa

t and xhr
t for each signal. The extraction of vi-

deo and acceleration features is similar to (Nakamura

et al., 2017).

For visual data, features are extracted from the

pooling layer five of the Inception CNN architecture

(Szegedy et al., 2015) pretrained on ImageNet (Deng

et al., 2009). Each video frame has been transfor-

med into a xv
t feature vector of 1024 dimension. For

acceleration data, we extracted features from raw sig-

nals through a temporal sliding window process con-

sidering a window size of 32fps. Time-domain featu-

res and frequency-domain features are extracted from

raw signals. For time-domain features, mean, stan-

dard deviation, skewness, kurtosis, percentiles (10th,

25th, 50th, 75th, 90th), acceleration count for each

axis and correlation coefficients between each axis are

computed. For frequency-domain features, we con-

sider the spectral entropy J = −
N/2

∑
i=0

P̄i · log2 P̄i where

P̄i is the normalized power spectral density computed

from Short Time Fourier Transform (STFT). Then,
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Figure 1: Pipeline of our anticipation approach.

the obtained features from these domains are conca-

tenated and xa
t is a 36-dimensional vector.

For heart rate data, the features are extracted from

the time-series of the raw signals. Mean and standard

deviation are calculated to compute a xhr
t ∈R

2 vector.

4.3 Temporal Pyramid

We represent features in a temporal pyramid fashion

(Pirsiavash and Ramanan, 2012) composed by three

level. The top level (j=0) is an histogram over the

full temporal extent of a data, the next level (j=1) is

the concatenation of two histograms obtained by tem-

porally segmenting each modality into two halfs, the

last level (j=2) is the concatenation of four histograms

obtained by temporally segmenting each previous his-

togram into two halves. In this way, 7 histograms are

obtained corresponding to a 1024× 7 visual features,

36×7 acceleration features, and 2×7 heart rate featu-

res. All features are concatenated into a single vector

xt = (xv
t ,x

a
t ,x

hr
t )T of 7434 components.

4.4 Data Augmentation

Since we have few transition samples, data augmen-

tation technique is used to expand the training set to

prevent over-fitting. In this paper, the permutation

Unknown/Activity is considered. Each unknown se-

quence is paired with all the possible sequences of

activity. For example, we combined the unknown clip

related to “walking” activity with every other acti-

vity. The label of each augmented transition is chan-

ged from 0-8 to 0-1, as follows: if unknown and the

activity belong to the same class (e.g. unknown rela-

ted to walking and the following activity is walking),

we assign a label 1, otherwise a label 0 is assigned if

unknown and the activity are different (e.g. unknown

related to walking and activity is related to food pre-

paration).

The obtained dataset is strongly unbalanced. Ta-

ble 3 compares the number of sequences before and

after augmentation. Some classes, such as Shopping

or Food Preparation, are poorly represented therefore

it is necessary to down-sample the dataset. We con-

sider the square of minimum value of the number of

original activity transitions (112 = 121) from sequen-

ces with label 1 and 154 sequences from sequences

with label 0 for each class, in order to balance activi-

ties classes and unknown class. The final dataset has

12177 sequences.

4.5 Learning Approach

Our goal is to build an embedding space where the

unknown sequences, which are related to the past, are

close to those of future activities. In this regard, we

use Siamese networks (Bromley et al., 1993; Koch

et al., 2015) which consist of twin networks that share

weights and accept two different inputs. After lear-

ning process, two similar images should be mapped

by the network to close points in the feature space be-

cause each network computes the same function. Du-

ring training the two networks extract features from

two inputs, while the final shared neuron measures

the distance between the two feature vectors.

In our experiment, since the Siamese network

will be trained to make representations of features of

”Unknown” sequences and next ”Activity” very close

in the embedding space, one stream of the Siamese

network processes the unknown features whereas the

other stream processes those related to the activity.

Euclidean metric is used as distance between inputs.

The contrastive loss function (Hadsell et al., 2006) is

used for training purposes:

Y
√

D+(1−Y)
√

max(1−D,0) (1)

where Y is the ground truth activity label and D is the

euclidean distance between two feature points.
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Table 3: Number of sequences for each activity before and after augmentation.

Activity ♯ of original activity transitions ♯ of augmented activity transitions ♯ of final transitions

Bicycling 18 4482 1353
Walking 79 19671 1353
Shopping 11 2739 1353

Talking Standing 26 6474 1353
Sitting Tasks 17 4233 1353

Playing With Children 32 7968 1353
Strolling 32 7968 1353

Food Preparation 14 3486 1353
Talking Sitting 20 4980 1353

TOT 249 62001 12177

Figure 2: a) 1D CNN Architectures. b) MultiLayer Perceptron architecture.

We consider two different architectures for Sia-

mese network: Multilayer Perceptron (Bishop, 2006)

and 1D Convolutional Neural Network (CNN) (Kira-

nyaz et al., 2016; Lee et al., 2017). Figure 2 shows

the architecture of the used networks. For Multilayer

Perceptron, two hidden layers are considered with a

number of neurons of 4000 and 3000 respectively. For

1D CNN, three convolutional layers are used with a

number of filters of 32, 64 and 2, respectively, (all of

size 3× 1) and a relu activation function. The output

of each convolutional layer is reduced in size using a

max-pooling layer that halves the number of features.

4.6 Classification and Prediction

Our aim is to predict next activity from an unknown

clip. To our knowledge, in the state of the art, there

are not results on action anticipation from multimo-

dal data, therefore we consider as baseline the classi-

fication of activity sequences and the classification of

unknown sequences. A k-nearest-neighbor classifica-

tion algorithm (K-NN) and a support vector machine

(SVM) are used for classification purposes.

5 EXPERIMENTS

In this section, the results of the proposed approach

are shown and discussed. Our model is evaluated on

Stanford-ECM Dataset. The feature representations

obtained with the considered deep architectures are

classified with SVM or KNN classifier.

5.1 Setup

We randomly split our data into disjoint training (249

sequences) and testing sets (60 sequences) for trai-

ning and testing purposes. For Siamese Network, the

Adam optimizer is considered with batch size of 249

samples. Variable learning rate is used starting from

0.001. In the Multilayer Perceptron, in order to pre-

vent overfitting, we apply a dropout procedure during

training. We evaluate K-NN for different values of k

and SVM for different kernels. In K-NN classifier,

we consider two different weights: uniform and dis-

tance. The first assigns equal weights to all points,

while distance weight assigns weights proportional to

the inverse of the distance from the query point.

VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications

158



Table 4: SVM Results.

Classification Prediction

Modality (♯ Features) Linear Kernel RBF Linear Kernel RBF

Acceleration (252) 31.67% 46.67% 31.67% 46.67%

Heart rate (14) 33.33% 28.33% 33.33% 35%

Video(7168) 66.67% 68.33% 60% 56.67%

Acceleration+Heart rate (266) 36.67% 50% 38.33% 48.33%

Video+Acceleration (7420) 70% 71.67% 68.33% 68.33%

Video+Heart rate(7182) 66.67% 66.67% 60% 63.33%

Video+Acceleration+Heart rate (7434) 70% 68.33% 68.33% 68.33%

Table 5: K-NN Results.

Classification

Modality (♯ Features) weights=uniform weights= distance

k = 1 k = 3 k = 5 k = 7 k = 9 k = 1 k = 3 k = 5 k = 7 k = 9

Acceleration (252) 41.67% 53.33% 48.33% 45% 45% 41.67% 51.67% 46.67% 50% 50%

Heart rate (14) 23.33% 21.67% 18.33% 23.33% 31.67% 23.33% 20% 15% 15% 15%

Video(7168) 63.33% 61.67% 61.67% 61.67% 60% 63.33% 61.67% 63.33% 66.67% 63.33%

Acceleration+Heart rate (266) 38.33% 46.67% 48.33% 45% 43.33% 38.33% 43.33% 45% 48.33% 46.67%

Video+Acceleration (7420) 61.67% 61.67% 63.33% 63.33% 61.67% 61.67% 58.33% 61.67% 65% 65%

Video+Heart rate(7182) 63.33% 61.67% 61.67% 61.67% 60% 63.33% 61.67% 65% 65% 63.33%

Video+Acceleration+Heart rate (7434) 60% 65% 63.33% 63.33% 58.33% 60% 61.67% 63.33% 65% 63.33%

Prediction

Modality (♯ Features) weights=uniform weights= distance

k = 1 k = 3 k = 5 k = 7 k = 9 k = 1 k = 3 k = 5 k = 7 k = 9

Acceleration (252) 41.67% 53.33% 48.33% 45% 45% 41.67% 51.67% 46.67% 50% 50%

Heart rate (14) 20% 26.67% 26.67% 25% 35% 20% 20% 20% 23.33% 26.67%

Video(7168) 55% 56.67% 60% 56.67% 60% 55% 58.33% 58.33% 56.67% 63.33%

Acceleration+Heart rate (266) 33.33% 46.67% 48.33% 45% 48.33% 33.33% 41.67% 45% 45% 48.33%

Video+Acceleration (7420) 53.33% 58.33% 60% 60% 56.67% 53.33% 61.67% 58.33% 60% 60%

Video+Heart rate(7182) 55% 56.67% 60% 56.67% 60% 55% 58.33% 58.33% 56.67% 63.33%

Video+Acceleration+Heart rate (7434) 53.33% 58.33% 61.67% 60% 56.67% 53.33% 61.67% 60% 60% 58.33%

5.2 Baseline

In order to better evaluate our approach, we define a

baseline where the values of accuracy in classifica-

tion and in prediction are compared. In classification,

the features related to activity sequence, extracted as

described in Session 4.2, are classified, while in pre-

diction we consider the classification of features rela-

ted to unknown clips.

The Tables 4 and 5 show the values of accuracy for

each signals and combinations of all of them. For ex-

ample, if we consider the accuracy values of video fe-

atures, in Table 4, we can see that, with a linear kernel,

we obtain an accuracy value of 66.67% in classifica-

tion and a value of 60% in prediction; if we combine

video features with acceleration data, for instance, the

values are 70% in classification and 68.33% in pre-

diction. These results suggest two conclusions. The

first is that, as it is easily understandable, the values

of accuracy in classification are higher than those in

prediction, but not so much higher, therefore it is pos-

sible to anticipate the future action. The second is that

most of the information comes from the video, but if

we combine video with another signal, such as acce-

leration, the value of accuracy increases. The same

conclusions are obtained with K-NN classifier.

5.3 Siamese Network

Our goal is to predict the label of the next action by

observing only data before the activity starts. Our ba-

seline suggests that it is necessary to fill the gap bet-

ween the accuracy of classification and that of the pre-

diction. As discussed in previous section 4, we consi-

der a Siamese network for our purpose. Two different

architectures are used: Multilayer Perceptron and a

1D CNN. The interesting point is that with a 1D CNN

we can consider three convolutional layers therefore

our output has dimension of 1860 while with a MLP

we have only two layers and the output size is 3000.

Table 6 and Table 7 show the results of the Siamese

network. The tables list the obtained accuracy with

K-NN and SVM classifier both for classification and

anticipation. With a Siamese Network composed by a

Multilayer Perceptron, results on anticipation are not

so good and are even worse, in most cases, than those

obtained by the baseline. This could be due to the dif-

ficulty of the MLP to learn from a very tiny dataset.

More in details, the number of parameters of the net-

work (7434x4000x3000) is too big with respect to the

dataset size. Table 7 shows results obtained by trai-

ning the considered classifiers on the representation

learned through a Siamese Network, by exploiting a

1D convolutional layer architecture.
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Table 6: Siamese Network Results considering a MultiLayer Perceptron architecture.

KNN

Classification Prediction

k Baseline Siamese Baseline Siamese

weights=uniform weights=distance weights=uniform weights= distance weights=uniform weights= distance weights=uniform weights= distance

1 60% 60% 58.33% 58.33% 53.33% 53.33% 55% 55%

3 65% 61.67% 60% 60% 58.33% 61.67% 55% 55%

5 63.33% 63.33% 58.33% 58.33% 61.67% 60% 55% 55%

7 63.33% 65% 56.67% 56.67% 60% 60% 53.33% 53.33%

9 58.33% 63.33% 56.67% 56.67% 56.67% 58.33 % 53.33% 53.33%

SVM

Linear Kernel RBF Linear Kernel RBF Linear Kernel RBF Linear Kernel RBF

70% 68.33% 58.33% 46.67% 68.33% 68.33% 55% 56.67%

Table 7: Siamese Network Results considering a 1D CNN architecture.

KNN

Classification Prediction

k Baseline Siamese Baseline Siamese

weights=uniform weights=distance weights=uniform weights= distance weights=uniform weights= distance weights=uniform weights= distance

1 60% 60% 50% 50% 53.33% 53.33% 55% 55%

3 65% 61.67% 50% 53.33% 58.33% 61.67% 51.67% 58.33%

5 63.33% 63.33% 55% 55% 61.67% 60% 63.33% 66.67%

7 63.33% 65% 55% 58.33% 60% 60% 63.33% 65%

9 58.33% 63.33% 55% 60% 56.67% 58.33 % 58.33% 65%

SVM

Linear Kernel RBF Linear Kernel RBF Linear Kernel RBF Linear Kernel RBF

70% 68.33% 71.67% 65% 68.33% 68.33% 60% 60%

The best values of accuracy are obtained with K-

NN for k equals 5 and k equals 7. Indeed, if we

compare the accuracy values of our baseline in the

Table 7 for k = 5 and weights=distance, we have

63.33% for classification, 60% for prediction whereas

the Siamese network overcomes these values obtai-

ning a 66.67% of accuracy. For k=7, results show that

the accuracy value with a Siamese network is equal

to 65%, in other words, the same value of accuracy

obtained for classification baseline. It is also interes-

ting to note that the representation generated by the

Siamese Network is not suitable in this case for clas-

sification task; in fact, accuracy achieved in classifi-

cation is quite lower than that of the simple baseline.

This could be due to the fact that the Siamese network

has been trained to solve the challenge of making re-

presentations of features of ”Unknown” sequence and

next ”Activity” very close in the embedding space

with few samples. The results achieved with the SVM

classifier do not reach the accuracy of the baseline.

6 CONCLUSION

This work presents preliminary results on action an-

ticipation from multimodal data. In particular, the

Stanford-ECM Dataset has been considered to ad-

dress the problem. We compared the performances

of different architecture and classifiers. Our prelimi-

nary results suggest that multi-modality improves

both classification and prediction, but we couldn’t

deeply take advantage of deep learning approaches

on multi-modal data due to a very limited dataset for

training the methods. Future works could be aimed to

improve the overall pipeline in order to fill the gap be-

tween classification and prediction performances and

to test algorithm on bigger multimodal datasets, spe-

cifically built with the aim of addressing prediction

and anticipation.
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